RESUMO
Because of cellular heterogeneity, the analysis of endogenous molecules from single cells is of significant interest and has major implications. While micromanipulation or cell sorting followed by cell lysis is already used for subsequent molecular examinations, approaches to directly extract the content of living cells remain a challenging but promising alternative to achieving non-destructive sampling and cell-context preservation. Here, we demonstrate the quantitative extraction from single cells with spatiotemporal control using fluidic force microscopy. We further present a comprehensive analysis of the soluble molecules withdrawn from the cytoplasm or the nucleus, including the detection of enzyme activities and transcript abundances. This approach has uncovered the ability of cells to withstand extraction of up to several picoliters and opens opportunities to study cellular dynamics and cell-cell communication under physiological conditions at the single-cell level.
Assuntos
Microscopia de Força Atômica/métodos , Nanotecnologia/métodos , Análise de Célula Única/métodos , Extratos Celulares/análise , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , TranscriptomaRESUMO
DNA crosslinks block DNA replication and are repaired by the Fanconi anaemia pathway. The FANCD2-FANCI (D2-I) protein complex is central to this process as it initiates repair by coordinating DNA incisions around the lesion1. However, D2-I is also known to have a more general role in DNA repair and in protecting stalled replication forks from unscheduled degradation2-4. At present, it is unclear how DNA crosslinks are recognized and how D2-I functions in replication fork protection. Here, using single-molecule imaging, we show that D2-I is a sliding clamp that binds to and diffuses on double-stranded DNA. Notably, sliding D2-I stalls on encountering single-stranded-double-stranded (ss-ds) DNA junctions, structures that are generated when replication forks stall at DNA lesions5. Using cryogenic electron microscopy, we determined structures of D2-I on DNA that show that stalled D2-I makes specific interactions with the ss-dsDNA junction that are distinct from those made by sliding D2-I. Thus, D2-I surveys dsDNA and, when it reaches an ssDNA gap, it specifically clamps onto ss-dsDNA junctions. Because ss-dsDNA junctions are found at stalled replication forks, D2-I can identify sites of DNA damage. Therefore, our data provide a unified molecular mechanism that reconciles the roles of D2-I in the recognition and protection of stalled replication forks in several DNA repair pathways.
Assuntos
Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA de Cadeia Simples , DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi , Proteínas de Grupos de Complementação da Anemia de Fanconi , Animais , Feminino , Humanos , Extratos Celulares , Microscopia Crioeletrônica , Difusão , DNA/química , DNA/metabolismo , DNA/ultraestrutura , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/ultraestrutura , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/química , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/ultraestrutura , Proteínas de Grupos de Complementação da Anemia de Fanconi/química , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/ultraestrutura , Modelos Moleculares , Ligação Proteica , Imagem Individual de Molécula , Xenopus laevisRESUMO
The mechanisms by which human immunodeficiency virus 1 (HIV-1) avoids immune surveillance by dendritic cells (DCs), and thereby prevents protective adaptive immune responses, remain poorly understood. Here we showed that HIV-1 actively arrested antiviral immune responses by DCs, which contributed to efficient HIV-1 replication in infected individuals. We identified the RNA helicase DDX3 as an HIV-1 sensor that bound abortive HIV-1 RNA after HIV-1 infection and induced DC maturation and type I interferon responses via the signaling adaptor MAVS. Notably, HIV-1 recognition by the C-type lectin receptor DC-SIGN activated the mitotic kinase PLK1, which suppressed signaling downstream of MAVS, thereby interfering with intrinsic host defense during HIV-1 infection. Finally, we showed that PLK1-mediated suppression of DDX3-MAVS signaling was a viral strategy that accelerated HIV-1 replication in infected individuals.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Dendríticas/virologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Evasão da Resposta Imune , Imunidade , Macrófagos/virologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Extratos Celulares , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Estudos de Coortes , RNA Helicases DEAD-box/metabolismo , Células Dendríticas/imunologia , Regulação Viral da Expressão Gênica , Células HEK293 , Infecções por HIV/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Interferon beta/sangue , Macrófagos/imunologia , Polimorfismo de Nucleotídeo Único , RNA Viral/imunologia , RNA Viral/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Carga Viral/genéticaRESUMO
DNA-protein crosslinks (DPCs) are caused by environmental, endogenous, and chemotherapeutic agents and pose a severe threat to genome stability. We use Xenopus egg extracts to recapitulate DPC repair in vitro and show that this process is coupled to DNA replication. A DPC on the leading strand template arrests the replisome by stalling the CMG helicase. The DPC is then degraded on DNA, yielding a peptide-DNA adduct that is bypassed by CMG. The leading strand subsequently resumes synthesis, stalls again at the adduct, and then progresses past the adduct using DNA polymerase ζ. A DPC on the lagging strand template only transiently stalls the replisome, but it too is degraded, allowing Okazaki fragment bypass. Our experiments describe a versatile, proteolysis-based mechanism of S phase DPC repair that avoids replication fork collapse.
Assuntos
Adutos de DNA/metabolismo , Reparo do DNA , Replicação do DNA , Animais , Extratos Celulares/química , DNA Polimerase Dirigida por DNA/metabolismo , Instabilidade Genômica , Óvulo/química , XenopusRESUMO
To use microRNAs to downregulate mRNA targets, cells must first process these ~22 nt RNAs from primary transcripts (pri-miRNAs). These transcripts form RNA hairpins important for processing, but additional determinants must distinguish pri-miRNAs from the many other hairpin-containing transcripts expressed in each cell. Illustrating the complexity of this recognition, we show that most Caenorhabditis elegans pri-miRNAs lack determinants required for processing in human cells. To find these determinants, we generated many variants of four human pri-miRNAs, sequenced millions that retained function, and compared them with the starting variants. Our results confirmed the importance of pairing in the stem and revealed three primary-sequence determinants, including an SRp20-binding motif (CNNC) found downstream of most pri-miRNA hairpins in bilaterian animals, but not in nematodes. Adding this and other determinants to C. elegans pri-miRNAs imparted efficient processing in human cells, thereby confirming the importance of primary-sequence determinants for distinguishing pri-miRNAs from other hairpin-containing transcripts.
Assuntos
Caenorhabditis elegans/genética , Sequências Repetidas Invertidas , MicroRNAs/química , MicroRNAs/metabolismo , Motivos de Nucleotídeos , Processamento Pós-Transcricional do RNA , Animais , Caenorhabditis elegans/metabolismo , Extratos Celulares/química , Humanos , MicroRNAs/genética , Complexos Multiproteicos/metabolismo , Conformação de Ácido Nucleico , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo , Fatores de Processamento de Serina-ArgininaRESUMO
Spindles are arrays of microtubules that segregate chromosomes during cell division. It has been difficult to validate models of spindle assembly due to a lack of information on the organization of microtubules in these structures. Here we present a method, based on femtosecond laser ablation, capable of measuring the detailed architecture of spindles. We used this method to study the metaphase spindle in Xenopus laevis egg extracts and found that microtubules are shortest near poles and become progressively longer toward the center of the spindle. These data, in combination with mathematical modeling, imaging, and biochemical perturbations, are sufficient to reject previously proposed mechanisms of spindle assembly. Our results support a model of spindle assembly in which microtubule polymerization dynamics are not spatially regulated, and the proper organization of microtubules in the spindle is determined by nonuniform microtubule nucleation and the local sorting of microtubules by transport.
Assuntos
Metáfase , Microtúbulos/metabolismo , Fuso Acromático , Xenopus laevis/metabolismo , Animais , Extratos Celulares , Terapia a Laser/métodos , Modelos Biológicos , Óvulo/citologia , Óvulo/metabolismoRESUMO
Bipolar spindles must separate chromosomes by the appropriate distance during cell division, but mechanisms determining spindle length are poorly understood. Based on a 2D model of meiotic spindle assembly, we predicted that higher localized microtubule (MT) depolymerization rates could generate the shorter spindles observed in egg extracts of X. tropicalis compared to X. laevis. We found that katanin-dependent MT severing was increased in X. tropicalis, which, unlike X. laevis, lacks an inhibitory phosphorylation site in the katanin p60 catalytic subunit. Katanin inhibition lengthened spindles in both species. In X. tropicalis, k-fiber MT bundles that connect to chromosomes at their kinetochores extended through spindle poles, disrupting them. In both X. tropicalis extracts and the spindle simulation, a balance between k-fiber number and MT depolymerization is required to maintain spindle morphology. Thus, mechanisms have evolved in different species to scale spindle size and coordinate regulation of multiple MT populations in order to generate a robust steady-state structure.
Assuntos
Adenosina Trifosfatases/metabolismo , Fuso Acromático/metabolismo , Xenopus laevis/fisiologia , Xenopus/fisiologia , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Animais , Extratos Celulares , Humanos , Katanina , Microtúbulos/metabolismo , Dados de Sequência Molecular , Tamanho das Organelas , Fosforilação , Alinhamento de Sequência , Especificidade da EspécieRESUMO
The microtubule-based metaphase spindle is subjected to forces that act in diverse orientations and over a wide range of timescales. Currently, we cannot explain how this dynamic structure generates and responds to forces while maintaining overall stability, as we have a poor understanding of its micromechanical properties. Here, we combine the use of force-calibrated needles, high-resolution microscopy, and biochemical perturbations to analyze the vertebrate metaphase spindle's timescale- and orientation-dependent viscoelastic properties. We find that spindle viscosity depends on microtubule crosslinking and density. Spindle elasticity can be linked to kinetochore and nonkinetochore microtubule rigidity, and also to spindle pole organization by kinesin-5 and dynein. These data suggest a quantitative model for the micromechanics of this cytoskeletal architecture and provide insight into how structural and functional stability is maintained in the face of forces, such as those that control spindle size and position, and can result from deformations associated with chromosome movement.
Assuntos
Metáfase , Fuso Acromático/química , Fuso Acromático/fisiologia , Xenopus laevis/fisiologia , Animais , Fenômenos Biomecânicos , Extratos Celulares/química , Dineínas/fisiologia , Elasticidade , Cinesinas/fisiologia , Microtúbulos/fisiologia , Óvulo/química , Proteínas de Xenopus/fisiologiaRESUMO
Human genome-wide association studies have identified FAN1 and several DNA mismatch repair (MMR) genes as modifiers of Huntington's disease age of onset. In animal models, FAN1 prevents somatic expansion of CAG triplet repeats, whereas MMR proteins promote this process. To understand the molecular basis of these opposing effects, we evaluated FAN1 nuclease function on DNA extrahelical extrusions that represent key intermediates in triplet repeat expansion. Here, we describe a strand-directed, extrusion-provoked nuclease function of FAN1 that is activated by RFC, PCNA, and ATP at physiological ionic strength. Activation of FAN1 in this manner results in DNA cleavage in the vicinity of triplet repeat extrahelical extrusions thereby leading to their removal in human cell extracts. The role of PCNA and RFC is to confer strand directionality to the FAN1 nuclease, and this reaction requires a physical interaction between PCNA and FAN1. Using cell extracts, we show that FAN1-dependent CAG extrusion removal relies on a very short patch excision-repair mechanism that competes with MutSß-dependent MMR which is characterized by longer excision tracts. These results provide a mechanistic basis for the role of FAN1 in preventing repeat expansion and could explain the antagonistic effects of MMR and FAN1 in disease onset/progression.
Assuntos
Estudo de Associação Genômica Ampla , Repetições de Trinucleotídeos , Humanos , Extratos Celulares , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Enzimas Multifuncionais/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Expansão das Repetições de TrinucleotídeosRESUMO
Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can undergo microtubule-based motility, but their directionality and the motor involved in their transport remain unknown. Here, we demonstrate that IMVs, like intracellular enveloped viruses (IEVs), the second form of vaccinia that are wrapped in Golgi-derived membranes, recruit kinesin-1 and undergo anterograde transport. In vitro reconstitution of virion transport in infected cell extracts revealed that IMVs and IEVs move toward microtubule plus ends with respective velocities of 0.66 and 0.56â µm/s. Quantitative imaging established that IMVs and IEVs recruit an average of 139 and 320 kinesin-1 motor complexes, respectively. In the absence of kinesin-1, there was a near-complete loss of in vitro motility and reduction in the intracellular spread of both types of virions. Our observations demonstrate that kinesin-1 transports two morphologically distinct forms of vaccinia. Reconstitution of vaccinia-based microtubule motility in vitro provides a new model to elucidate how motor number and regulation impacts transport of a bona fide kinesin-1 cargo.
Assuntos
Cinesinas , Vacínia , Extratos Celulares , Humanos , Microtúbulos/metabolismo , Vacínia/metabolismo , Vaccinia virus , Vírion/fisiologiaRESUMO
Three representative protein kinases with different substrate preferences, ERK1 (Pro-directed), CK2 (acidophilic), and PKA (basophilic), were used to investigate phosphorylation sequence motifs in substrate pools consisting of the proteomes from three different cell lines, MCF7 (human mammary carcinoma), HeLa (human cervical carcinoma), and Jurkat (human acute T-cell leukemia). Specifically, recombinant kinases were added to the cell-extracted proteomes to phosphorylate the substrates in vitro. After trypsin digestion, the phosphopeptides were enriched and subjected to nanoLC/MS/MS analysis to identify their phosphorylation sites on a large scale. By analyzing the obtained phosphorylation sites and their surrounding sequences, phosphorylation motifs were extracted for each kinase-substrate proteome pair. We found that each kinase exhibited the same set of phosphorylation motifs, independently of the substrate pool proteome. Furthermore, the identified motifs were also consistent with those found using a completely randomized peptide library. These results indicate that cell-extracted proteomes can provide kinase phosphorylation motifs with sufficient accuracy, even though their sequences are not completely random, supporting the robustness of phosphorylation motif identification based on phosphoproteome analysis of cell extracts as a substrate pool for a kinase of interest.
Assuntos
Proteoma , Espectrometria de Massas em Tandem , Humanos , Fosforilação , Proteoma/metabolismo , Extratos Celulares , Espectrometria de Massas em Tandem/métodos , Proteínas Quinases/metabolismo , Células HeLa , Especificidade por Substrato , Motivos de AminoácidosRESUMO
DNA-protein crosslinks (DPC) are common DNA lesions induced by various external and endogenous agents. One of the sources of DPC is the apurinic/apyrimidinic site (AP site) and proteins interacting with it. Some proteins possessing AP lyase activity form covalent complexes with AP site-containing DNA without borohydride reduction (suicidal crosslinks). We have shown earlier that tyrosyl-DNA phosphodiesterase 1 (TDP1) but not AP endonuclease 1 (APE1) is able to remove intact OGG1 from protein-DNA adducts, whereas APE1 is able to prevent the formation of DPC by hydrolyzing the AP site. Here we demonstrate that TDP1 can remove intact PARP2 but not XRCC1 from covalent enzyme-DNA adducts with AP-DNA formed in the absence of APE1. We also analyzed an impact of APE1 and TDP1 on the efficiency of DPC formation in APE1-/- or TDP1-/- cell extracts. Our data revealed that APE1 depletion leads to increased levels of PARP1-DNA crosslinks, whereas TDP1 deficiency has little effect on DPC formation.
Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Diester Fosfórico Hidrolases , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Humanos , DNA/metabolismo , DNA/genética , Animais , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Extratos Celulares/química , Reparo do DNA , Camundongos , Adutos de DNA/metabolismo , Adutos de DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dano ao DNA , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/genéticaRESUMO
Acute respiratory tract infections (RTIs) are one of the most common causes of pediatric consultations/hospitalizations and a major trigger for asthma exacerbations. Some consensus statements have recommended the use of immunostimulants to boost natural defenses against severe or repeated infections. One of the most common immunostimulants is OM-85; while several randomized clinical trials (RCTs) have evaluated its efficacy in preventing acute RTIs and wheezing/asthma exacerbations, results have been conflicting. Similarly, various systematic reviews with meta-analyses (SRMs) on OM-85 have used different strategies, populations, and outcomes; moreover, SRM conclusions are limited when the original studies are highly heterogeneous or have a low quality, hindering the generalizability of the findings. Here we summarize the evidence on the effect of OM-85 to prevent acute RTIs, wheezing/asthma episodes, or loss of asthma control in children, by including and critically evaluating all SRMs published to date. We searched for SRMs on OM-85 in three publication databases and found nine SRMs (seven for RTI, and two for wheezing/asthma). Among those, one had a high confidence evaluation of quality (AMSTAR-2 tool) and found a reduction in the total number of acute RTIs among the OM-85 group. Overall, no strong recommendations can be derived from the existing literature, mainly due to the high heterogeneity among included RCTs and SRMs. Further, large, high-quality RCTs are needed to confirm the true efficacy of OM-85 for the prevention of acute RTIs, asthma development, and asthma exacerbations.
Assuntos
Asma , Sons Respiratórios , Infecções Respiratórias , Criança , Pré-Escolar , Humanos , Adjuvantes Imunológicos/uso terapêutico , Lisados Bacterianos , Extratos Celulares/uso terapêutico , Metanálise como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Sons Respiratórios/efeitos dos fármacos , Infecções Respiratórias/prevenção & controle , Revisões Sistemáticas como Assunto , Resultado do TratamentoRESUMO
Asthma is the most common chronic disease in childhood affecting the daily lives of many patients despite current treatment regimens. Therefore, the need for new therapeutic approaches is evident, where a primary prevention strategy is the ultimate goal. Studies of children born to mothers in farming environments have shown a lower risk of respiratory infections and asthma development. Already at birth, these newborns have demonstrated accelerated maturation and upregulation of host defense immune functions suggesting a prenatal transplacental training of the innate immune system through maternal microbial exposure. This mechanism could possibly be utilized to help prevent both respiratory infections and asthma in young children. Human studies exploring the potential preventative effects of pregnancy bacterial lysate treatment on asthma and respiratory infections are lacking, however, this has been studied in experimental studies using mice through administrations of the bacterial lysate OM-85. This review will present the current literature on the immunomodulatory effects relevant for respiratory infections and asthma in the offspring of mice treated with OM-85 throughout pregnancy. Further, the review will discuss the cellular and molecular mechanisms behind these effects. In conclusion, we found promising results of an accelerated immune competence and improved resistance to airway challenges as a result of prenatal bacterial lysate treatment that may pave the way for implementing this in human trials to prevent asthma and respiratory infections.
Assuntos
Asma , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal , Infecções Respiratórias , Animais , Asma/prevenção & controle , Asma/imunologia , Gravidez , Feminino , Humanos , Infecções Respiratórias/prevenção & controle , Infecções Respiratórias/imunologia , Camundongos , Efeitos Tardios da Exposição Pré-Natal/imunologia , Extratos Celulares/uso terapêutico , Lisados BacterianosRESUMO
The mitotic spindle is essential for chromosome segregation and must be large enough to accommodate all of the chromatin in the dividing cell. In this issue, Dinarina et al. (2009) grow "fields" of spindles on coverslips to investigate the relationship between chromatin and spindle size as well as intrinsic mechanisms of spindle assembly.
Assuntos
Cromatina , Fuso Acromático , Animais , Extratos Celulares , Proteínas de Xenopus/metabolismo , Xenopus laevisRESUMO
In animal and plant cells, mitotic chromatin locally generates microtubules that self-organize into a mitotic spindle, and its dimensions and bipolar symmetry are essential for accurate chromosome segregation. By immobilizing microscopic chromatin-coated beads on slide surfaces using a microprinting technique, we have examined the effect of chromatin on the dimensions and symmetry of spindles in Xenopus laevis cytoplasmic extracts. While circular spots with diameters around 14-18 microm trigger bipolar spindle formation, larger spots generate an incorrect number of poles. We also examined lines of chromatin with various dimensions. Their length determined the number of poles that formed, with a 6 x 18 microm rectangular patch generating normal spindle morphology. Around longer lines, multiple poles formed and the structures were disorganized. While lines thinner than 10 mum generated symmetric structures, thicker lines induced the formation of asymmetric structures where all microtubules are on the same side of the line. Our results show that chromatin defines spindle shape and orientation. For a video summary of this article, see the PaperFlick file available with the online Supplemental Data.
Assuntos
Cromatina/química , Fuso Acromático/química , Animais , Extratos Celulares , Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevisRESUMO
DNA double-strand breaks repaired by non-homologous end joining display limited DNA end-processing and chromosomal mobility. By contrast, double-strand breaks undergoing homology-directed repair exhibit extensive processing and enhanced motion. The molecular basis of this movement is unknown. Here, using Xenopus laevis cell-free extracts and mammalian cells, we establish that nuclear actin, WASP, and the actin-nucleating ARP2/3 complex are recruited to damaged chromatin undergoing homology-directed repair. We demonstrate that nuclear actin polymerization is required for the migration of a subset of double-strand breaks into discrete sub-nuclear clusters. Actin-driven movements specifically affect double-strand breaks repaired by homology-directed repair in G2 cell cycle phase; inhibition of actin nucleation impairs DNA end-processing and homology-directed repair. By contrast, ARP2/3 is not enriched at double-strand breaks repaired by non-homologous end joining and does not regulate non-homologous end joining. Our findings establish that nuclear actin-based mobility shapes chromatin organization by generating repair domains that are essential for homology-directed repair in eukaryotic cells.
Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Núcleo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo de DNA por Recombinação , Xenopus laevis/genética , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/antagonistas & inibidores , Actinas/metabolismo , Animais , Extratos Celulares , Cromatina/metabolismo , Reparo do DNA por Junção de Extremidades , Feminino , Movimento , Ligação Proteica , Transporte Proteico , Proteína da Síndrome de Wiskott-Aldrich/metabolismoRESUMO
Mass photometry (MP) is a fast and simple analysis method for the determination of the proportions of subpopulations in an AAV sample. It is label-free and requires minimal sample volumes between 5-10 µL, which makes it a promising candidate over orthogonal techniques such as analytical ultracentrifugation (AUC), cryo-transmission electron microscopy (Cryo-TEM) or charge-detection mass spectrometry (CDMS). However, these methods are limited in their application to purified samples only. Here we developed a purification step based on single-domain monospecific antibody fragments immobilised on either a poly(styrene-divinylbenzene) resin or on magnetic beads prior to MP analysis that allows the quantification of empty, partially filled, full and overfull AAV vectors in crude cell extracts. This is aimed at identifying potentially promising harvest conditions that yield large numbers of filled AAV vectors during the early stages of the viral vector development platform, e.g., the type of transfection reagent used. Furthermore, we provide a direct comparison of the automated and manual handling of the mass photometer with respect to the quantities of AAV subspecies, molar mass of the capsid and payload, and highlight the differences between the "buffer-free" sample measurement and the "buffer-dilution" mode. In addition, we provide information on which candidates to use for calibration and demonstrate the limitations of the mass photometer with respect to the estimation of the capsid titer.
Assuntos
Dependovirus , Anticorpos de Domínio Único , Extratos Celulares , Dependovirus/genética , Biotecnologia , Calibragem , Proteínas do Capsídeo , FotometriaRESUMO
Overuse of antimicrobials has greatly contributed to the increase in the emergence of multidrug-resistant bacteria, a situation that hinders the control and treatment of infectious diseases. This is the case with urinary tract infections (UTIs), which represent a substantial percentage of worldwide public health problems, thus the need to look for alternatives for their control and treatment. Previous studies have shown the usefulness of autologous bacterial lysates as an alternative for the treatment and control of UTIs. However, a limitation is the high cost of producing individual immunogens. At the same time, an important aspect of vaccines is their immunogenic amplitude, which is the reason why they must be constituted of diverse antigenic components. In the case of UTIs, the etiology of the disease is associated with different bacteria, and even Escherichia coli, the main causal agent of the disease, is made up of several antigenic variants. In this work, we present results on the study of a bacterial lysate composed of 10 serotypes of Escherichia coli and by Klebsiella pneumoniae, Klebsiella aerogenes, Enterococcus faecalis, Proteus mirabilis, Citrobacter freundii, and Staphylococcus haemolyticus. The safety of the compound was tested on cells in culture and in an animal model, and its immunogenic capacity by analysing in vitro human and murine macrophages (cell line J774 A1). The results show that the polyvalent lysate did not cause damage to the cells in culture or alterations in the animal model used. The immunostimulatory activity assay showed that it activates the secretion of TNF-α and IL-6 in human macrophages and TNF-α in murine cells. The obtained results suggest that the polyvalent lysate evaluated can be an alternative for the treatment and control of chronic urinary tract infections, which will reduce the use of antimicrobials.
Assuntos
Infecções Urinárias , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Infecções Urinárias/imunologia , Infecções Urinárias/terapia , Animais , Humanos , Camundongos , Escherichia coli , Feminino , Extratos Celulares/farmacologia , Extratos Celulares/uso terapêutico , Lisados BacterianosRESUMO
Acute lung injury (ALI) is a condition associated with acute respiratory failure, resulting in significant morbidity and mortality. It involves cellular changes such as disruption of the alveolar-capillary membrane, excessive neutrophil migration, and release of inflammatory mediators. Broncho-Vaxom® (BV), a lyophilized product containing cell membrane components derived from eight bacteria commonly found in the respiratory tract, is known for its potential to reduce viral and bacterial lung infections. However, the specific effect of BV on ALI has not been clearly defined. This study explored the preventive effects of BV and its underlying mechanisms in a lipopolysaccharide (LPS)-induced ALI mouse model. Oral BV (1 mg/kg) gavage was administered one hour before the intratracheal injection of LPS to evaluate its preventive effect on the ALI model. The pre-administration of BV significantly mitigates inflammatory parameters, including the production of inflammatory mediators, macrophage infiltration, and NF-κB activation in lung tissue, and the increase in inflammatory cells in bronchoalveolar lavage fluid (BALF). Moreover, BV (3 µg/mL) pretreatment reduced the expression of M1 macrophage markers, interleukins (IL-1ß, IL-6), tumor necrosis factor α, and cyclooxygenase-2, which are activated by LPS, in both mouse alveolar macrophage MH-S cells and human macrophage THP-1 cells. These findings showed that BV exhibits anti-inflammatory effects by suppressing inflammatory mediators through the NF-κB pathway, suggesting its potential to attenuate bronchial and pulmonary inflammation.