Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Cell ; 168(6): 1041-1052.e18, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28283060

RESUMO

Most secreted growth factors and cytokines are functionally pleiotropic because their receptors are expressed on diverse cell types. While important for normal mammalian physiology, pleiotropy limits the efficacy of cytokines and growth factors as therapeutics. Stem cell factor (SCF) is a growth factor that acts through the c-Kit receptor tyrosine kinase to elicit hematopoietic progenitor expansion but can be toxic when administered in vivo because it concurrently activates mast cells. We engineered a mechanism-based SCF partial agonist that impaired c-Kit dimerization, truncating downstream signaling amplitude. This SCF variant elicited biased activation of hematopoietic progenitors over mast cells in vitro and in vivo. Mouse models of SCF-mediated anaphylaxis, radioprotection, and hematopoietic expansion revealed that this SCF partial agonist retained therapeutic efficacy while exhibiting virtually no anaphylactic off-target effects. The approach of biasing cell activation by tuning signaling thresholds and outputs has applications to many dimeric receptor-ligand systems.


Assuntos
Anafilaxia/metabolismo , Células-Tronco Hematopoéticas/imunologia , Mastócitos/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais , Fator de Células-Tronco/metabolismo , Anafilaxia/imunologia , Animais , Dimerização , Humanos , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Engenharia de Proteínas , Proteínas Proto-Oncogênicas c-kit/agonistas , Proteínas Proto-Oncogênicas c-kit/química , Fator de Células-Tronco/química , Fator de Células-Tronco/genética
2.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198626

RESUMO

Human stem-cell factor (hSCF) stimulates the survival, proliferation, and differentiation of hematopoietic cells by binding to the c-Kit receptor. Various applications of hSCF require the efficient and reliable production of hSCF. hSCF exists in three forms: as two membrane-spanning proteins hSCF248 and hSCF229 and truncated soluble N-terminal protein hSCF164. hSCF164 is known to be insoluble when expressed in Escherichia coli cytoplasm, requiring a complex refolding procedure. The activity of hSCF248 has never been studied. Here, we investigated novel production methods for recombinant hSCF164 and hSCF248 without the refolding process. To increase the solubility of hSCF164, maltose-binding protein (MBP) and protein disulfide isomerase b'a' domain (PDIb'a') tags were attached to the N-terminus of hSCF164. These fusion proteins were overexpressed in soluble form in the Origami 2(DE3) E. coli strain. These solubilization effects were enhanced at a low temperature. His-hSCF248, the poly-His tagged form of hSCF248, was expressed in a highly soluble form without a solubilization tag protein, which was unexpected because His-hSCF248 contains a transmembrane domain. hSCF164 was purified using affinity and ion-exchange chromatography, and His-hSCF248 was purified by ion-exchange and gel filtration chromatography. The purified proteins stimulated the proliferation of TF-1 cells. Interestingly, the EC50 value of His-hSCF248 was 1 pg/mL, 100-fold lower than 9 ng/mL hSCF164. Additionally, His-hSCF248 decreased the doubling time, increased the proportion of S and G2/M stages in the cell cycle, and increased the c-Myc expression at a 1000-fold lower concentration than hSCF164. In conclusion, His-hSCF248 was expressed in a soluble form in E. coli and had stronger activity than hSCF164. The molecular chaperone, MBP, enabled the soluble overexpression of hSCF164.


Assuntos
Fator de Células-Tronco/biossíntese , Sequência de Aminoácidos , Ciclo Celular , Proliferação de Células , Regulação da Expressão Gênica , Humanos , Plasmídeos/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Fator de Células-Tronco/química
3.
Proteins ; 87(3): 185-197, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30520519

RESUMO

We combined computational and experimental methods to interrogate the binding determinants of angiopoietin-2 (Ang2) to its receptor tyrosine kinase (RTK) Tie2-a central signaling system in angiogenesis, inflammation, and tumorigenesis. We used physics-based electrostatic and surface-area calculations to identify the subset of interfacial Ang2 and Tie2 residues that can affect binding directly. Using random and site-directed mutagenesis and yeast surface display (YSD), we validated these predictions and identified additional Ang2 positions that affected receptor binding. We then used burial-based calculations to classify the larger set of Ang2 residues that are buried in the Ang2 core, whose mutations can perturb the Ang2 structure and thereby affect interactions with Tie2 indirectly. Our analysis showed that the Ang2-Tie2 interface is dominated by nonpolar contributions, with only three Ang2 and two Tie2 residues that contribute electrostatically to intermolecular interactions. Individual interfacial residues contributed only moderately to binding, suggesting that engineering of this interface will require multiple mutations to reach major effects. Conversely, substitutions in substantially buried Ang2 residues were more prevalent in our experimental screen, reduced binding substantially, and are therefore more likely to have a deleterious effect that might contribute to oncogenesis. Computational analysis of additional RTK-ligand complexes, c-Kit-SCF and M-CSF-c-FMS, and comparison to previous YSD results, further show the utility of our combined methodology.


Assuntos
Complexos Multiproteicos/química , Mapas de Interação de Proteínas/genética , Receptor TIE-2/química , Proteínas de Transporte Vesicular/química , Carcinogênese/genética , Simulação por Computador , Humanos , Inflamação/genética , Ligantes , Complexos Multiproteicos/genética , Mutagênese Sítio-Dirigida , Mutação/genética , Neovascularização Patológica/genética , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-kit/química , Receptor TIE-2/genética , Transdução de Sinais/genética , Fator de Células-Tronco/química , Proteínas de Transporte Vesicular/genética
4.
Adv Exp Med Biol ; 1084: 187-206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31175638

RESUMO

Mesenchymal stem cells (MSCs) are self-renewable cells capable for multilineage differentiation and immunomodulation. MSCs are able to differentiate into all cell types of mesodermal origin and, due to their plasticity, may generate cells of neuroectodermal or endodermal origin in vitro. In addition to the enormous differentiation potential, MSCs efficiently modulate innate and adaptive immune response and, accordingly, were used in large number of experimental and clinical trials as new therapeutic agents in regenerative medicine. Although MSC-based therapy was efficient in the treatment of many inflammatory and degenerative diseases, unwanted differentiation of engrafted MSCs represents important safety concern. MSC-based beneficial effects are mostly relied on the effects of MSC-derived immunomodulatory, pro-angiogenic, and trophic factors which attenuate detrimental immune response and inflammation, reduce ischemic injuries, and promote tissue repair and regeneration. Accordingly, MSC-conditioned medium (MSC-CM), which contains MSC-derived factors, has the potential to serve as a cell-free, safe therapeutic agent for the treatment of inflammatory diseases. Herein, we summarized current knowledge regarding identification, isolation, ontogeny, and functional characteristics of MSCs and described molecular mechanisms responsible for MSC-CM-mediated anti-inflammatory and immunosuppressive effects in the therapy of inflammatory lung, liver, and kidney diseases and ischemic brain injury.


Assuntos
Células-Tronco Mesenquimais , Fator de Células-Tronco , Anti-Inflamatórios/farmacologia , Meios de Cultivo Condicionados , Imunomodulação/efeitos dos fármacos , Imunossupressores/farmacologia , Células-Tronco Mesenquimais/química , Fator de Células-Tronco/química , Fator de Células-Tronco/farmacologia
5.
Proteins ; 85(7): 1362-1370, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28370370

RESUMO

Kit ligand (KITL) plays important roles in cell proliferation, differentiation, and survival via interaction with its receptor Kit. The previous studies demonstrated that KITL formed a noncovalent homodimer through transmembrane (TM) domain; however, the undergoing mechanism of transmembrane association that determines KITL TM dimerization is still not clear. Herein, molecular dynamics (MD) simulation strategy and TOXCAT assay were combined to characterize the dimerization interface and structure of KITL TM in details. KITL TM formed a more energetically favorable noncovalent dimer through a conserved SxxxGxxxG motif in the MD simulation. Furthermore, the TOXCAT results demonstrated that KITL TM self-associated strongly in the bilayer membrane environment. Mutating any one of the small residues Ser11, Gly15 or Gly19 to Ile disrupted KITL TM dimerization dramatically, which further validated our MD simulation results. In addition, our results showed that Tyr22 could help to stabilize the TM interactions via interacting with the phosphoric group in the bilayer membrane. Pro7 did not induce helix kinks or swivel angles in KITL TM, but it was related with the pitch of the turn around this residue so as to affect the dimer formation. Combining the results of computer modeling and experimental mutagenesis studies on the KITL TM provide new insights for the transmembrane helix association of KITL dimerization. Proteins 2017; 85:1362-1370. © 2017 Wiley Periodicals, Inc.


Assuntos
Cloranfenicol O-Acetiltransferase/metabolismo , Simulação de Dinâmica Molecular , Proteínas Recombinantes de Fusão/química , Fator de Células-Tronco/química , 1,2-Dipalmitoilfosfatidilcolina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Bovinos , Cloranfenicol O-Acetiltransferase/genética , Clonagem Molecular , Cães , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Genes Reporter , Humanos , Cinética , Bicamadas Lipídicas/química , Camundongos , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Multimerização Proteica , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo , Especificidade por Substrato , Suínos , Termodinâmica
6.
Proc Natl Acad Sci U S A ; 111(5): 1772-7, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24449920

RESUMO

Using electron microscopy and fitting of crystal structures, we present the 3D reconstruction of ligand-induced dimers of intact receptor tyrosine kinase, KIT. We observe that KIT protomers form close contacts throughout the entire structure of ligand-bound receptor dimers, and that the dimeric receptors adopt multiple, defined conformational states. Interestingly, the homotypic interactions in the membrane proximal Ig-like domain of the extracellular region differ from those observed in the crystal structure of the unconstrained extracellular regions. We observe two prevalent conformations in which the tyrosine kinase domains interact asymmetrically. The asymmetric arrangement of the cytoplasmic regions may represent snapshots of molecular interactions occurring during trans autophosphorylation. Moreover, the asymmetric arrangements may facilitate specific intermolecular interactions necessary for trans phosphorylation of different KIT autophosphorylation sites that are required for stimulation of kinase activity and recruitment of signaling proteins by activated KIT.


Assuntos
Multimerização Proteica , Proteínas Proto-Oncogênicas c-kit/química , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fator de Células-Tronco/química , Fator de Células-Tronco/metabolismo , Cristalografia por Raios X , Citoplasma/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-kit/ultraestrutura
7.
Protein Expr Purif ; 105: 1-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25286400

RESUMO

Stem cell factor (SCF) known as the c-kit ligand is a two disulfide bridge-containing cytokine in the regulation of the development and function of hematopoietic cell lineages and other cells such as mast cells, germ cells, and melanocytes. The secreted soluble form of SCF exists as noncovalently associated homodimer and exerts its activity by signaling through the c-Kit receptor. In this report, we present the high level expression of a soluble recombinant human SCF (rhSCF) in Escherichia coli. A codon-optimized Profinity eXact™-tagged hSCF cDNA was cloned into pET3b vector, and transformed into E. coli BL21(DE3) harboring a bacterial thioredoxin coexpression vector. The recombinant protein was purified via an affinity chromatography processed by cleavage with sodium fluoride, resulting in the complete proteolytic removal the N-terminal tag. Although almost none of the soluble fusion protein bound to the resin in standard protocol using 0.1M sodium phosphate buffer (pH 7.2), the use of binding buffer containing 0.5M l-arginine for protein stabilization dramatically enhanced binding to resin and recovery of the protein beyond expectation. Also pretreatment by Triton X-114 for removing endotoxin was effective for affinity chromatography. In chromatography performance, l-arginine was more effective than Triton X-114 treatment. Following Mono Q anion exchange chromatography, the target protein was isolated in high purity. The rhSCF protein specifically enhanced the viability of human myeloid leukemia cell line TF-1 and the proliferation and maturation of human mast cell line LAD2 cell. This novel protocol for the production of rhSCF is a simple, suitable, and efficient method.


Assuntos
Arginina/química , Cromatografia de Afinidade/métodos , Escherichia coli/genética , Proteínas Recombinantes de Fusão/metabolismo , Fator de Células-Tronco/metabolismo , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Arginina/metabolismo , Sequência de Bases , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/toxicidade , Fator de Células-Tronco/química , Fator de Células-Tronco/isolamento & purificação , Fator de Células-Tronco/toxicidade , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/isolamento & purificação
8.
Dev Biol ; 337(2): 199-210, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19874813

RESUMO

Juxtamembrane signaling via the membrane growth factor KitL is critical for Kit mediated functions. KitL has a conserved cytoplasmic domain and has been shown to possess a monomeric leucine-dependent basolateral targeting signal. To investigate the consequences in vivo of impaired basolateral KitL targeting in polarized epithelial cells, we have mutated this critical leucine to alanine using a knock-in strategy. KitL(L263A/L263A) mutant mice are pigmented normally and steady-state hematopoiesis is unaffected although peritoneal and skin mast cell numbers are significantly increased. KitL localization is affected in the Sertoli cells of the KitL(L263A/L263A) testis and testis size is reduced in these mice due to aberrant spermatogonial proliferation. Furthermore, the effect of the KitL L263A mutation on the testicular phenotype is dosage dependent. The tubules of hemizygous KitL(L263A/Sl) mice completely lack germ cells in contrast to the weaker testicular phenotype of KitL(L263A/L263A) mice. The onset of the testis phenotype coincides with the formation of tight junctions between Sertoli cells during postnatal development. Thus, the altered sorting of KitL is dispensable for hematopoietic and melanogenic lineages, yet is crucial in the testicular environment, where the basal membranes of adjacent polarized Sertoli cells form a niche for the proliferating spermatogonia.


Assuntos
Polaridade Celular , Hematopoese/fisiologia , Espermatogênese/fisiologia , Fator de Células-Tronco/química , Fator de Células-Tronco/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Contagem de Células , Proliferação de Células , Éxons/genética , Marcação de Genes , Linfopoese , Masculino , Mastócitos/citologia , Camundongos , Dados de Sequência Molecular , Mutação/genética , Estrutura Terciária de Proteína , Transporte Proteico , Deleção de Sequência , Relação Estrutura-Atividade , Testículo/metabolismo , Testículo/patologia
9.
J Biol Chem ; 285(23): 17754-62, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20353940

RESUMO

Cdc34 is an E2 ubiquitin-conjugating enzyme that functions in conjunction with SCF (Skp1.Cullin 1.F-box) E3 ubiquitin ligase to catalyze covalent attachment of polyubiquitin chains to a target protein. Here we identified direct interactions between the human Cdc34 C terminus and ubiquitin using NMR chemical shift perturbation assays. The ubiquitin binding activity was mapped to two separate Cdc34 C-terminal motifs (UBS1 and UBS2) that comprise residues 206-215 and 216-225, respectively. UBS1 and UBS2 bind to ubiquitin in the proximity of ubiquitin Lys(48) and C-terminal tail, both of which are key sites for conjugation. When bound to ubiquitin in one orientation, the Cdc34 UBS1 aromatic residues (Phe(206), Tyr(207), Tyr(210), and Tyr(211)) are probably positioned in the vicinity of ubiquitin C-terminal residue Val(70). Replacement of UBS1 aromatic residues by glycine or of ubiquitin Val(70) by alanine decreased UBS1-ubiquitin affinity interactions. UBS1 appeared to support the function of Cdc34 in vivo because human Cdc34(1-215) but not Cdc34(1-200) was able to complement the growth defect by yeast Cdc34 mutant strain. Finally, reconstituted IkappaBalpha ubiquitination analysis revealed a role for each adjacent pair of UBS1 aromatic residues (Phe(206)/Tyr(207), Tyr(210)/Tyr(211)) in conjugation, with Tyr(210) exhibiting the most pronounced catalytic function. Intriguingly, Cdc34 Tyr(210) was required for the transfer of the donor ubiquitin to a receptor lysine on either IkappaBalpha or a ubiquitin in a manner that depended on the neddylated RING sub-complex of the SCF. Taken together, our results identified a new ubiquitin binding activity within the human Cdc34 C terminus that contributes to SCF-dependent ubiquitination.


Assuntos
Fator de Células-Tronco/química , Complexos Ubiquitina-Proteína Ligase/química , Ubiquitina/química , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Fungos/metabolismo , Teste de Complementação Genética , Glicina/química , Humanos , Proteínas I-kappa B/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Dados de Sequência Molecular , Mutação , Inibidor de NF-kappaB alfa , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Tirosina/química , Enzimas de Conjugação de Ubiquitina
10.
Mol Genet Genomic Med ; 9(12): e1841, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34716665

RESUMO

Familial Progressive Hyper- and Hypopigmentation is a pigmentary disorder characterized by a mix of hypo- and hyperpigmented lesions, café-au-lait spots and hypopigmented ash-leaf macules. The disorder was previously linked to KITLG and various mutations have been reported to segregate in different families. Furthermore, association between KITLG mutations and malignancies was also suggested. Exome and SANGER sequencing were performed for identification of KITLG mutations. Functional in silico analyses were additionally performed to assess the findings. We identified a de novo mutation in exon 4 of KITLG gene causing NM_000899.4:c.[329A>T] (chr12:88912508A>T) leading to NP_000890.1:p.(Asp110Val) substitution in the 3rd alpha helix. It was predicted as pathogenic, located in a conserved region and causing an increase in hydrophobicity in the KITLG protein. Our findings clearly confirm an additional hot spot of KITLG mutations in the 3rd alpha helix, which very likely increases the risk of malignancies. To our knowledge the present study provides the strongest evidence of association of the KITLG mutation with both Familial Progressive Hyper- and Hypopigmentation and malignancy due to its' location on somatic cancer mutation locus. Additionally we also address difficulties with classification of the unique phenotype and propose a subtype within broader diagnosis.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Hiperpigmentação/diagnóstico , Hiperpigmentação/genética , Hipopigmentação/diagnóstico , Hipopigmentação/genética , Mutação , Fator de Células-Tronco/genética , Sequência de Aminoácidos , Estudos de Associação Genética/métodos , Humanos , Imuno-Histoquímica , Linhagem , Fenótipo , Análise de Sequência de DNA , Pele/patologia , Fator de Células-Tronco/química
11.
J Exp Med ; 187(9): 1451-61, 1998 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-9565637

RESUMO

The Kit ligand (KL)/Kit receptor pair functions in hematopoiesis, gametogenesis, and melanogenesis. KL is encoded at the murine steel (Sl) locus and encodes a membrane growth factor which may be proteolytically processed to produce soluble KL. The membrane-associated form of KL is critical in mediating Kit function in vivo. Evidence for a role of cytoplasmic domain sequences of KL comes from the Sl17H mutation, a splice site mutation that replaces the cytoplasmic domain with extraneous amino acids. Using deletion mutants and the Sl17H allele, we have investigated the role of the cytoplasmic domain sequences of KL in biosynthetic processing and cell surface presentation. The normal KL protein products are processed for cell surface expression, where they form dimers. Both Sl17H and the cytoplasmic deletion mutants of KL were processed to the cell surface; however, the rate of transport and protein stability were affected by the mutations. Deletion of cytoplasmic domain sequences of KL did not affect dimerization of KL. In contrast, dimerization of the Sl17H protein was reduced substantially. In addition, we have characterized the hematopoietic cell compartment in Sl17H mutant mice. The Sl17H mutation has only minor effects on hematopoiesis. Tissue and peritoneal mast cell numbers were reduced in mutant mice as well as in myeloid progenitors. Interestingly, long-term bone marrow cultures from Sl17H mice did not sustain the long-term production of hematopoietic cells. In addition, homing of normal hematopoietic progenitors to the spleen of irradiated Sl17H/Sl17H recipient mice was diminished in transplantation experiments, providing evidence for a role of Kit in homing or lodging. These results demonstrate that the membrane forms of KL exist as homodimers on the cell surface and that dimerization may play an important role in KL/Kit-mediated juxtacrine signaling.


Assuntos
Hematopoese/fisiologia , Fator de Células-Tronco/química , Sequência de Aminoácidos , Animais , Células da Medula Óssea/metabolismo , Células COS , Dimerização , Citometria de Fluxo , Hematopoese/genética , Humanos , Mastócitos/metabolismo , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação/genética , Splicing de RNA/genética , Deleção de Sequência/genética , Transdução de Sinais/fisiologia , Fator de Células-Tronco/fisiologia , Células-Tronco/metabolismo
12.
FASEB J ; 23(9): 3037-48, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19386768

RESUMO

Kit-ligand (Kitl), also known as stem cell factor, is a membrane-anchored, noncovalently bound dimer signaling via the c-kit receptor tyrosine kinase, required for migration, survival, and proliferation of hematopoietic stem and germ cells, melanocytes, and mastocytes. Despite its fundamental role in morphogenesis and stem cell biology, the mechanisms that regulate Kitl dimerization are not well understood. By employing cell-permeable cross-linker and quantitative bimolecular fluorescence complementation of wild-type and truncated forms of Kitl, we determined that Kitl dimerization is initiated in the endoplasmic reticulum and mediated to similar levels by the transmembrane and the extracellular growth factor domain. Further biochemical and mutational analysis revealed a conserved Ser-Gly-Gly-Tyr-containing motif that is required for transmembrane domain dimerization and efficient cell-surface expression of Kitl. A novel intracellular capture assay with the Kitl transmembrane domain as bait revealed specific interactions with Kitl, but not with unrelated transmembrane proteins. During evolution, the transmembrane dimerization motif appeared in Kitl at the transition from teleosts to tetrapods, which correlates with the emergence of Kitl as a supporter of stem cell populations. Thus, transmembrane-mediated association of membrane-anchored growth factors consists of a novel mechanism to improve paracrine signaling and morphogenesis.


Assuntos
Membrana Celular/metabolismo , Multimerização Proteica , Fator de Células-Tronco/química , Motivos de Aminoácidos , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Sequência Conservada , Cães , Proteínas de Membrana/química , Camundongos
13.
Appl Biochem Biotechnol ; 144(2): 181-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18456949

RESUMO

Recombinant human stem cell factor (rhSCF) was solubilized and renatured from inclusion bodies expressed in Escherichia coli. The effect of both pH and urea on the solubilization of rhSCF inclusion bodies was investigated; the results indicate that the solubilization of rhSCF inclusion bodies was significantly influenced by the pH of the solution employed, and low concentration of urea can drastically improve the solubilization of rhSCF when solubilized by high pH solution. The solubilized rhSCF can be easily refolded with simultaneous purification by ion exchange chromatography (IEC), with a specific activity of 7.8 x 10(5) IU x mg(-1), a purity of 96.3%, and a mass recovery of 43.0%. The presented experimental results show that rhSCF solubilized by high pH solution containing low concentration of urea is easier to be renatured than that solubilized by high concentration of urea, and the IEC refolding method was more efficient than dilution refolding and dialysis refolding for rhSCF. It may have a great potential for large-scale production of rhSCF.


Assuntos
Escherichia coli/química , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Fator de Células-Tronco/química , Fator de Células-Tronco/isolamento & purificação , Soluções Tampão , Cromatografia por Troca Iônica , Escherichia coli/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/efeitos dos fármacos , Solubilidade , Fator de Células-Tronco/efeitos dos fármacos , Ureia/química
14.
Nat Commun ; 9(1): 4685, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30410062

RESUMO

The ligand for the c-Kit receptor, KitL, exists as a membrane-associated (mKitL) and a soluble form (sKitL). KitL functions outside c-Kit activation have not been identified. We show that co-culture of c-Kit- and mKitL-expressing NIH3T3 cells results in signaling through mKitL: c-Kit-bound mKitL recruits calcium-modulating cyclophilin ligand (CAML) to selectively activate Akt, leading to CREB phosphorylation, mTOR pathway activation, and increased cell proliferation. Activation of mKitL in thymic vascular endothelial cells (VECs) induces mKitL- and Akt-dependent proliferation, and genetic ablation of mKitL in thymic VECs blocks their c-Kit responsiveness and proliferation during neonatal thymic expansion. Therefore, mKitL-c-Kit form a bi-directional signaling complex that acts in the developing thymus to coordinate thymic VEC and early thymic progenitor (ETP) expansion by simultaneously promoting ETP survival and VEC proliferation. This mechanism may be relevant to both normal tissues and malignant tumors that depend on KitL-c-Kit signaling for their proliferation.


Assuntos
Membrana Celular/metabolismo , Células Endoteliais/citologia , Transdução de Sinais , Fator de Células-Tronco/metabolismo , Timócitos/citologia , Timo/citologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proliferação de Células , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Camundongos , Células NIH 3T3 , Ligação Proteica , Domínios Proteicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína S6 Ribossômica/metabolismo , Fator de Células-Tronco/química , Timócitos/metabolismo
15.
Cell Prolif ; 51(2): e12407, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29143396

RESUMO

OBJECTIVES: Stem cell factor (SCF) is considered as a commonly indispensable cytokine for proliferation of haematopoietic stem cells (HSCs), which is used in large dosages during ex vivo culture. The work presented here aimed to reduce the consumption of SCF by sustained release but still support cells proliferation and maintain the multipotency of HSCs. MATERIALS AND METHODS: Stem cell factor was physically encapsulated within a hyaluronic acid/gelatin double network (HGDN) hydrogel to achieve a slow release rate. CD34+ cells were cultured within the SCF-loaded HGDN hydrogel for 14 days. The cell number, phenotype and functional capacity were investigated after culture. RESULTS: The HGDN hydrogels had desirable properties and encapsulated SCF kept being released for more than 6 days. SCF remained the native bioactivity, and the proliferation of HSCs within the SCF-loaded HGDN hydrogel was not affected, although the consumption of SCF was only a quarter in comparison with the conventional culture. Moreover, CD34+ cells harvested from the SCF-loaded HGDN hydrogels generated more multipotent colony-forming units (CFU-GEMM). CONCLUSION: The data suggested that the SCF-loaded HGDN hydrogel could support ex vivo culture of HSCs, thus providing a cost-effective culture protocol for HSCs.


Assuntos
Antígenos CD34 , Sangue Fetal/metabolismo , Hidrogéis , Células-Tronco Multipotentes/metabolismo , Fator de Células-Tronco , Técnicas de Cultura de Células/métodos , Células Cultivadas , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Sangue Fetal/citologia , Gelatina/química , Gelatina/farmacologia , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Células-Tronco Multipotentes/citologia , Fator de Células-Tronco/química , Fator de Células-Tronco/farmacologia
16.
Biotechnol Appl Biochem ; 48(Pt 3): 135-42, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17516919

RESUMO

TPO (thrombopoietin) and SCF (stem-cell factor) are functionally related cytokines with overlapping but distinct haematopoietic effects. In the present study, a novel TPO-SCF fusion protein that combined the complementary biological effects of TPO and SCF into a single molecule was expressed in, and purified from, Sf9 [Spodoptera frugiperda (fall armyworm)] insect cells. The specific activity of rhTPO (recombinant human TPO)-SCF in megakaryoblastic Mo7e cell proliferation assays was 2.90+/-0.35 x 10(7) units/micromol, approx. 1.7 times as high as that of rhTPO. The specific activity of rhTPO-SCF in TF-1 cells proliferation assays was 7.10+/-0.95 x 10(6) units/micromol, approx. 1.2 times as high as that of rhSCF (recombinant human SCF). In a megakaryocyte-colony-forming assay using human peripheral-blood CD34(+) cells, the SCF moiety of rhTPO-SCF worked in a synergistic way to augment the colony number and exhibited a higher potential to stimulate megakaryocyte colony growth. According to the results of EMSA (electrophoretic mobility-shift assay) and semi-quantitative RT (reverse transcriptase)-PCR, the synergistic effects of the SCF moiety were also reflected in increased STAT5 (signal transducer and activator of transcription 5) DNA binding and enhanced up-regulation of p21 expression in Mo7e cells treated by rhTPO-SCF, suggesting that rhTPO-SCF could be more potent in promoting megakaryocyte proliferation and differentiation.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Megacariócitos/citologia , Proteínas Recombinantes de Fusão/fisiologia , Fator de Células-Tronco/fisiologia , Trombopoetina/fisiologia , Animais , Linhagem Celular , Humanos , Megacariócitos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Spodoptera , Fator de Células-Tronco/química , Fator de Células-Tronco/genética , Fator de Células-Tronco/isolamento & purificação , Trombopoetina/química , Trombopoetina/genética , Trombopoetina/isolamento & purificação
17.
J Mol Biol ; 429(1): 97-114, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27890784

RESUMO

The stem cell factor (SCF)/c-Kit receptor tyrosine kinase complex-with its significant roles in hematopoiesis and angiogenesis-is an attractive target for rational drug design. There is thus a need to map, in detail, the SCF/c-Kit interaction sites and the mechanisms that modulate this interaction. While most residues in the direct SCF/c-Kit binding interface can be identified from the existing crystal structure of the complex, other residues that affect binding through protein unfolding, intermolecular interactions, allosteric or long-distance electrostatic effects cannot be directly inferred. Here, we describe an efficient method for protein-wide epitope mapping using yeast surface display. A library of single SCF mutants that span the SCF sequence was screened for decreased affinity to soluble c-Kit. Sequencing of selected clones allowed the identification of mutations that reduce SCF binding affinity to c-Kit. Moreover, the screening of these SCF clones for binding to a structural antibody helped identify mutations that result in small or large conformational changes in SCF. Computational modeling of the experimentally identified mutations showed that these mutations reduced the binding affinity through one of the three scenarios: through SCF destabilization, through elimination of favorable SCF/c-Kit intermolecular interactions, or through allosteric changes. Eight SCF variants were expressed and purified. Experimentally measured in vitro binding affinities of these mutants to c-Kit confirmed both the yeast surface display selection results and the computational predictions. This study has thus identified the residues crucial for c-Kit/SCF binding and has demonstrated the advantages of using a combination of computational and combinatorial methods for epitope mapping.


Assuntos
Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fator de Células-Tronco/metabolismo , Técnicas de Visualização da Superfície Celular , Biologia Computacional , Análise Mutacional de DNA , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação Puntual , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fator de Células-Tronco/química , Fator de Células-Tronco/genética
18.
Mol Cancer Ther ; 4(12): 2008-15, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16373716

RESUMO

Several activating mutations in the cKIT receptor tyrosine kinase are associated with the development and progression of gastrointestinal stromal tumors (GIST). Treatment of GIST with the tyrosine kinase inhibitor imatinib (Gleevec, STI571; Novartis, Basel, Switzerland) increases patient survival. However, many patients develop resistance to imatinib following initial responses. We sequenced cKIT exons from two patients with GIST after the development of imatinib resistance, revealing a point mutation in kinase domain I (exon 13), Val654Ala, which has been associated previously with relapse and resistance. Molecular modeling of cKIT-imatinib complexes shows that this residue is located in the drug-binding site and that the Val654Ala mutation disrupts drug binding by removing hydrophobic contacts with the central diaminophenyl ring of imatinib. Loss of these contacts results in a destabilizing effect on two key hydrogen bonds between imatinib and Asp310 and Thr670 of cKIT. Calculations based on published crystallography data show an estimated destabilization energy of 2.25 kcal/mol in the Val654Ala cKIT compared with wild type. When present on the same cKIT allele as an oncogenic mutation, the Val654Ala mutation abolishes imatinib-mediated inhibition of cKIT phosphoactivation in vitro. These results highlight some of the structural and functional consequences of the Val654Ala mutation in relapsing imatinib-resistant GIST and emphasize the importance of tumor genetics in drug development and patient-specific cancer treatment regimens.


Assuntos
Alanina/genética , Antineoplásicos/metabolismo , Tumores do Estroma Gastrointestinal/genética , Mutação de Sentido Incorreto , Piperazinas/metabolismo , Pirimidinas/metabolismo , Fator de Células-Tronco/antagonistas & inibidores , Valina/genética , Alanina/química , Alelos , Sequência de Aminoácidos , Antineoplásicos/uso terapêutico , Sequência de Bases , Benzamidas , Linhagem Celular , Resistencia a Medicamentos Antineoplásicos , Feminino , Tumores do Estroma Gastrointestinal/etiologia , Humanos , Mesilato de Imatinib , Modelos Moleculares , Dados de Sequência Molecular , Piperazinas/uso terapêutico , Pirimidinas/uso terapêutico , Homologia de Sequência de Aminoácidos , Fator de Células-Tronco/química , Fator de Células-Tronco/genética , Valina/química
19.
PLoS One ; 11(7): e0160165, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27467080

RESUMO

The receptors tyrosine kinases (RTKs) for the colony stimulating factor-1, CSF-1R, and for the stem cell factor, SCFR or KIT, are important mediators of signal transduction. The abnormal function of these receptors, promoted by gain-of-function mutations, leads to their constitutive activation, associated with cancer or other proliferative diseases. A secondary effect of the mutations is the alteration of receptors' sensitivity to tyrosine kinase inhibitors, compromising effectiveness of these molecules in clinical treatment. In particular, the mutation V560G in KIT increases its sensitivity to Imatinib, while the D816V in KIT, and D802V in CSF-1R, triggers resistance to the drug. We analyzed the Imatinib binding affinity to the native and mutated KIT (mutations V560G, S628N and D816V) and CSF-1R (mutation D802V) by using molecular dynamics simulations and energy calculations of Imatinib•target complexes. Further, we evaluated the sensitivity of the studied KIT receptors to Imatinib by measuring the inhibition of KIT phosphorylation. Our study showed that (i) the binding free energy of Imatinib to the targets is highly correlated with their experimentally measured sensitivity; (ii) the electrostatic interactions are a decisive factor affecting the binding energy; (iii) the most deleterious impact to the Imatinib sensitivity is promoted by D802V (CSF-1R) and D816V (KIT) mutations; (iv) the role of the juxtamembrane region, JMR, in the imatinib binding is accessory. These findings contribute to a better description of the mutation-induced effects alternating the targets sensitivity to Imatinib.


Assuntos
Mutação , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator de Células-Tronco/metabolismo , Animais , Células COS , Chlorocebus aethiops , Ligação de Hidrogênio , Mesilato de Imatinib/química , Mesilato de Imatinib/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Receptor de Fator Estimulador de Colônias de Macrófagos/química , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Fator de Células-Tronco/química , Fator de Células-Tronco/genética
20.
Biochim Biophys Acta ; 1314(3): 183-6, 1996 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-8982273

RESUMO

Airway epithelial cells modulate the inflammatory response in asthmatic, allergic and fibrotic lung diseases through the secretion of cytokines that regulate the movement and activation of inflammatory cells. Mast cells play an important role in the pathogenesis of these lung diseases. In this study we report that normal airway epithelial cells express stem cell factor which is a critical mediator of mast cell growth and differentiation and that transforming growth factor-beta inhibits secretion of stem cell factor by airway epithelial cells.


Assuntos
Brônquios/metabolismo , Fator de Células-Tronco/biossíntese , Brônquios/citologia , Brônquios/efeitos dos fármacos , Diferenciação Celular , Divisão Celular , Extratos Celulares , Linhagem Celular , Linhagem Celular Transformada , Membrana Celular , Citosol , Células Epiteliais , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Expressão Gênica , Humanos , Mastócitos/citologia , RNA Mensageiro/análise , Fator de Células-Tronco/química , Fator de Células-Tronco/genética , Fator de Crescimento Transformador beta/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA