Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(14): e18558, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39048917

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) represents a critical pathology in acute myocardial infarction (AMI), which is characterized by high mortality and morbidity. Cardiac microvascular dysfunction contributes to MIRI, potentially culminating in heart failure (HF). Pigment epithelium-derived factor (PEDF), which belongs to the non-inhibitory serpin family, exhibits several physiological effects, including anti-angiogenesis, anti-inflammatory and antioxidant properties. Our study aims to explore the impact of PEDF and its functional peptide 34-mer on both cardiac microvascular perfusion in MIRI rats and human cardiac microvascular endothelial cells (HCMECs) injury under hypoxia reoxygenation (HR). It has been shown that MIRI is accompanied by ferroptosis in HCMECs. Furthermore, we investigated the effect of PEDF and its 34-mer, particularly regarding the Nrf2/HO-1 signalling pathway. Our results demonstrated that PEDF 34-mer significantly ameliorated cardiac microvascular dysfunction following MIRI. Additionally, they exhibited a notable suppression of ferroptosis in HCMECs, and these effects were mediated through activation of Nrf2/HO-1 signalling. These findings highlight the therapeutic potential of PEDF and 34-mer in alleviating microvascular dysfunction and MIRI. By enhancing cardiac microvascular perfusion and mitigating endothelial ferroptosis, PEDF and its derivative peptide represent promising candidates for the treatment of AMI.


Assuntos
Células Endoteliais , Proteínas do Olho , Ferroptose , Traumatismo por Reperfusão Miocárdica , Fator 2 Relacionado a NF-E2 , Fatores de Crescimento Neural , Serpinas , Transdução de Sinais , Serpinas/farmacologia , Serpinas/metabolismo , Fatores de Crescimento Neural/farmacologia , Fatores de Crescimento Neural/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Ferroptose/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Proteínas do Olho/metabolismo , Proteínas do Olho/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ratos , Heme Oxigenase-1/metabolismo , Masculino , Ratos Sprague-Dawley , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Microvasos/patologia , Peptídeos/farmacologia
2.
Bioorg Med Chem ; 101: 117637, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38368633

RESUMO

Neural differentiation is triggered by the activation of multiple signaling pathways initiated by various neurotrophic factors. An elucidation of these mechanisms is anticipated to facilitate the prevention of diseases and the development of novel therapeutic approaches. Alternative small-molecule inducers for neuroscience studies are required instead of protein-based reagents for more efficient and convenient experiments. We demonstrated that small molecules of thieno[2,3-b]pyridine derivatives that induce neural differentiation, compounds 3a and 9a in particular, exhibited significant neuritogenic activity in rat pheochromocytoma (PC12) cells. Moreover, 3a displayed pronounced fluorescence and a discernible Stokes shift. Furthermore, the outcome of the experiment conducted on the NGF-insensitive clones of rat PC12 cells, and the results of the intercellular uptake analyses suggested that the 3a-mediated activation of neural differentiation occurred independently of the TrkA receptor. Therefore, 3a portrays potential applicability both as a small molecule reagent to replace novel neurotrophic factors and as a potent fluorescent reagent for various techniques, including bioimaging.


Assuntos
Fatores de Crescimento Neural , Quinolinas , Animais , Ratos , Diferenciação Celular/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Células PC12/efeitos dos fármacos , Fosforilação
3.
J Integr Neurosci ; 23(3): 47, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538215

RESUMO

BACKGROUND: Bone cancer pain (BCP) is a common primary or metastatic bone cancer complication. Netrin-1 plays an essential role in neurite elongation and pain sensitization. This study aimed to determine the role of netrin-1 from the metastatic bone microenvironment in BCP development and identify the associated signaling pathway for the strategy of BCP management. METHODS: The rat BCP model was established by intratibial implantation of Walker 256 cells. Von Frey filaments measured the mechanical pain threshold. Movement-induced pain was assessed using limb use scores. Expressions of associated molecules in the affected tibias or dorsal root ganglia (DRG) were measured by immunofluorescence, immunohistochemistry, real-time quantitative polymerase chain reaction, or western blotting. Transduction of deleted in colorectal cancer (DCC) signaling was inhibited by intrathecal injection of DCC-siRNA. RESULTS: In BCP rats, the presence of calcitonin gene-related peptide (CGRP)-positive nerve fibers increased in the metastatic bone lesions. The metastatic site showed enrichment of well-differentiated osteoclasts and expressions of netrin-1 and its attractive receptor DCC. Upregulation of DCC and increased phosphorylation levels of focal adhesion kinase (FAK) and Rac family small GTPase 1/Cell division cycle 42 (Rac1/Cdc42) were found in the DRG. Intrathecal administration of DCC-siRNA led to a significant reduction in FAK and Rac1/Cdc42 phosphorylation levels in the DRG, decreased nociceptive nerve innervation, and improved pain behaviors. CONCLUSIONS: Netrin-1 may contribute to the activation of the BCP by inducing nociceptive nerve innervation and improving pain behaviors.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Netrina-1 , Animais , Ratos , Neoplasias Ósseas/complicações , Dor do Câncer/etiologia , Receptor DCC/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Netrina-1/genética , Nociceptores/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , RNA Interferente Pequeno , Transdução de Sinais , Microambiente Tumoral , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
4.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673746

RESUMO

Neuroinflammation is associated with several neurological disorders including temporal lobe epilepsy. Seizures themselves can induce neuroinflammation. In an in vivo model of epilepsy, the supplementation of brain-derived neurotropic factor (BDNF) and fibroblast growth factor-2 (FGF-2) using a Herpes-based vector reduced epileptogenesis-associated neuroinflammation. The aim of this study was to test whether the attenuation of the neuroinflammation obtained in vivo with BDNF and FGF-2 was direct or secondary to other effects, for example, the reduction in the severity and frequency of spontaneous recurrent seizures. An in vitro model of neuroinflammation induced by lipopolysaccharide (LPS, 100 ng/mL) in a mouse primary mixed glial culture was used. The releases of cytokines and NO were analyzed via ELISA and Griess assay, respectively. The effects of LPS and neurotrophic factors on cell viability were determined by performing an MTT assay. BDNF and FGF-2 were tested alone and co-administered. LPS induced a significant increase in pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) and NO. BDNF, FGF-2, and their co-administration did not counteract these LPS effects. Our study suggests that the anti-inflammatory effect of BDNF and FGF-2 in vivo in the epilepsy model was indirect and likely due to a reduction in seizure frequency and severity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Citocinas , Fator 2 de Crescimento de Fibroblastos , Lipopolissacarídeos , Doenças Neuroinflamatórias , Animais , Camundongos , Doenças Neuroinflamatórias/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas/metabolismo , Células Cultivadas , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Neuroglia/metabolismo , Neuroglia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
5.
Prog Chem Org Nat Prod ; 123: 1-473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38340248

RESUMO

Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.


Assuntos
Produtos Biológicos , Humanos , Produtos Biológicos/farmacologia , Fatores de Crescimento Neural/farmacologia , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Neurogênese , Diferenciação Celular/fisiologia
6.
Immunobiology ; 229(1): 152778, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159526

RESUMO

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER) stress-induced protein, and it has been reported that ER stress and unfolded protein response (UPR) are closely related to the immune system. The spleen is an important immune organ and we have shown in our previous research that MANF is expressed in human spleen tissues. However, there have been limited studies about the effect of MANF on spleen development. In this study, we detected MANF expression in spleen tissues and found that MANF was expressed in the red pulp and marginal zone. Additionally, MANF was localized in the CD68+ and CD138+ cells of adult rat spleen tissues, but not in the CD3+ cells. We performed immunohistochemical staining to detect MANF expression in the spleen tissues of rats that were different ages, and we found that MANF+ cells were localized together in the spleen tissues of rats that were 1-4 weeks old. MANF was also expressed in CD68+ cells in the spleen tissues of rats and mice. Furthermore, we found that MANF deficiency inhibited white pulp development in MANF knockout mice, thus indicating that MANF played an important role in the white pulp development of rodent spleen tissues.


Assuntos
Astrócitos , Baço , Animais , Humanos , Camundongos , Ratos , Astrócitos/metabolismo , Estresse do Retículo Endoplasmático , Camundongos Knockout , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Baço/metabolismo , Resposta a Proteínas não Dobradas
7.
Int J Biol Sci ; 20(1): 296-311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164189

RESUMO

Dysplasia and invasive defects in early trophoblasts contribute to unexplained recurrent miscarriages (URMs). Mesencephalic astrocyte-derived neurotrophic factor (MANF) inhibits migration and invasion in some cancer cells, but its role in pregnancy-related diseases remains unresolved. Here, we found that MANF levels in the peripheral blood and aborted tissue of URM women were higher than in normal controls, irrespective of pregnancy or miscarriage. We confirm the interaction between MANF and nucleophosmin 1 (NPM1) in trophoblasts of URM patients, which increases the ubiquitination degradation of NPM1, leading to upregulation of the p53 signaling pathway and inhibition of cell proliferation, migration, and invasion ability. Using a URM mouse model, we found that MANF downregulation resulted in reduced fetal resorption; however, concomitant NPM1 downregulation led to increased abortion rates. These data indicate that MANF triggers miscarriage via NPM1 downregulation and p53 activation. Thus, MANF downregulation or disruption of the MANF-NPM1 interaction could be targets for URM therapeutics.


Assuntos
Aborto Habitual , Proteína Supressora de Tumor p53 , Gravidez , Camundongos , Animais , Humanos , Feminino , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Aborto Habitual/genética , Aborto Habitual/metabolismo , Proliferação de Células/genética , Trofoblastos/metabolismo
8.
Ocul Surf ; 32: 1-12, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38103731

RESUMO

PURPOSE: The study investigated effectiveness of a novel PEDF peptide mimetic to alleviate dry eye-like pathologies in a Type I diabetic mouse model established using streptozotocin. METHODS: Mice were treated topically for 3-6 weeks with Ppx (a 17-mer PEDF mimetic) 2x/day or vehicle. Corneal sensitivity, tear film, epithelial and endothelial injury were measured using Cochet-Bonnet esthesiometer, phenol red cotton thread wetting, fluorescein sodium staining, and ZO1 expression, respectively. Inflammatory and parasympathetic nerve markers and activation of the MAPK/JNK pathways in the lacrimal glands were measured. RESULTS: Diabetic mice exhibited features of dry eye including reduced corneal sensation and tear secretion and increased corneal epithelium injury, nerve degeneration, and edema. Ppx reversed these pathologies and restored ZO1 expression and morphological integrity of the endothelium. Upregulation of IL-1ß and TNFα, increased activation of P-38, JNK, and ERK, and higher levels of M3ACHR in diabetic lacrimal glands were also reversed by the peptide treatment. CONCLUSION: The study demonstrates that topical application of a synthetic PEDF mimetic effectively alleviates diabetes-induced dry eye by restoring corneal sensitivity, tear secretion, and endothelial barrier and lacrimal gland function. These findings have significant implications for the potential treatment of dry eye using a cost-effective and reproducible approach with minimal invasiveness and no obvious side effects.


Assuntos
Córnea , Diabetes Mellitus Experimental , Síndromes do Olho Seco , Proteínas do Olho , Aparelho Lacrimal , Fatores de Crescimento Neural , Serpinas , Lágrimas , Animais , Camundongos , Proteínas do Olho/metabolismo , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/patologia , Serpinas/farmacologia , Serpinas/uso terapêutico , Serpinas/administração & dosagem , Fatores de Crescimento Neural/farmacologia , Fatores de Crescimento Neural/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Lágrimas/metabolismo , Lágrimas/efeitos dos fármacos , Córnea/efeitos dos fármacos , Córnea/patologia , Córnea/metabolismo , Aparelho Lacrimal/efeitos dos fármacos , Aparelho Lacrimal/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Masculino
9.
Rev. cuba. invest. bioméd ; 11(1): 7-15, ene.-jun. 1992.
Artigo em Espanhol | LILACS | ID: lil-118710

RESUMO

La década pasada ha declarado una verdadera explosión en el número de estudios sobre los factores de crecimiento polipeptídicos a la propiedad de estos compuestos de promover la proliferación y/o diferenciación de diferentes tipos de células. Hay fuertes evidencias que plantean que durante el desarrollo o después de una lesión, las neuronas del sistema nervioso central o periférico requieren de agentes tróficos para sobrevivir y crecer. El objetivo de este trabajo es resumir algunos estudios fundamentales del factor de crecimiemto nervioso; tales como su papel vital y acción sobre las células diana, como mensajero trófico, mecanismo de acción y algunas de las tendencias actuales relacionadas con el uso del factor de crecimiento nervioso en los estudios de regeneración del sistema nervioso central


Assuntos
Humanos , Fatores de Crescimento Neural/fisiologia , Sistema Nervoso Central/efeitos dos fármacos , Fatores de Crescimento Neural/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA