RESUMO
Despite major advances in cardiac research over the past three decades, cardiovascular disease (CVD) still remains the leading cause of morbidity and mortality in women and men worldwide. However, a major challenge for health care providers is that the current guidelines for cardiovascular drug therapies do not consider the impact of sex in the development of treatment plan for optimizing therapies for women. Clinical research in recent years suggests significant pharmacological and pharmacokinetic differences between females and males, which have been attributed in part to differences in body composition, plasma protein binding capacity, drug metabolism, and excretion. Herein, we provide a comprehensive review regarding sex-specific differences and drugs commonly used for CVDs in women and men. Understanding how sex-related differences influence drug efficacy and CVD outcomes is crucial for not only optimizing treatment strategies for women and men but also to encourage the implementation of specific guidelines that address sex difference as a consideration for the treatment of CVDs.
Assuntos
Fármacos Cardiovasculares , Doenças Cardiovasculares , Caracteres Sexuais , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Fármacos Cardiovasculares/uso terapêutico , Fármacos Cardiovasculares/farmacocinética , Fármacos Cardiovasculares/efeitos adversos , Feminino , Fatores Sexuais , Masculino , AnimaisRESUMO
The particulate guanylyl cyclase A receptor (GC-A), via activation by its endogenous ligands atrial natriuretic peptide (ANP) and b-type natriuretic peptide (BNP), possesses beneficial biological properties such as blood pressure regulation, natriuresis, suppression of adverse remodeling, inhibition of the renin-angiotensin-aldosterone system, and favorable metabolic actions through the generation of its second messenger cyclic guanosine monophosphate (cGMP). Thus, the GC-A represents an important molecular therapeutic target for cardiovascular disease and its associated risk factors. However, a small molecule that is orally bioavailable and directly targets the GC-A to potentiate cGMP has yet to be discovered. Here, we performed a cell-based high-throughput screening campaign of the NIH Molecular Libraries Small Molecule Repository, and we successfully identified small molecule GC-A positive allosteric modulator (PAM) scaffolds. Further medicinal chemistry structure-activity relationship efforts of the lead scaffold resulted in the development of a GC-A PAM, MCUF-651, which enhanced ANP-mediated cGMP generation in human cardiac, renal, and fat cells and inhibited cardiomyocyte hypertrophy in vitro. Further, binding analysis confirmed MCUF-651 binds to GC-A and selectively enhances the binding of ANP to GC-A. Moreover, MCUF-651 is orally bioavailable in mice and enhances the ability of endogenous ANP and BNP, found in the plasma of normal subjects and patients with hypertension or heart failure, to generate GC-A-mediated cGMP ex vivo. In this work, we report the discovery and development of an oral, small molecule GC-A PAM that holds great potential as a therapeutic for cardiovascular, renal, and metabolic diseases.
Assuntos
Fármacos Cardiovasculares , Doenças Cardiovasculares/metabolismo , GMP Cíclico/metabolismo , Peptídeos Natriuréticos/metabolismo , Receptores do Fator Natriurético Atrial , Idoso , Regulação Alostérica , Animais , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/metabolismo , Fármacos Cardiovasculares/farmacocinética , Fármacos Cardiovasculares/farmacologia , Células Cultivadas , Feminino , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Receptores do Fator Natriurético Atrial/química , Receptores do Fator Natriurético Atrial/efeitos dos fármacos , Receptores do Fator Natriurético Atrial/metabolismoRESUMO
Cardiovascular adverse effects in drug development are a major source of compound attrition. Characterization of blood pressure (BP), heart rate (HR), stroke volume (SV), and QT-interval prolongation are therefore necessary in early discovery. It is, however, common practice to analyze these effects independently of each other. High-resolution time courses are collected via telemetric techniques, but only low-resolution data are analyzed and reported. This ignores codependencies among responses (HR, BP, SV, and QT-interval) and separation of system (turnover properties) and drug-specific properties (potencies, efficacies). An analysis of drug exposure-time and high-resolution response-time data of HR and mean arterial blood pressure was performed after acute oral dosing of ivabradine, sildenafil, dofetilide, and pimobendan in Han-Wistar rats. All data were modeled jointly, including different compounds and exposure and response time courses, using a nonlinear mixed-effects approach. Estimated fractional turnover rates [h-1, relative standard error (%RSE) within parentheses] were 9.45 (15), 30.7 (7.8), 3.8 (13), and 0.115 (1.7) for QT, HR, total peripheral resistance, and SV, respectively. Potencies (nM, %RSE within parentheses) were IC 50 = 475 (11), IC 50 = 4.01 (5.4), EC 50 = 50.6 (93), and IC 50 = 47.8 (16), and efficacies (%RSE within parentheses) were I max = 0.944 (1.7), Imax = 1.00 (1.3), E max = 0.195 (9.9), and Imax = 0.745 (4.6) for ivabradine, sildenafil, dofetilide, and pimobendan. Hill parameters were estimated with good precision and below unity, indicating a shallow concentration-response relationship. An equilibrium concentration-biomarker response relationship was predicted and displayed graphically. This analysis demonstrates the utility of a model-based approach integrating data from different studies and compounds for refined preclinical safety margin assessment. SIGNIFICANCE STATEMENT: A model-based approach was proposed utilizing biomarker data on heart rate, blood pressure, and QT-interval. A pharmacodynamic model was developed to improve assessment of high-resolution telemetric cardiovascular safety data driven by different drugs (ivabradine, sildenafil, dofetilide, and pimobondan), wherein system- (turnover rates) and drug-specific parameters (e.g., potencies and efficacies) were sought. The model-predicted equilibrium concentration-biomarker response relationships and was used for safety assessment (predictions of 20% effective concentration, for example) of heart rate, blood pressure, and QT-interval.
Assuntos
Biomarcadores Farmacológicos/sangue , Pressão Sanguínea , Fármacos Cardiovasculares/toxicidade , Frequência Cardíaca , Animais , Cardiotoxicidade/sangue , Cardiotoxicidade/etiologia , Cardiotoxicidade/fisiopatologia , Fármacos Cardiovasculares/administração & dosagem , Fármacos Cardiovasculares/farmacocinética , Ivabradina/administração & dosagem , Ivabradina/farmacocinética , Ivabradina/toxicidade , Masculino , Fenetilaminas/administração & dosagem , Fenetilaminas/farmacocinética , Fenetilaminas/toxicidade , Piridazinas/administração & dosagem , Piridazinas/farmacocinética , Piridazinas/toxicidade , Ratos , Ratos Wistar , Citrato de Sildenafila/administração & dosagem , Citrato de Sildenafila/farmacocinética , Citrato de Sildenafila/toxicidade , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacocinética , Sulfonamidas/toxicidadeRESUMO
Omecamtiv mecarbil (OM) is a novel cardiac myosin activator that is currently in clinical development for the treatment of heart failure. The absorption and disposition of [14C]OM (60 µCi) were studied after a single intravenous infusion (35 mg over 1 hour) or oral solution dose (35 mg) in 14 healthy male subjects. Mean recovery of the administered [14C]OM dose was 85.1% and 86.5% over 336 hours for the intravenous and oral routes, respectively. After intravenous dosing, 47.8% and 37.3% of the dose was recovered in urine and feces, respectively; after oral dosing, 48.6% and 38.0% was recovered in urine and feces, respectively. Unchanged OM accounted for a minor percentage of radioactivity in urine (mean 7.7% of dose) and feces (mean 4.1% of dose) across all subjects. The major metabolites recovered in urine and feces were M3 (decarbamoylation product) and sequential metabolite M4 (lactam of M3), which accounted for means of 26.5% and 11.6% of the administered dose, respectively. The CYP4 family of enzymes was primarily responsible for the formation of M3 based on in vitro studies. Other metabolic pathways accounted for 14.9% of the administered dose. In pooled plasma, OM, M3, and M4 accounted for 83.8%, 6.0%, and 3.3% of the total [14C]OM-related materials. No other plasma metabolites constituted more than 3% of the administered dose. The bioavailability for OM solution was 93.5% after rapid and extensive absorption. SIGNIFICANCE STATEMENT: This study characterized the absorption and disposition of OM, a novel small molecule being developed for the treatment of heart failure. OM was primarily cleared through metabolism by the CYP4 family through oxidative cleavage of a terminal carbamate moiety that resembles hydrolysis.
Assuntos
Família 4 do Citocromo P450/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Eliminação Hepatobiliar/fisiologia , Absorção Intestinal/fisiologia , Eliminação Renal/fisiologia , Ureia/análogos & derivados , Administração Intravenosa , Administração Oral , Adulto , Disponibilidade Biológica , Biotransformação , Fármacos Cardiovasculares/administração & dosagem , Fármacos Cardiovasculares/farmacocinética , Voluntários Saudáveis , Humanos , Infusões Intravenosas , Masculino , Ureia/administração & dosagem , Ureia/farmacocinéticaRESUMO
Heart failure (HF) treatment remains a critical unmet medical need. Studies in normal healthy volunteers and HF patients have shown that [Pyr1]apelin-13, the endogenous ligand for the APJ receptor, improves cardiac function. However, the short half-life of [Pyr1]apelin-13 and the need for intravenous administration have limited the therapeutic potential for chronic use. We sought to identify potent, small-molecule APJ agonists with improved pharmaceutical properties to enable oral dosing in clinical studies. In this manuscript, we describe the identification of a series of pyrimidinone sulfones as a structurally differentiated series to the clinical lead (compound 1). Optimization of the sulfone series for potency, metabolic stability and oral bioavailability led to the identification of compound 22, which showed comparable APJ potency to [Pyr1]apelin-13 and exhibited an acceptable pharmacokinetic profile to advance to the acute hemodynamic rat model.
Assuntos
Receptores de Apelina/agonistas , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/farmacocinética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Animais , Área Sob a Curva , Fármacos Cardiovasculares/síntese química , Desenho de Fármacos , Meia-Vida , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Macaca fascicularis , Estrutura Molecular , Pirimidinonas/química , Pirimidinonas/farmacologia , Ratos , Relação Estrutura-AtividadeRESUMO
Ivabradine is a unique agent that is distinct from beta-blockers and calcium channel blockers as it reduces heart rate without affecting myocardial contractility or vascular tone. Ivabradine is a use-dependent inhibitor targeting the sinoatrial node. It is approved for use in the United States as an adjunct therapy for heart rate reduction in patients with heart failure with reduced ejection fraction. In this scenario, ivabradine has demonstrated improved clinical outcomes due to reduction in heart failure readmissions. However, there has been conflicting evidence from prospective studies and randomized controlled trials for its use in stable ischemic heart disease regarding efficacy in symptom reduction and mortality benefit. Ivabradine may also play a role in the treatment of patients with inappropriate sinus tachycardia, who often cannot tolerate beta-blockers and/or calcium channel blockers. In this review, we highlight the evidence for the nuances of using ivabradine in heart failure, stable ischemic heart disease, and inappropriate sinus tachycardia to raise awareness for its vital role in the treatment of select populations.
Assuntos
Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Ivabradina/farmacologia , Ivabradina/uso terapêutico , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/farmacocinética , Humanos , Ivabradina/efeitos adversos , Ivabradina/farmacocinética , Isquemia Miocárdica/tratamento farmacológico , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Volume Sistólico/efeitos dos fármacos , Taquicardia Sinusal/tratamento farmacológicoRESUMO
PURPOSE: Major depressive disorder (MDD) and anxiety disorders (AD) are both highly prevalent among individuals with arrhythmia, ischemic heart disease, heart failure, hypertension, and dyslipidemia. There should be increased support for MDD and AD diagnosis and treatment in individuals with cardiac diseases, because treatment rates have been low. However, cardiac-psychiatric drug interaction can make pharmacologic treatment challenging. METHODS: The objective of the present systematic review was to investigate cardiac-psychiatric drug interactions in three different widely used pharmacological databases (Micromedex, Up to Date, and ClinicalKey). RESULTS: Among 4914 cardiac-psychiatric drug combinations, 293 significant interactions were found (6.0%). When a problematic interaction is detected, it may be easier to find an alternative cardiac medication (32.6% presented some interaction) than a psychiatric one (76.9%). Antiarrhythmics are the major class of concern. The most common problems produced by these interactions are related to cardiotoxicity (QT prolongation, torsades de pointes, cardiac arrest), increased exposure of cytochrome P450 2D6 (CYP2D6) substrates, or reduced renal clearance of organic cation transporter 2 (OCT2) substrates and include hypertensive crisis, increased risk of bleeding, myopathy, and/or rhabdomyolysis. CONCLUSION: Unfortunately, there is considerable inconsistency among the databases searched, such that a clinician's discretion and clinical experience remain invaluable tools for the management of patients with comorbidities present in psychiatric and cardiac disorders. The possibility of an interaction should be considered. With a multidisciplinary approach, particularly involving a pharmacist, the prescriber should be alerted to the possibility of an interaction. MDD and AD pharmacologic treatment in cardiac patients could be implemented safely both by cardiologists and psychiatrists. TRIAL REGISTRATION: PROSPERO Systematic Review Registration Number: CRD42018100424.
Assuntos
Antipsicóticos/farmacologia , Fármacos Cardiovasculares/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Bases de Dados de Produtos Farmacêuticos/estatística & dados numéricos , Transtorno Depressivo Maior/tratamento farmacológico , Antipsicóticos/efeitos adversos , Antipsicóticos/farmacocinética , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/farmacocinética , Doenças Cardiovasculares/epidemiologia , Citocromo P-450 CYP2D6/efeitos dos fármacos , Transtorno Depressivo Maior/epidemiologia , Interações Medicamentosas , Humanos , Taxa de Depuração Metabólica , Transportador 2 de Cátion Orgânico/efeitos dos fármacosRESUMO
A sensitive and robust method has been developed using an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay to quantify Tat-K13, a novel interfering peptide for the treatment of ischemic stroke, in human plasma. Automated solid-phase extraction on a Waters Oasis WCX (30 µm, 10 mg) 96-well plate was used to extract Tat-K13 from human plasma and the extracts were separated on a Waters Acquity CSH column (2.1 × 50 mm i.d., 1.7 µm) with a gradient elution method by mobile phase A (nonafluoropentanoic acid-acetic acid-water, 1:2:1000, v/v/v) and B (nonafluoropentanoic acid-acetic acid-water-acetonitrile, 1:2:100:900, v/v/v/v). The method was fully validated following international bioanalytical guidelines and showed good linearity from 2.10 to 1,050 ng/ml. The method was successfully applied to investigate the clinical pharmacokinetics of Tat-K13 in health volunteers. Rapid elimination of Tat-K13 from the body was observed, with half-life ranging from 0.26 to 0.78 h across different dose levels. The exposure of Tat-K13 was approximately dose-dependent in terms of the area under the concentration-time curve and peak concentration.
Assuntos
Fármacos Cardiovasculares , Cromatografia Líquida de Alta Pressão/métodos , AVC Isquêmico/tratamento farmacológico , Peptídeos , Espectrometria de Massas em Tandem/métodos , Adolescente , Adulto , Fármacos Cardiovasculares/sangue , Fármacos Cardiovasculares/farmacocinética , Fármacos Cardiovasculares/uso terapêutico , Humanos , Pessoa de Meia-Idade , Peptídeos/sangue , Peptídeos/farmacocinética , Peptídeos/uso terapêutico , Reprodutibilidade dos Testes , Adulto JovemRESUMO
OBJECTIVES: The aim of this study is to improve local-drug delivery efficiency and tissue absorption using the ultrasound (US)-responsible drug coating based on a newly developed US-controlled paclitaxel release balloon. BACKGROUND: Low availability of the drug coating remains a major concern of the current drug coated balloon (DCB). The goal of this study is to develop a method to use an US-responsible paclitaxel-loaded microcapsules (PM) as the main content of balloon drug coating to enhance bioavailability of DCB. METHODS: An US-controlled paclitaxel release balloon is designed and fabricated based on the US-responsible paclitaxel-loaded poly (lactic-co-glycolic acid) (PLGA) microcapsules. Rapid exchange percutaneous transluminal coronary angioplasty (PTCA) balloon catheters were coated with the PM. The deployment processes of the paclitaxel-loaded microcapsules coated balloons (PMCB) under US, PMCB without US and a homogenous matrix of paclitaxel and iopromide coated balloon (PICB) were then placed in healthy and stent implanted porcine coronary arteries. RESULTS: In vitro release assay demonstrated an ability of US (1 MHz, 1.22 W/cm2 , 1 minute) to affect the release kinetics of paclitaxel from PM by inducing a 76 ± 5.4% increase in the rate of release. The paclitaxel content in target vessels are 203 ± 37 µg/g for PMCB under US, 85 ± 23 µg/g for PMCB without US, and 107 ± 31 µg/g for PICB 1-hr post-surgery. The availability of the drug for the PMCB reaches 27% under US. CONCLUSIONS: The US-controlled paclitaxel release balloon significantly improved the drug content of the target vessels in the porcine model.
Assuntos
Angioplastia Coronária com Balão/instrumentação , Cateteres Cardíacos , Fármacos Cardiovasculares/administração & dosagem , Materiais Revestidos Biocompatíveis , Vasos Coronários/metabolismo , Paclitaxel/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ondas Ultrassônicas , Animais , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/farmacocinética , Preparações de Ação Retardada , Portadores de Fármacos , Liberação Controlada de Fármacos , Masculino , Paclitaxel/química , Paclitaxel/farmacocinética , Solubilidade , Sus scrofaRESUMO
AIMS: Peripheral arteries are constantly exposed to deformation (elongation, twisting, shortening, compression) making bioresorbable scaffolds (BRS) a potentially attractive therapeutic alternative to metallic stents. We conducted a long-term pilot preclinical study of a novel sirolimus-eluting BRS in peripheral arteries. METHODS AND RESULTS: Fourteen BRS were deployed in iliofemoral arteries of seven healthy Yucatan miniswine and examined with imaging, pharmacokinetic, histopathologic, and polymer degradation techniques at 0, 30, 90, 180 days, 1, 2, and 3.3 years. Angiographic late luminal loss remained unchanged at 30 and 180 days but significantly decreased from 1 to 3.3 years. optical coherence tomography (OCT) showed late increase in lumen area (1 year: 14.70 ± 3.58 mm2 , 2 years 22.04 ± 3.81 mm2 , and 3.3 years 23.45 ± 7.07 mm2 ; p < .05) primarily due to scaffold area enlargement between 1 and 3.3 years, while there was no difference in the percent area stenosis at all time points. Histologic evidence of scaffold degradation was observed starting at 2 years, with minimal inflammatory reaction. At 3.3 years, BRS struts were rarely discernible by OCT, confirmed by a nearly complete polymer degradation by molecular weight analysis. CONCLUSIONS: In this pilot study, novel sirolimus-eluting BRS showed promising acute and chronic performance in the iliofemoral arteries of Yucatan miniswine.
Assuntos
Implantes Absorvíveis , Angioplastia com Balão/instrumentação , Fármacos Cardiovasculares/administração & dosagem , Artéria Femoral/efeitos dos fármacos , Artéria Ilíaca/efeitos dos fármacos , Sirolimo/administração & dosagem , Angioplastia com Balão/efeitos adversos , Animais , Fármacos Cardiovasculares/farmacocinética , Desenho de Equipamento , Artéria Femoral/diagnóstico por imagem , Artéria Femoral/patologia , Artéria Ilíaca/diagnóstico por imagem , Artéria Ilíaca/patologia , Teste de Materiais , Modelos Animais , Projetos Piloto , Sirolimo/farmacocinética , Suínos , Porco Miniatura , Fatores de TempoRESUMO
This review will provide an overview of the principles of pharmacogenomics from basic discovery to implementation, encompassing application of tools of contemporary genome science to the field (including areas of apparent divergence from disease-based genomics), a summary of lessons learned from the extensively studied drugs clopidogrel and warfarin, the current status of implementing pharmacogenetic testing in practice, the role of genomics and related tools in the drug development process, and a summary of future opportunities and challenges.
Assuntos
Fármacos Cardiovasculares/farmacocinética , Genômica , Farmacogenética , Medicina de Precisão/métodos , Variação Biológica Individual , Biotransformação/genética , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/uso terapêutico , Desenvolvimento de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etnologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Previsões , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Variação Genética , Técnicas de Genotipagem , Projeto Genoma Humano , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Medição de Risco , Tamanho da AmostraRESUMO
RATIONALE: Metformin has been demonstrated to decrease infarct size (IS) and prevent postinfarction left ventricular (LV) remodeling in rodents when given intravenously at the time of reperfusion. It remains unclear whether similar cardioprotection can be achieved in a large animal model. OBJECTIVE: The objective of this study was to determine whether intravascular infusion of metformin at the time of reperfusion reduces myocardial IS in a porcine model of acute myocardial infarction. METHODS AND RESULTS: In a blinded and randomized preclinical study, closed-chest swine (n=20) were subjected to a 60-minute left anterior descending coronary artery occlusion to produce myocardial infarction. Contrast-enhanced computed tomography was performed during left anterior descending coronary artery occlusion to assess the ischemic area-at-risk. Animals were randomized to receive either metformin or vehicle as an initial intravenous bolus (5 mg/kg) 8 minutes before reperfusion, followed by a 15-minute left coronary artery infusion (1 mg/kg per minute) commencing with the onset of reperfusion. Echocardiography and computed tomographic imaging of LV function were performed 1 week later, at which time the heart was removed for postmortem pathological analysis of area-at-risk and IS (triphenyltetrazolium chloride). Baseline variables including hemodynamics and LV function were similar between groups. Peak circulating metformin concentrations of 374±35 µmol/L were achieved 15 minutes after reperfusion. There was no difference between the area-at-risk as a percent of LV mass by computed tomography (vehicle: 20.7%±1.1% versus metformin: 19.7%±1.3%; P=0.59) or postmortem pathology (22.4%±1.2% versus 20.2%±1.2%; P=0.21). IS relative to area-at-risk averaged 44.5%±5.0% in vehicle-treated versus 38.2%±6.8% in metformin-treated animals ( P=0.46). There was no difference in global function 7 days after myocardial infarction as assessed by echocardiography or computed tomographic ejection fraction (56.2%±2.6% versus 56.3%±2.4%; P=0.98). CONCLUSIONS: In contrast to rodent hearts, postconditioning with high-dose metformin administered immediately before reperfusion does not reduce IS or improve LV function 7 days after myocardial infarction in swine. These results reinforce the importance of rigorously testing therapies in large animal models to facilitate clinical translation of novel cardioprotective therapies.
Assuntos
Fármacos Cardiovasculares/administração & dosagem , Metformina/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/patologia , Volume Sistólico/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Fármacos Cardiovasculares/farmacocinética , Modelos Animais de Doenças , Esquema de Medicação , Ecocardiografia , Infusões Intra-Arteriais , Injeções Intravenosas , Metformina/farmacocinética , Tomografia Computadorizada Multidetectores , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Especificidade da Espécie , Sus scrofa , Fatores de TempoRESUMO
Thrombosis initiated by abnormal platelet aggregation is a pivotal pathological event that precedes most cases of cardiovascular diseases (CVD). Recently, growing evidence indicates that platelet could be a potential target for CVD prevention. However, as the conventional antithrombotic management strategy, applications of current antiplatelet agents are somewhat limited by their various side effects, such as bleeding risk and drug resistance. Hence, efforts have been made to search for agents as complementary therapies. Ginsenoside, the principal active component extracted from Panax ginseng, has gained much attention for its regulations on multiple crucial events of platelet aggregation. From structural characteristics to clinical applications, this review anatomized the intrinsic structure-function relationship of antiplatelet potency of ginsenosides, and the involved signal pathways were specifically summarized. Additionally, the emphasis was placed on clinical studies that investigate the antithrombotic efficacy of ginsenosides in the treatment of CVD. Further, a broad overview of approaches for improving the bioavailability of ginsenosides was concluded. Limitations and prospects of current studies were also discussed. This study may provide some new insights into the systematic understanding of ginsenosides in CVD treatment and lay a foundation for future research.
Assuntos
Plaquetas/efeitos dos fármacos , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Ginsenosídeos/uso terapêutico , Músculo Liso Vascular/efeitos dos fármacos , Neointima , Inibidores da Agregação Plaquetária/uso terapêutico , Agregação Plaquetária/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Animais , Disponibilidade Biológica , Plaquetas/metabolismo , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/farmacocinética , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/patologia , Ginsenosídeos/efeitos adversos , Ginsenosídeos/farmacocinética , Humanos , Estrutura Molecular , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Inibidores da Agregação Plaquetária/efeitos adversos , Inibidores da Agregação Plaquetária/farmacocinética , Transdução de Sinais , Relação Estrutura-AtividadeRESUMO
OBJECTIVE: The natural molecule α-lipoic acid has been shown to be partially cytoprotective through antioxidant and antiapoptotic mechanisms. To obtain an initial assessment of the safety and potential efficacy of a synthetic derivative, CMX-2043, in preventing ischemic complications of percutaneous coronary intervention (PCI) we conducted the Subjects Undergoing PCI and Perioperative Reperfusion Treatment (SUPPORT-1) trial, the first patient experience with this agent. METHODS AND RESULTS: SUPPORT-1 was a phase 2a, 6-center, international, placebo-controlled, randomized, double-blind trial. A total of 142 patients were randomized to receive a single intravenous bolus dose of drug or placebo administered 15-60 minutes before PCI. Cardiac biomarker assessments included serial measurements of creatine kinase myocardial band (CK-MB) at 6, 12, 18, and 24 hours after PCI and a single measurement of troponin T (TnT) at 24 hours. Peak concentrations of CK-MB and TnT were significantly reduced in the 2.4 mg/kg group compared with placebo (P = 0.05 and 0.03, respectively). No subject administered 2.4 mg/kg of CMX-2043 had an increase of CK-MB to ≥3X upper limit of normal versus 16% for placebo (P = 0.02); 16% of the 2.4-mg/kg dose group developed an elevation of TnT to ≥3X upper limit of normal versus 39% in the placebo group (P = 0.05). No drug-related serious adverse events were observed in any group. CONCLUSION: These data suggest that CMX-2043 may reduce PCI periprocedural myonecrosis and support further clinical evaluation of this novel agent for its potential cytoprotective effects.
Assuntos
Angioplastia Coronária com Balão , Fármacos Cardiovasculares/uso terapêutico , Doença da Artéria Coronariana/terapia , Dipeptídeos/uso terapêutico , Miócitos Cardíacos/efeitos dos fármacos , Ácido Tióctico/análogos & derivados , Idoso , Angioplastia Coronária com Balão/efeitos adversos , Biomarcadores/sangue , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/farmacocinética , Doença da Artéria Coronariana/diagnóstico por imagem , Creatina Quinase Forma MB/sangue , Dipeptídeos/efeitos adversos , Dipeptídeos/farmacocinética , Método Duplo-Cego , Feminino , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Necrose , Estudos Prospectivos , Ácido Tióctico/efeitos adversos , Ácido Tióctico/farmacocinética , Ácido Tióctico/uso terapêutico , Fatores de Tempo , Resultado do Tratamento , Troponina T/sangue , Estados UnidosRESUMO
The natural isomers of resveratrol, cis- and trans-resveratrol, are natural phenolic substances synthetized via the shikimate pathway and found in many sources, including grapes, peanuts, blackberries, pistachios, cacao, cranberries, and jackfruits. They have functional and pharmacological properties such as anticarcinogenic, antidiabetic, anti-inflammatory, and cardioprotective activities. The aim of this article is to review the data published on resveratrol and its isomers, and their biosynthesis in plants, food sources, health and toxic effects, and the excretion of their metabolites. Due to its contribution to the promotion of human health, it is convenient to gather more knowledge about its functional properties, food sources, and the interactions with the human body during the processes of eating, digestion, absorption, biotransformation, and excretion, to combine this information to improve the understanding of these substances.
Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Fármacos Cardiovasculares/farmacologia , Alimentos , Hipoglicemiantes/farmacologia , Plantas/metabolismo , Resveratrol/farmacologia , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/toxicidade , Antineoplásicos Fitogênicos/metabolismo , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/toxicidade , Disponibilidade Biológica , Biotransformação , Fármacos Cardiovasculares/metabolismo , Fármacos Cardiovasculares/farmacocinética , Fármacos Cardiovasculares/toxicidade , Vias de Eliminação de Fármacos , Absorção Gastrointestinal , Humanos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/toxicidade , Isomerismo , Resveratrol/metabolismo , Resveratrol/farmacocinética , Resveratrol/toxicidadeRESUMO
We studied pharmacokinetics and bioavailability of verapamil, propranolol, and ethacizine in healthy volunteers after single oral administration under normal conditions and on the second day of simulated antiorthostatic hypokinesia modeling some effects of microgravity. Under conditions of antiorthostatic hypokinesia, a tendency to a decrease in half-elimination period, mean retention time, and volume of distribution and an increase in the rate of absorption, ratio of maximum concentrations, and relative rate of absorption of verapamil and propranolol were revealed. For ethacizine, a statistically significant increase in the time of attaining maximum concentration and volume of distribution and a decrease in the maximum concentration, rate of absorption, ratio of maximum concentrations, and relative rate of absorption under conditions of antiorthostatic hypokinesia were found.
Assuntos
Fármacos Cardiovasculares/farmacocinética , Hipocinesia/sangue , Fenotiazinas/farmacocinética , Propranolol/farmacocinética , Verapamil/farmacocinética , Simulação de Ausência de Peso/métodos , Adulto , Área Sob a Curva , Disponibilidade Biológica , Fármacos Cardiovasculares/sangue , Meia-Vida , Humanos , Hipocinesia/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Fenotiazinas/sangue , Propranolol/sangue , Verapamil/sangueRESUMO
In this work, the aim of our study was to assess whether sesamin could influence the pharmacokinetics of ivabradine and its active metabolite N-desmethylivabradine in rats. At the begining, 12 healthy male Sprague-Dawley rats were randomly divided into two groups: The rats were received an oral administration of 1.0mg/kg ivabradine alone (the control group), and the rats were given 1.0mg/kg ivabradine co-administered with 50mg/kg sesamin by gavage (the test group). After that, blood samples were collected from the tail vein of rats, and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) were used for determing the plasma concentrations of ivabradine and N-desmethylivabradine in rats. Finally, the pharmacokinetic parameters were estimated using DAS 2.0 software. As the results, the pharmacokinetic parameters (t1/2, Cmax, AUC (0-t) and AUC (0-oo)) of ivabradine in the control group were significantly lower than those in the test group (P<0.05). Moreover, sesamin significantly decreased t1/2, Cmax, AUC(0-t) and AUC(0-oo) of N-desmethylivabradine when compared to the control. These results demonstrated that sesamin increases plasma concentration of ivabradine and decreases N-desmethylivabradine conversely. Hence, our data indicated sesamin could influence the pharmacokinetic profile of ivabradine in rats, which might cause food-drug interaction in humans.
Assuntos
Dioxóis/farmacologia , Ivabradina/farmacocinética , Lignanas/farmacologia , Administração Oral , Animais , Área Sob a Curva , Fármacos Cardiovasculares/sangue , Fármacos Cardiovasculares/metabolismo , Fármacos Cardiovasculares/farmacocinética , Cromatografia Líquida de Alta Pressão , Dioxóis/administração & dosagem , Dioxóis/farmacocinética , Ivabradina/sangue , Ivabradina/metabolismo , Lignanas/administração & dosagem , Lignanas/farmacocinética , Masculino , Ratos Sprague-Dawley , Espectrometria de Massas em TandemRESUMO
Prescribing in heart failure (HF), a common disease state that predominantly affects the older population, is often a challenging task because of the dynamic nature of the condition, requiring frequent monitoring and medication review, the presence of various comorbidities, and the frailty phenotype of many patients. The significant alterations in various organs and tissues occurring in HF, particularly the reduced cardiac output with peripheral hypoperfusion and the structural and functional changes of the gastrointestinal tract, liver and kidney, might affect the pharmacokinetics of several drugs. This review critically appraises the results of published studies investigating the pharmacokinetics of currently marketed cardiovascular and selected non-cardiovascular drugs in HF patients and control groups, identifies gaps in the current knowledge, and suggests avenues for future research in this complex patient population.
Assuntos
Fármacos Cardiovasculares/farmacocinética , Insuficiência Cardíaca/fisiopatologia , Área Sob a Curva , Disponibilidade Biológica , Débito Cardíaco/fisiologia , Comorbidade , Meia-Vida , Coração/fisiopatologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/epidemiologia , Humanos , Rim/fisiopatologia , Fígado/fisiopatologia , Taxa de Depuração Metabólica/fisiologiaRESUMO
The NLRP3 inflammasome is an intracellular, multimeric protein complex that initiates a potent inflammatory response to danger signals. After acute myocardial infarction, NLRP3 inflammasome-dependent inflammation promotes adverse left ventricular remodeling and recurrent atherosclerotic events. Selective and nonselective inhibitors of the NLRP3 inflammasome or its downstream effectors (interleukin-1ß and interleukin-18) may prevent adverse left ventricular remodeling and recurrent atherosclerotic events. In this review, we highlight strategies to inhibit NLRP3 inflammasome activity and their potential roles in the management of acute myocardial infarction.
Assuntos
Anti-Inflamatórios/uso terapêutico , Fármacos Cardiovasculares/uso terapêutico , Inflamassomos/antagonistas & inibidores , Mediadores da Inflamação/antagonistas & inibidores , Inflamação/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Animais , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/farmacocinética , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/farmacocinética , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Terapia de Alvo Molecular , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de SinaisRESUMO
PURPOSE: Ranolazine is a novel anti-angina treatment approved in the United States for chronic stable angina. Ranolazine pharmacokinetics have not been studied previously in patients who receive maintenance hemodialysis. This study describes the pharmacokinetics of ranolazine and three major metabolites (CVT-2738, CVT-2512, CVT-2514) in patients receiving thrice weekly hemodialysis. METHODS: Eight participants receiving maintenance hemodialysis completed this prospective, open-label study (study identifier NCT01435174 at Clinicaltrials.gov). Three participants received a single tablet of ranolazine 500 mg (followed by an interim analysis), and five received 2 tablets of ranolazine 500 mg. Blood samples were collected over 65 h to determine the pharmacokinetic characteristics during and between hemodialysis sessions. Non-compartmental analysis was used to determine the individual pharmacokinetic parameters. RESULTS: Ranolazine off-hemodialysis elimination phase half-lives were 3.6 and 3.9 h for 500 mg and 1000 mg doses, respectively. The time to maximum concentration ranged from 2 to 18 hours and the average maximum concentration was 0.65 ± 0.27 mcg/mL and 1.18 ± 0.48 mcg/mL for ranolazine 500 mg and 1000 mg dose, respectively. The mean hemodialysis percent reduction ratio for the ranolazine 500 mg dose was 52.3 ± 8.1% and for the ranolazine 1000 mg dose was 69.2 ± 37.6%. CONCLUSIONS: Data on ranolazine dosing in patients receiving maintenance hemodialysis is almost non-existent. Given the extent of pharmacokinetic variability observed with the 500 mg and 1000 mg oral doses of ranolazine, neither can be recommended as a starting dose in patients receiving maintenance hemodialysis. Guided by the information gained form this study about the extent of hemodialytic drug clearance, further multi-dose clinical trials of ranolazine are needed to optimize therapeutic outcomes in this patient population.