Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Biol Chem ; 297(3): 101070, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34389355

RESUMO

Transforming growth factor-beta 2 (TGF-ß2) is highly concentrated in the aqueous humor of primary open-angle glaucoma patients. TGF-ß2 causes fibrosis of outflow tissues, such as the trabecular meshwork (TM), and increases intraocular pressure by increasing resistance to aqueous humor outflow. Recently, histone deacetylase (HDAC) activity was investigated in fibrosis in various tissues, revealing that HDAC inhibitors suppress tissue fibrosis. However, the effect of HDAC inhibitors on fibrosis in the eye was not determined. Here, we investigated the effect of suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor, on TGF-ß2-induced increased resistance to aqueous humor outflow. We found that SAHA suppressed TGF-ß2-induced outflow resistance in perfused porcine eyes. Moreover, SAHA cotreatment suppressed TGF-ß2-induced ocular hypertension in rabbits. The permeability of monkey TM (MTM) and Schlemm's canal (MSC) cell monolayers was decreased by TGF-ß2 treatment. SAHA inhibited the effects of TGF-ß2 on the permeability of these cells. TGF-ß2 also increased the expression of extracellular matrix proteins (fibronectin and collagen type I or IV) in MTM, MSC, and human TM (HTM) cells, while SAHA inhibited TGF-ß2-induced extracellular matrix protein expression in these cells. SAHA also inhibited TGF-ß2-induced phosphorylation of Akt and ERK, but did not inhibit Smad2/3 phosphorylation, the canonical pathway of TGF-ß signaling. Moreover, SAHA induced the expression of phosphatase and tensin homolog, a PI3K/Akt signaling factor, as well as bone morphogenetic protein 7, an endogenous antagonist of TGF-ß. These results imply that SAHA prevents TGF-ß2-induced increases in outflow resistance and regulates the non-Smad pathway of TGF-ß signaling in TM and MSC cells.


Assuntos
Fator de Crescimento Transformador beta2/metabolismo , Vorinostat/metabolismo , Vorinostat/farmacologia , Animais , Humor Aquoso/metabolismo , Humor Aquoso/fisiologia , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Macaca fascicularis , Masculino , Hipertensão Ocular/metabolismo , Fosforilação , Cultura Primária de Células , Coelhos , Transdução de Sinais , Suínos , Malha Trabecular/efeitos dos fármacos , Fator de Crescimento Transformador beta2/fisiologia , Fatores de Crescimento Transformadores/metabolismo
2.
J Pediatr Orthop ; 42(6): e590-e595, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35442932

RESUMO

BACKGROUND: Loeys-Dietz syndrome (LDS) is a rare autosomal-dominant connective tissue disorder caused by genetic mutations in the transforming growth factor-ß (TGFß) signaling pathway. In addition to vascular malformations, patients with LDS commonly present with bone and tendon abnormalities, including joint laxity. While TGFß signaling dysregulation has been implicated in many of these clinical manifestations, the degree to which it influences the tendinopathy and tendon healing issues in LDS has not been determined. METHODS: Wound healing after patellar tendon transection was compared between wild-type (WT) and Tgfbr2-mutant (LDS) mice (7 mice per group). In all mice, the right patellar tendon was transected at midsubstance, while the left was untouched to serve as a control. Mice were euthanized 6 weeks after surgery. Tendon specimens were harvested for histopathologic grading according to a previously validated scoring metric, and gene expression levels of Mmp2, Tgfb2, and other TGFß-signaling genes were assayed. Between-group comparisons were made using 1-way analysis of variance with post hoc Tukey honestly significant difference testing. RESULTS: Expression levels of assayed genes were similar between LDS and WT tendons at baseline; however, at 6 weeks after patellar tendon transection, LDS tendons showed sustained elevations in Mmp2 and Tgfb2 compared with baseline values; these elevations were not seen in normal tendons undergoing the same treatments. Histologically, untreated LDS tendons had significantly greater cellularity and cell rounding compared with untreated WT tendons, and both WT and LDS tendons had significantly worse histologic scores after surgery. CONCLUSION: We present the first mechanistic insight into the effect of LDS on tendons and tendon healing. The morphologic differences between LDS and WT tendons at baseline may help explain the increased risk of tendon/ligament dysfunction in patients with LDS, and the differential healing response to injury in LDS may account for the delayed healing and weaker repair tissue. LEVEL OF EVIDENCE: Level V.


Assuntos
Síndrome de Loeys-Dietz , Ligamento Patelar , Fator de Crescimento Transformador beta2 , Animais , Modelos Animais de Doenças , Síndrome de Loeys-Dietz/genética , Metaloproteinase 2 da Matriz , Camundongos , Ligamento Patelar/fisiopatologia , Ligamento Patelar/cirurgia , Tendões/fisiopatologia , Tendões/cirurgia , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/fisiologia , Cicatrização
3.
Exp Eye Res ; 207: 108594, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33894227

RESUMO

The TGF beta-1, -2 and -3 isoforms are transcribed from different genes but bind to the same receptors and signal through the same canonical and non-canonical signal transduction pathways. There are numerous regulatory mechanisms controlling the action of each isoform that include the organ-specific cells producing latent TGF beta growth factors, multiple effectors that activate the isoforms, ECM-associated SLRPs and basement membrane components that modulate the activity and localization of the isoforms, other interactive cytokine-growth factor receptor systems, such as PDGF and CTGF, TGF beta receptor expression on target cells, including myofibroblast precursors, receptor binding competition, positive and negative signal transduction effectors, and transcription and translational regulatory mechanisms. While there has long been the view that TGF beta-1and TGF beta-2 are pro-fibrotic, while TGF beta-3 is anti-fibrotic, this review suggests that view is too simplistic, at least in adult tissues, since TGF beta-3 shares far more similarities in its modulation of fibrotic gene expression with TGF beta-1 and TGF beta-2, than it does differences, and often the differences are subtle. Rather, TGF beta-3 should be seen as a fibro-modulatory partner to the other two isoforms that modulates a nuanced and better controlled response to injury. The complex interplay between the three isoforms and numerous interactive proteins, in the context of the cellular milieu, controls regenerative non-fibrotic vs. fibrotic healing in a response to injury in a particular organ, as well as the resolution of fibrosis, when that occurs.


Assuntos
Córnea/patologia , Fator de Crescimento Transformador beta1/fisiologia , Fator de Crescimento Transformador beta2/fisiologia , Fator de Crescimento Transformador beta3/fisiologia , Animais , Córnea/metabolismo , Fibrose/metabolismo , Humanos , Isoformas de Proteínas
4.
J Biomed Sci ; 28(1): 47, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140021

RESUMO

BACKGROUND: Elevated transforming growth factor (TGF)-ß2 in aqueous humor (AH) has been suggested to contribute to trabecular meshwork (TM) fibrosis and intraocular pressure (IOP) regulation in primary open-angle glaucoma (POAG), but TGF-ß2 is downregulated in secondary open-angle glaucoma (SOAG). Because autotaxin (ATX) is upregulated in SOAG, we investigated the relationships and trans-signaling interactions of these mediators. METHODS: The level of ATX in AH was determined using a two-site immunoenzymetric assay, and TGF-ß levels were measured using the Bio-Plex Pro TGF-ß Assay. RNA scope was used to assess the expression of ATX and TGF-ß2 in human's eye specimen. And in vitro studies were performed using hTM cells to explore if trans-signaling of TGF-ß2 regulates ATX expressions. RESULTS: TGF-ß2/ATX ratio was significantly high in AH of control or POAG compared with SOAG, and negatively correlated with IOP. RNA scope revelated positive expressions of both TGF-ß2 and ATX in ciliary body (CB) and TM in control, but ATX expressions was significantly enhanced in SOAG. In hTM cells, ATX expressions were regulated by TGF-ß2 with concentration-dependent manner. In counter, ATX also induced TGF-ß1, TGF-ß2 and TGFBI upregulations and activation of the Smad-sensitive promoter, as well as upregulation of fibrotic markers, and these upregulation was significantly suppressed by both TGF-ß and ATX inhibition. CONCLUSIONS: Trans-signaling of TGF-ß2 regulates ATX expressions and thereby induced upregulations of TGF-ßs or fibrosis of hTM. TGF-ß2 trans-signaling potently regulate ATX transcription and signaling in hTM cells, which may reflect different profile of these mediators in glaucoma subtypes. Trial Registration This prospective observational study was approved by the Institutional Review Board of the University of Tokyo and was registered with the University Hospital Medical Information Network Clinical Trials Registry of Japan (ID: UMIN000027137). All study procedures conformed to the Declaration of Helsinki. Written informed consent was obtained from each patient.


Assuntos
Glaucoma de Ângulo Aberto/metabolismo , Diester Fosfórico Hidrolases/fisiologia , Malha Trabecular/metabolismo , Fator de Crescimento Transformador beta2/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Glaucoma de Ângulo Aberto/classificação , Humanos , Masculino , Pessoa de Meia-Idade
5.
Development ; 144(23): 4377-4385, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29038307

RESUMO

Metanephric kidney development is orchestrated by the iterative branching morphogenesis of the ureteric bud. We describe an underlying patterning associated with the ramification of this structure and show that this pattern is conserved between developing kidneys, in different parts of the organ and across developmental time. This regularity is associated with a highly reproducible branching asymmetry that is consistent with locally operative growth mechanisms. We then develop a class of tip state models to represent elaboration of the ureteric tree and describe rules for 'half-delay' branching morphogenesis that describe almost perfectly the patterning of this structure. Spatial analysis suggests that the observed asymmetry may arise from mutual suppression of bifurcation, but not extension, between the growing ureteric tips, and demonstrates that disruption of patterning occurs in mouse mutants in which the distribution of tips on the surface of the kidney is altered. These findings demonstrate that kidney development occurs by way of a highly conserved reiterative pattern of asymmetric bifurcation that is governed by intrinsic and locally operative mechanisms.


Assuntos
Rim/embriologia , Morfogênese/fisiologia , Ureter/embriologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Proteína Morfogenética Óssea 7/deficiência , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/fisiologia , Imageamento Tridimensional , Conceitos Matemáticos , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Modelos Biológicos , Morfogênese/genética , Mutação , Fenótipo , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Fosfoproteínas/fisiologia , Fator de Crescimento Transformador beta2/deficiência , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/fisiologia
6.
Arterioscler Thromb Vasc Biol ; 39(2): 212-223, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30580570

RESUMO

Objective- Abdominal aortic aneurysm is caused by the accumulation of inflammatory cells in the aortic wall. Our recent studies demonstrated that inhibition of Notch signaling attenuates abdominal aortic aneurysm formation by shifting the macrophage balance towards anti-inflammatory (M2) phenotype. Using IL12p40-/- (interleukin 12 p40) mice, we investigated the effects of M2-predominant macrophages on the development of abdominal aortic aneurysm. Approach and Results- Male (8-10 week-old) wild-type and IL12p40-/- mice (n=15) on C57BL/6 background were infused with Ang II (angiotensin II, 1000 ng/kg per minute) by implanting osmotic pumps subcutaneously for 28 days. In the IL12p40-/- mice, Ang II significantly increased the maximal intraluminal diameter (9/15) as determined by transabdominal ultrasound imaging. In addition, IL12p40-deletion significantly increased aortic stiffness in response to Ang II as measured by pulse wave velocity and atomic force microscopy. Histologically, IL12p40-/- mice exhibited increased maximal external diameter of aorta and aortic lesions associated with collagen deposition and increased elastin fragmentation compared with wild-type mice infused with Ang II. Mechanistically, IL12p40 deficiency by siRNA (small interfering RNA) augmented the Tgfß2-mediated Mmp2 expression in wild-type bone marrow-derived macrophages without affecting the expression of Mmp9. No such effects of IL12p40 deficiency on MMP2/MMP9 was observed in human aortic smooth muscle cells or fibroblasts. Depletion of macrophages in IL12p40-/- mice by clodronate liposomes significantly decreased the maximal external diameter of aorta and aortic stiffness in response to Ang II as determined by imaging and atomic force microscopy. Conclusions- IL12p40 depletion promotes the development of abdominal aortic aneurysm, in part, by facilitating recruitment of M2-like macrophages and potentiating aortic stiffness and fibrosis mediated by Tgfß2.


Assuntos
Angiotensina II/farmacologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Subunidade p40 da Interleucina-12/fisiologia , Animais , Colágeno/metabolismo , Subunidade p40 da Interleucina-12/deficiência , Macrófagos/fisiologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta2/fisiologia , Rigidez Vascular
7.
Biochem Biophys Res Commun ; 508(3): 889-893, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30538046

RESUMO

Tenogenic differentiation of stem cells is needed for tendon tissue engineering approaches. A current challenge is the limited information on the cellular-level changes during tenogenic induction. Tendon cells in embryonic and adult tendons possess an array of cell-cell junction proteins that include cadherins and connexins, but how these proteins are impacted by tenogenic differentiation is unknown. Our objective was to explore how tenogenic induction of mesenchymal stem cells (MSCs) using the transforming growth factor (TGF)ß2 impacted protein markers of tendon differentiation and protein levels of N-cadherin, cadherin-11 and connexin-43. MSCs were treated with TGFß2 for 21 days. At 3 days, TGFß2-treated MSCs developed a fibroblastic morphology and significantly decreased levels of N-cadherin protein, which were maintained through 21 days. Similar decreases in protein levels were found for cadherin-11. Connexin-43 protein levels significantly increased at 3 days, but then decreased below control levels, though not significantly. Protein levels of scleraxis and tenomodulin were significantly increased at day 14 and 21, respectively. Taken together, our results indicate that TGFß2 is an inducer of tendon marker proteins (scleraxis and tenomodulin) in MSCs and that tenogenesis alters the protein levels of N-cadherin, cadherin-11 and connexin-43. These findings suggest a role for connexin-43 early in tenogenesis, and show that early-onset and sustained decreases in N-cadherin and cadherin-11 may be novel markers of tenogenesis in MSCs.


Assuntos
Caderinas/metabolismo , Conexina 43/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fator de Crescimento Transformador beta2/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Fibroblastos/ultraestrutura , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/ultraestrutura , Camundongos
8.
Dev Biol ; 415(1): 14-23, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27180663

RESUMO

The secondary palate separates the oral from the nasal cavity and its closure during embryonic development is sensitive to genetic perturbations. Mice with deleted Foxf2, encoding a forkhead transcription factor, are born with cleft palate, and an abnormal tongue morphology has been proposed as the underlying cause. Here, we show that Foxf2(-/-) maxillary explants cultured in vitro, in the absence of tongue and mandible, failed to close the secondary palate. Proliferation and collagen content were decreased in Foxf2(-/-) palatal shelf mesenchyme. Phosphorylation of Smad2/3 was reduced in mutant palatal shelf, diagnostic of attenuated canonical Tgfß signaling, whereas phosphorylation of p38 was increased. The amount of Tgfß2 protein was diminished, whereas the Tgfb2 mRNA level was unaltered. Expression of several genes encoding extracellular proteins important for Tgfß signaling were reduced in Foxf2(-)(/)(-) palatal shelves: a fibronectin splice-isoform essential for formation of extracellular Tgfß latency complexes; Tgfbr3 - or betaglycan - which acts as a co-receptor and an extracellular reservoir of Tgfß; and integrins αV and ß1, which are both Tgfß targets and required for activation of latent Tgfß. Decreased proliferation and reduced extracellular matrix content are consistent with diminished Tgfß signaling. We therefore propose that gene expression changes in palatal shelf mesenchyme that lead to reduced Tgfß signaling contribute to cleft palate in Foxf2(-)(/)(-) mice.


Assuntos
Fissura Palatina/embriologia , Fatores de Transcrição Forkhead/fisiologia , Mesoderma/embriologia , Palato/embriologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta2/fisiologia , Animais , Colágeno/fisiologia , Matriz Extracelular/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Fibronectinas/fisiologia , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Integrinas/fisiologia , Mandíbula/embriologia , Maxila/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Fosforilação , Processamento de Proteína Pós-Traducional , Proteoglicanas/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Proteína Smad2/fisiologia , Proteína Smad3/fisiologia , Língua/anormalidades , Língua/embriologia , Fator de Crescimento Transformador beta2/biossíntese , Fator de Crescimento Transformador beta2/genética
9.
BMC Cancer ; 17(1): 650, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28915803

RESUMO

BACKGROUND: Tartrate-resistant acid phosphatase (TRAP/ACP5), a metalloenzyme that is characteristic for its expression in activated osteoclasts and in macrophages, has recently gained considerable focus as a driver of metastasis and was associated with clinically relevant parameters of cancer progression and cancer aggressiveness. METHODS: MDA-MB-231 breast cancer cells with different TRAP expression levels (overexpression and knockdown) were generated and characterized for protein expression and activity levels. Functional cell experiments, such as proliferation, migration and invasion assays were performed as well as global phosphoproteomic and proteomic analysis was conducted to connect molecular perturbations to the phenotypic changes. RESULTS: We identified an association between metastasis-related properties of TRAP-overexpressing MDA-MB-231 breast cancer cells and a TRAP-dependent regulation of Transforming growth factor (TGFß) pathway proteins and Cluster of differentiation 44 (CD44). Overexpression of TRAP increased anchorage-independent and anchorage-dependent cell growth and proliferation, induced a more elongated cellular morphology and promoted cell migration and invasion. Migration was increased in the presence of the extracellular matrix (ECM) proteins osteopontin and fibronectin and the basement membrane proteins collagen IV and laminin I. TRAP-induced properties were reverted upon shRNA-mediated knockdown of TRAP or treatment with the small molecule TRAP inhibitor 5-PNA. Global phosphoproteomics and proteomics analyses identified possible substrates of TRAP phosphatase activity or signaling intermediates and outlined a TRAP-dependent regulation of proteins involved in cell adhesion and ECM organization. Upregulation of TGFß isoform 2 (TGFß2), TGFß receptor type 1 (TßR1) and Mothers against decapentaplegic homolog 2 (SMAD2), as well as increased intracellular phosphorylation of CD44 were identified upon TRAP perturbation. Functional antibody-mediated blocking and chemical inhibition demonstrated that TRAP-dependent migration and proliferation is regulated via TGFß2/TßR, whereas proliferation beyond basal levels is regulated through CD44. CONCLUSION: Altogether, TRAP promotes metastasis-related cell properties in MDA-MB-231 breast cancer cells via TGFß2/TßR and CD44, thereby identifying a potential signaling mechanism associated to TRAP action in breast cancer cells.


Assuntos
Receptores de Hialuronatos/metabolismo , Fosfatase Ácida Resistente a Tartarato/fisiologia , Fator de Crescimento Transformador beta2/fisiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Forma Celular , Feminino , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Transdução de Sinais
10.
Exp Eye Res ; 164: 55-63, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28789942

RESUMO

Statins are cholesterol lowering drugs and have shown beneficial effects on glaucoma. With regard to the mechanism of statin action on glaucoma, we investigated the effects of statins on transforming growth factor-beta 2 (TGF-ß2)-induced expression of extracellular matrix (ECM) proteins in human astrocytes of the optic nerve head (ONH) lamina cribrosa (LC). By using primary human ONH astrocytes, we found that both simvastatin and lovastatin inhibited TGF-ß2-mediated expression of ECM proteins such as connective tissue growth factor, collagen I, fibronectin, and plasminogen activator inhibitor-1. Suppression of ECM related proteins is due to inhibition of Smad2/3 activation as statins inhibit TGF-ß2-induced Smad2 phosphorylation and Smad2/3 nuclear accumulation. In ONH astrocytes, TGF-ß2 does not induce MAPK activation. In this study we found an anti-fibrotic effect of statins in human astrocytes of the ONH and identified TGF-ß2 as a mediator of statin action, which may support a beneficial role for statins in blocking glaucomatous axonal damage induced by ECM remodeling.


Assuntos
Astrócitos/efeitos dos fármacos , Matriz Extracelular/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Disco Óptico/metabolismo , Fator de Crescimento Transformador beta2/fisiologia , Análise de Variância , Astrócitos/metabolismo , Células Cultivadas , Matriz Extracelular/efeitos dos fármacos , Proteínas do Olho/metabolismo , Humanos , Lovastatina , Disco Óptico/citologia , Sinvastatina , Fator de Crescimento Transformador beta2/metabolismo
11.
Bull Exp Biol Med ; 162(5): 671-675, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28361415

RESUMO

The study established enhanced expression of vascular endothelial growth factor (VEGF) in the subpopulation of osteoblasts located in the regeneration region of femoral bone fracture near the titanium implants with bioactive calcium phosphate and hydroxyapatite coatings and suppressed activity of transforming growth factor-ß2 (TGF-ß2) in chondroblasts during the two weeks after surgery. In the delayed posttraumatic period, the distribution of TGF-ß2 inversely related to its maximal activity. The data revealed the up-regulating effect of bioresorbable coatings on expression of VEGF and TGF-ß2 and their implication in the control over various stages of reparative osteogenesis.


Assuntos
Regeneração Óssea , Parafusos Ósseos , Osso e Ossos/metabolismo , Materiais Revestidos Biocompatíveis/química , Fator de Crescimento Transformador beta2/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Fosfatos de Cálcio/química , Durapatita/química , Consolidação da Fratura , Masculino , Ratos , Titânio
12.
Exp Eye Res ; 148: 97-102, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27091054

RESUMO

Primary Open Angle Glaucoma (POAG) is an irreversible, vision-threatening disease that affects millions worldwide. The principal risk factor of POAG is increased intraocular pressure (IOP) due to pathological changes in the trabecular meshwork (TM). The TGFß signaling pathway activator TGFß2 and the Wnt signaling pathway inhibitor secreted frizzled-related protein 1 (sFRP1) are elevated in the POAG TM. In this study, we determined whether there is a crosstalk between the TGFß/Smad pathway and the canonical Wnt pathway using luciferase reporter assays. Lentiviral luciferase reporter vectors for studying the TGFß/Smad pathway or the canonical Wnt pathway were transduced into primary human non-glaucomatous TM (NTM) cells. Cells were treated with or without a combination of 5 µg/ml TGFß2 and/or 100 ng/ml Wnt3a recombinant proteins, and luciferase levels were measured using a plate reader. We found that TGFß2 inhibited Wnt3a-induced canonical Wnt pathway activation, while Wnt3a inhibited TGFß2-induced TGFß/Smad pathway activation (n = 6, p < 0.05) in 3 NTM cell strains. We also found that knocking down of Smad4 or ß-catenin using siRNA in HTM5 cells transfected with similar luciferase reporter plasmids abolished the inhibitory effect of TGFß2 and/or Wnt3a on the other pathway (n = 6). Our results suggest the existence of a cross-inhibition between the TGFß/Smad and canonical Wnt pathways in the TM, and this cross-inhibition may be mediated by Smad4 and ß-catenin.


Assuntos
Glaucoma de Ângulo Aberto/metabolismo , Malha Trabecular/metabolismo , Fator de Crescimento Transformador beta2/fisiologia , Via de Sinalização Wnt/fisiologia , Proteína Wnt3A/fisiologia , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Feminino , Humanos , Luciferases/metabolismo , Masculino , Transdução de Sinais/fisiologia , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Proteína Wnt3A/metabolismo , Proteína Wnt3A/farmacologia , beta Catenina/metabolismo
13.
Am J Physiol Cell Physiol ; 307(9): C859-77, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25163519

RESUMO

Endothelial-mesenchymal transition (EndoMT) has been recognized as a key determinant of tumor microenvironment in cancer progression and metastasis. Endothelial cells undergoing EndoMT lose their endothelial markers, acquire the mesenchymal phenotype, and become more invasive with increased migratory abilities. Early stages of esophageal adenocarcinoma (EAC) are characterized by strong microvasculature whose impact in tumor progression remains undefined. Our aim was to determine the role of EndoMT in EAC by investigating the impact of tumor cells on normal primary human esophageal microvascular endothelial cells (HEMEC). HEMEC were either cocultured with OE33 adenocarcinoma cells or treated with IL-1ß and transforming growth factor-ß2 (TGF-ß2) for indicated periods and analyzed for EndoMT-associated changes by real-time PCR, Western blotting, immunofluorescence staining, and functional assays. Additionally, human EAC tissues were investigated for detection of EndoMT-like cells. Our results demonstrate an increased expression of mesenchymal markers [fibroblast-specific protein 1 (FSP1), collagen1α2, vimentin, α-smooth muscle actin (α-SMA), and Snail], decreased expression of endothelial markers [CD31, von Willebrand factor VIII (vWF), and VE-cadherin], and elevated migration ability in HEMEC following coculture with OE33 cells. The EndoMT-related changes were inhibited by IL-1ß and TGF-ß2 gene silencing in OE33 cells. Recombinant IL-1ß and TGF-ß2 induced EndoMT in HEMEC. Although the level of VEGF expression was elevated in EndoMT cells, the angiogenic property of these cells was diminished. In vivo, by immunostaining EndoMT-like cells were detected at the invasive front of EAC. Our findings underscore a significant role for EndoMT in EAC and provide new insights into the mechanisms and significance of EndoMT in the context of tumor progression.


Assuntos
Adenocarcinoma/patologia , Células Endoteliais/citologia , Neoplasias Esofágicas/patologia , Esôfago/citologia , Interleucina-1beta/fisiologia , Mesoderma/citologia , Fator de Crescimento Transformador beta2/fisiologia , Microambiente Tumoral , Adenocarcinoma/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/metabolismo , Neoplasias Esofágicas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/antagonistas & inibidores , Fator de Crescimento Transformador beta2/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Biochim Biophys Acta ; 1830(10): 4470-81, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23668958

RESUMO

BACKGROUND: Induction of epithelial-mesenchymal transition (EMT) is essential for the metastasis of tumor cells and maintaining their stemness. This study aimed to examine whether endothelial cells, which are most closely located to tumor cells in vivo, play a role in inducing EMT in tumor cells or not. METHODS: Concentrated culture medium of bovine aortic endothelial cells (BAECs) was applied to tumor cell lines (A549 and PANC-1) and epithelial cell line (NMuMg). Cadherin conversion, expressions of α-smooth muscle actin and ZO-1, actin fiber formation and cell migration were examined as hallmarks of the induction of EMT in these cell lines. Transforming growth factor ß (TGFß) antibodies were used to neutralize TGFß1, TGFß2 and TGFß3. Expression and release of TGFß proteins in BAECs as well as in porcine and human endothelial cells were assessed by Western blotting and ELISA, respectively. RESULTS: Conditioned medium of BAEC induced EMT in the examined cell lines. All endothelial cells from various species and locations expressed TGFß1 and TGFß2 proteins and much lower level of TGFß3 protein. Conditioned medium from these endothelial cells contained TGFß1 and TGFß2, but TGFß3 could not be detected. Neutralizing antibody against each of TGFß1 or TGFß2 did not reverse endothelium-dependent EMT, but simultaneous neutralization of both TGFß1 and TGFß2 completely abolished it. CONCLUSIONS: Endothelial cells may play a role in the induction and maintenance of EMT in tumor cells by constitutively releasing TGFß1 and TGFß2. GENERAL SIGNIFICANCE: The present results provide a novel strategy of the inhibition of tumor metastasis by targeting vascular endothelium.


Assuntos
Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta1/fisiologia , Fator de Crescimento Transformador beta2/fisiologia , Animais , Sequência de Bases , Bovinos , Linhagem Celular Tumoral , Células Cultivadas , Meios de Cultivo Condicionados , Primers do DNA , Humanos , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Proteína Smad2/metabolismo , Suínos
15.
J Immunol ; 189(2): 1024-35, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22706080

RESUMO

The cervix is central to the female genital tract immune response to pathogens and foreign male Ags introduced at coitus. Seminal fluid profoundly influences cervical immune function, inducing proinflammatory cytokine synthesis and leukocyte recruitment. In this study, human Ect1 cervical epithelial cells and primary cervical cells were used to investigate agents in human seminal plasma that induce a proinflammatory response. TGF-ß1, TGF-ß2, and TGF-ß3 are abundant in seminal plasma, and Affymetrix microarray revealed that TGF-ß3 elicits changes in Ect1 cell expression of several proinflammatory cytokine and chemokine genes, replicating principal aspects of the Ect1 response to seminal plasma. The differentially expressed genes included several induced in the physiological response of the cervix to seminal fluid in vivo. Notably, all three TGF-ß isoforms showed comparable ability to induce Ect1 cell expression of mRNA and protein for GM-CSF and IL-6, and TGF-ß induced a similar IL-6 and GM-CSF response in primary cervical epithelial cells. TGF-ß neutralizing Abs, receptor antagonists, and signaling inhibitors ablated seminal plasma induction of GM-CSF and IL-6, but did not alter IL-8, CCL2 (MCP-1), CCL20 (MIP-3α), or IL-1α production. Several other cytokines present in seminal plasma did not elicit Ect1 cell responses. These data identify all three TGF-ß isoforms as key agents in seminal plasma that signal induction of proinflammatory cytokine synthesis in cervical cells. Our findings suggest that TGF-ß in the male partner's seminal fluid may influence cervical immune function after coitus in women, and potentially be a determinant of fertility, as well as defense from infection.


Assuntos
Colo do Útero/imunologia , Colo do Útero/patologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Mediadores da Inflamação/fisiologia , Sêmen/imunologia , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta/fisiologia , Células 3T3 , Animais , Células Cultivadas , Colo do Útero/citologia , Citocinas/biossíntese , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Isoformas de Proteínas/fisiologia , Fator de Crescimento Transformador beta1/fisiologia , Fator de Crescimento Transformador beta2/fisiologia , Fator de Crescimento Transformador beta3/fisiologia
16.
IUBMB Life ; 65(2): 134-43, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23297089

RESUMO

Fibrosarcoma is a rare malignant tumor originating from fibroblasts. Transforming growth factor beta 2 (TGFß2) has been established to regulate processes correlated to fibrosarcoma tumorigenesis. In this study, we investigated the possible participation of syndecan-2 (SDC-2), a cell membrane heparan sulfate (HS) proteoglycan on these TGFß2 functions. Our results demonstrate that the inhibition of SDC-2 expression by short interfering RNA (siSDC2) abolished TGFß2-dependent HT1080 cell adhesion (P ≤ 0.01). In parallel, the downregulation of SDC-2 significantly inhibited TGFß2-induced Smad2 phosphorylation (P ≤ 0.01). The immunoflourescence signal of TGF receptor III as well as its protein expression was decreased in SDC-2-deficient cells. The enhancement of adhesion molecules integrin ß1 (P ≤ 0.01) and focal adhesion kinase expression, induced by TGFß2 treatment (P ≤ 0.001), was markedly inhibited in SDC-2-defficient cells (P ≤ 0.01). Conclusively, the obtained data suggest that SDC-2 modulates TGFß2 transcriptional regulation via Smad signaling to facilitate fibrosarcoma cell adhesion.


Assuntos
Adesão Celular , Proteína Smad2/metabolismo , Sindecana-2/metabolismo , Fator de Crescimento Transformador beta2/fisiologia , Actinas/metabolismo , Linhagem Celular Tumoral , Fibronectinas/metabolismo , Fibrossarcoma , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Multimerização Proteica , Transporte Proteico , RNA Interferente Pequeno/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Sindecana-2/genética
17.
J Pathol ; 228(3): 378-90, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22786655

RESUMO

Glioblastoma are aggressive astrocytic brain tumours characterized by microvascular proliferation and an abnormal vasculature, giving rise to brain oedema and increased patient morbidity. Here, we have characterized the transcriptome of tumour-associated blood vessels and describe a gene signature clearly associated with pleomorphic, pathologically altered vessels in human glioblastoma (grade IV glioma). We identified 95 genes differentially expressed in glioblastoma vessels, while no significant differences in gene expression were detected between vessels in non-malignant brain and grade II glioma. Differential vascular expression of ANGPT2, CD93, ESM1, ELTD1, FILIP1L and TENC1 in human glioblastoma was validated by immunohistochemistry, using a tissue microarray. Through qPCR analysis of gene induction in primary endothelial cells, we provide evidence that increased VEGF-A and TGFß2 signalling in the tumour microenvironment is sufficient to invoke many of the changes in gene expression noted in glioblastoma vessels. Notably, we found an enrichment of Smad target genes within the distinct gene signature of glioblastoma vessels and a significant increase of Smad signalling complexes in the vasculature of human glioblastoma in situ. This indicates a key role of TGFß signalling in regulating vascular phenotype and suggests that, in addition to VEGF-A, TGFß2 may represent a new target for vascular normalization therapy.


Assuntos
Vasos Sanguíneos/fisiopatologia , Neoplasias Encefálicas/fisiopatologia , Perfilação da Expressão Gênica , Glioblastoma/fisiopatologia , Fator de Crescimento Transformador beta2/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Adulto , Idoso , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioblastoma/irrigação sanguínea , Glioblastoma/patologia , Humanos , Microdissecção e Captura a Laser , Análise em Microsséries , Pessoa de Meia-Idade , Gradação de Tumores , Pericitos/patologia , Pericitos/fisiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta2/genética , Fator A de Crescimento do Endotélio Vascular/genética
18.
J Immunol ; 186(1): 305-11, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21106846

RESUMO

Aqueous humor (AqH) has been shown to have significant immunosuppressive effects on APCs in animal models. We wanted to establish whether, in humans, AqH can regulate dendritic cell (DC) function and to identify the dominant mechanism involved. Human AqH inhibited the capacity of human peripheral blood monocyte-derived DC to induce naive CD4(+) T cell proliferation and cytokine production in vitro, associated with a reduction in DC expression of the costimulatory molecule CD86. This was seen both for DC cultured under noninflammatory conditions (immature DC) and for DC stimulated by proinflammatory cytokines (mature DC). DC expression of MHC classes I/II and CD83 was reduced (mature DC only). Myeloid DC from peripheral blood were similarly sensitive to the effects of human AqH, but only under inflammatory conditions. The addition of α-melanocyte stimulating hormone and vasoactive intestinal peptide did not cause significant inhibition at physiological levels. However, the addition of exogenous cortisol at physiological levels recapitulated the AqH-induced reduction in CD86 and inhibition of DC-induced T cell proliferation, and blockade of cortisol in AqH partially reversed its suppressive effects. TGF-ß2 had an additional effect with cortisol, and although simultaneous blockade of cortisol and TGF-ß2 in AqH reduced its effectiveness, there was still a cortisol- and TGF-ß-independent component. In humans, AqH regulates DC maturation and function by the combined actions of cortisol and TGF-ß2, a pathway that is likely to contribute to the maintenance of immune privilege in the eye.


Assuntos
Humor Aquoso/imunologia , Células Dendríticas/imunologia , Olho/imunologia , Hidrocortisona/fisiologia , Tolerância Imunológica , Fator de Crescimento Transformador beta2/fisiologia , Apresentação de Antígeno/imunologia , Humor Aquoso/metabolismo , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Olho/metabolismo , Antígenos HLA/biossíntese , Antígenos de Histocompatibilidade Classe I/biossíntese , Antígenos de Histocompatibilidade Classe II/biossíntese , Humanos , Hidrocortisona/antagonistas & inibidores , Ativação Linfocitária/imunologia , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Fator de Crescimento Transformador beta2/antagonistas & inibidores
19.
Am J Physiol Renal Physiol ; 303(2): F253-8, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22573381

RESUMO

While low nephron number is associated with increased risk of developing cardiovascular and renal disease, the functional consequences of a high nephron number are unknown. We tested the hypothesis that a high nephron number provides protection against hypertensive and renal insults. Mean arterial pressure (MAP) and renal function were characterized in male wild-type (WT) and transforming growth factor-ß2 heterozygous (Tgfb2(+/-)) mice under basal conditions and following a chronic high-salt diet. Kidneys were collected for unbiased stereological analysis. Baseline MAP and renal function were indistinguishable between genotypes. The chronic high-salt diet (5% NaCl for 4 wk followed by 8% NaCl for 4 wk) led to similar step-wise increases in urine volume, Na(+) excretion, and albuminuria in the genotypes. The 5% NaCl diet induced modest and similar increases in MAP (3.5 ± 1.6 and 3.4 ± 0.8 mmHg in WT and Tgfb2(+/-), respectively). After the step up to the 8% NaCl diet, MAP increased further in WT (+15.9 ± 5.1 mmHg), but not Tgfb2(+/-) (-0.1 ± 1.0 mmHg), mice. Nephron number was 30% greater in Tgfb2(+/-) than WT mice and was not affected by the chronic high-salt diet. Mean glomerular volume was lower in Tgfb2(+/-) than WT mice, and the chronic high-salt diet induced significant glomerular hypertrophy. In a separate cohort of mice, an acute, 7-day, 8% NaCl diet induced similar rises in MAP in the genotypes. This is the first study to examine the physiological characteristics of a model of high nephron number, and the findings are consistent with this phenotype providing protection against chronic, but not acute, hypertensive insults.


Assuntos
Hipertensão/induzido quimicamente , Hipertensão/prevenção & controle , Néfrons/citologia , Néfrons/fisiologia , Cloreto de Sódio/efeitos adversos , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Contagem de Células , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Genótipo , Heterozigoto , Hipertensão/patologia , Masculino , Camundongos , Camundongos Mutantes , Néfrons/efeitos dos fármacos , Fenótipo , Cloreto de Sódio/farmacologia , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/fisiologia
20.
J Am Soc Nephrol ; 22(4): 718-31, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21436291

RESUMO

Renal dysplasia, defined by defective ureteric branching morphogenesis and nephrogenesis, is the major cause of renal failure in infants and children. Here, we define a pathogenic role for a ß-catenin-activated genetic pathway in murine renal dysplasia. Stabilization of ß-catenin in the ureteric cell lineage before the onset of kidney development increased ß-catenin levels and caused renal aplasia or severe hypodysplasia. Analysis of gene expression in the dysplastic tissue identified downregulation of genes required for ureteric branching and upregulation of Tgfß2 and Dkk1. Treatment of wild-type kidney explants with TGFß2 or DKK1 generated morphogenetic phenotypes strikingly similar to those observed in mutant kidney tissue. Stabilization of ß-catenin after the onset of kidney development also caused dysplasia and upregulation of Tgfß2 and Dkk1 in the epithelium. Together, these results demonstrate that elevation of ß-catenin levels during kidney development causes dysplasia.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Rim/anormalidades , Rim/embriologia , Fator de Crescimento Transformador beta2/fisiologia , Regulação para Cima/fisiologia , beta Catenina/fisiologia , Animais , Apoptose/fisiologia , Proliferação de Células , Modelos Animais de Doenças , Feminino , Rim/fisiopatologia , Camundongos , Camundongos Mutantes , Morfogênese/fisiologia , Gravidez , Transdução de Sinais/fisiologia , Ureter/anormalidades , Ureter/embriologia , Ureter/fisiopatologia , Proteínas Wnt/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA