RESUMO
Covalent nucleotide modifications in noncoding RNAs affect a plethora of biological processes, and new functions continue to be discovered even for well-known modifying enzymes. To systematically compare the functions of a large set of noncoding RNA modifications in gene regulation, we carried out ribosome profiling in budding yeast to characterize 57 nonessential genes involved in tRNA modification. Deletion mutants exhibited a range of translational phenotypes, with enzymes known to modify anticodons, or non-tRNA substrates such as rRNA, exhibiting the most dramatic translational perturbations. Our data build on prior reports documenting translational upregulation of the nutrient-responsive transcription factor Gcn4 in response to numerous tRNA perturbations, and identify many additional translationally regulated mRNAs throughout the yeast genome. Our data also uncover unexpected roles for tRNA-modifying enzymes in regulation of TY retroelements, and in rRNA 2'-O-methylation. This dataset should provide a rich resource for discovery of additional links between tRNA modifications and gene regulation.
Assuntos
RNA Fúngico/metabolismo , RNA de Transferência/metabolismo , Ribossomos/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Transcriptoma , tRNA Metiltransferases/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Perfilação da Expressão Gênica/métodos , Regulação Fúngica da Expressão Gênica , Genótipo , Metilação , Mutação , Fenótipo , RNA Fúngico/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA de Transferência/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Retroelementos , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Sequências Repetidas Terminais , tRNA Metiltransferases/genéticaRESUMO
Iron (Fe) deficiency affects global crop productivity and human health. However, the role of light signaling in plant Fe uptake remains uncharacterized. Here, we find that light-induced Fe uptake in tomato (Solanum lycopersicum L.) is largely dependent on phytochrome B (phyB). Light induces the phyB-dependent accumulation of ELONGATED HYPOCOTYL 5 (HY5) protein both in the leaves and roots. HY5 movement from shoots to roots activates the expression of FER transcription factor, leading to the accumulation of transcripts involved in Fe uptake. Mutation in FER abolishes the light quality-induced changes in Fe uptake. The low Fe uptake observed in phyB, hy5, and fer mutants is accompanied by lower photosynthetic electron transport rates. Exposure to red light at night increases Fe accumulation in wild-type fruit but has little effects on fruit of phyB mutants. Taken together, these results demonstrate that Fe uptake is systemically regulated by light in a phyB-HY5-FER-dependent manner. These findings provide new insights how the manipulation of light quality could be used to improve Fe uptake and hence the nutritional quality of crops.
Assuntos
Proteínas de Arabidopsis , Fitocromo B , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Hipocótilo/metabolismo , Ferro , Mutação , Fosfotransferases/biossíntese , Fosfotransferases/genética , Fitocromo B/genética , Fitocromo B/metabolismo , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: An adverse role for obstructive sleep apnea (OSA) in cancer aggressiveness and mortality has recently emerged from clinical and animal studies, and the reasons have not been fully determined. Cancer stem cells (CSCs) are regarded as the main cause of carcinoma metastasis. So far, the relationship between OSA and lung CSCs has not been explored. METHOD: In the present study, we established an orthotopic mouse model of primary lung cancer and utilized chronic intermittent hypoxia (CIH) exposure to mimic OSA status. RESULTS: We observed that CIH endows lung cancer with greater metastatic potential, evidenced by increased tumor growth, tumor seeding, and upregulated CSC-related gene expression in the lungs. Notably, the transcription factor BTB and CNC homology 1 (Bach1), a key factor in responding to conditions of oxidative stress, is increased in lung cancer after CIH exposure in vitro and in vivo. Meanwhile, exposing lung cancer cells to CIH promoted cell proliferation, clonal diversity, induced stem-like cell marker expression, and gave rise to CSCs at a relatively higher frequency. Furthermore, the increase of mitochondrial ROS (mtROS) and CSC-marker expression induced by CIH exposure was abolished in Bach1 shRNA-treated lung cancer cells. CONCLUSIONS: Our results indicated that CIH promoted lung CSC-like properties by activating mtROS, which was partially mediated by Bach1.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Regulação Neoplásica da Expressão Gênica , Hipóxia/metabolismo , Neoplasias Pulmonares/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células A549 , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Humanos , Hipóxia/genética , Hipóxia/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/patologiaRESUMO
We performed a comparative analysis of two ER-resident CREB3 family proteins, CREB3 and CREB3L2, in HEK293 cells using pharmacological and genome editing approaches and identified several differences between the two. Treatment with brefeldin A (BFA) and monensin induced the cleavage of full-length CREB3 and CREB3L2; however, the level of the full-length CREB3 protein, but not CREB3L2 protein, was not noticeably reduced by the monensin treatment. On the other hand, treatment with tunicamycin (Tm) shifted the molecular weight of the full-length CREB3L2 protein downward but abolished CREB3 protein expression. Thapsigargin (Tg) significantly increased the expression of only full-length CREB3L2 protein concomitant with a slight increase in the level of its cleaved form. Treatment with cycloheximide and MG132 revealed that both endogenous CREB3 and CREB3L2 are proteasome substrates. In addition, kifunensine, an α-mannosidase inhibitor, significantly increased the levels of both full-length forms. Consistent with these findings, cells lacking SEL1L, a crucial ER-associated protein degradation (ERAD) component, showed increased expression of both full-length CREB3 and CREB3L2; however, cycloheximide treatment downregulated full-length CREB3L2 protein expression more rapidly in SEL1L-deficient cells than the full-length CREB3 protein. Finally, we investigated the induction of the expression of several CREB3 and CREB3L2 target genes by Tg and BFA treatments and SEL1L deficiency. In conclusion, this study suggests that both endogenous full-length CREB3 and CREB3L2 are substrates for ER-associated protein degradation but are partially regulated by distinct mechanisms, each of which contributes to unique cellular responses that are distinct from canonical ER signals.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Regulação da Expressão Gênica , Alcaloides/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Cicloeximida/farmacologia , Células HEK293 , Humanos , Leupeptinas/farmacologia , Proteínas/genética , Proteínas/metabolismoRESUMO
Reversible histone acetylation and deacetylation play crucial roles in modulating light-regulated gene expression during seedling development. However, it remains largely unknown how histone-modifying enzymes interpose within the molecular framework of light signaling network. In this study, we show that AtHDA15 positively regulates photomorphogenesis by directly binding to COP1, a master regulator in the repression of photomorphogenesis. hda15 T-DNA knock-out and RNAi lines exhibited light hyposensitivity with reduced HY5 and PIF3 protein levels leading to long hypocotyl phenotypes in the dark while its overexpression leads to increased HY5 concentrations and short hypocotyl phenotypes. In vivo and in vitro binding assays show that HDA15 directly interacts with COP1 inside the nucleus modulating COP1's repressive activities. As COP1 is established to act within the nucleus to regulate specific transcription factors associated with growth and development in skotomorphogenesis, the direct binding by HDA15 is predicted to abrogate activities of COP1 in the presence of light and modulate its repressive activities in the dark. Our results append the mounting evidence for the role of HDACs in post-translational regulation in addition to their well-known histone modifying functions.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Histona Desacetilases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Histona Desacetilases/genética , Histona Desacetilases/fisiologia , Hipocótilo/anatomia & histologia , Hipocótilo/crescimento & desenvolvimento , Luz , Mutação , Biossíntese de ProteínasRESUMO
Chitinase and chitin-oligosaccaride can be used in multiple field, so it is important to develop a high-yield chitinase producing strain. Here, a recombinant Pichia pastoris with 4 copies of ChiA gene from Bacillus licheniformis and co-expression of molecular chaperon HAC1 was constructed. The amount of recombinant ChiA in the supernatant of high-cell-density fermentation reaches a maximum of 12.7 mg/mL, which is 24-fold higher than that reported in the previous study. The recombinant ChiA can hydrolyze 30% collodidal chitin with 74% conversion ratio, and GlcNAc is the most abundant hydrolysis product, followed by N, N'-diacetylchitobiose. Combined with BsNagZ, the hydrolysate of ChiA can be further transformed into GlcNAc with 88% conversion ratio. Additionally, the hydrolysate of ChiA can obviously accelerate the germination growth of rice and wheat, increasing the seedling height and root length by at least 1.6 folds within 10 days.
Assuntos
Acetilglucosamina/biossíntese , Acetilglucosaminidase/metabolismo , Bacillus licheniformis/enzimologia , Quitina/metabolismo , Quitinases/biossíntese , Reguladores de Crescimento de Plantas/biossíntese , Saccharomycetales/metabolismo , Acetilglucosamina/farmacologia , Bacillus licheniformis/genética , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Biotecnologia , Quitinases/genética , Quitosana/farmacologia , Fermentação , Germinação/efeitos dos fármacos , Hidrólise , Chaperonas Moleculares/biossíntese , Chaperonas Moleculares/genética , Oligossacarídeos/farmacologia , Oryza/efeitos dos fármacos , Proteínas Recombinantes/biossíntese , Saccharomycetales/genética , Plântula/crescimento & desenvolvimento , Triticum/efeitos dos fármacosRESUMO
Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants' low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant's energy status into root meristem control, thereby balancing plant growth and cellular energy resources.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Nucleares/genética , Raízes de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Proteínas Nucleares/biossíntese , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Transdução de SinaisRESUMO
BACKGROUND AND AIMS: The unique expression pattern makes oncofetal proteins ideal diagnostic biomarkers and therapeutic targets in cancer. However, few oncofetal proteins have been identified and entered clinical practice. METHODS: Fetal liver, adult liver and hepatocellular carcinoma (HCC) tissues were employed to assess the expression of hepatic leukaemia factor (HLF). The impact of HLF on HCC onset and progression was investigated both in vivo and in vitro. The association between HLF and patient prognosis was determined in patient cohorts. The correlation between HLF expression and sorafenib benefits in HCC was further evaluated in patient cohorts and patient-derived xenografts (PDXs). RESULTS: HLF is a novel oncofetal protein which is reactivated in HCC by SOX2 and OCT4. Functional studies revealed that HLF transactivates c-Jun to promote tumour initiating cell (TIC) generation and enhances TIC-like properties of hepatoma cells, thus driving HCC initiation and progression. Consistently, our clinical investigations elucidated the association between HLF and patient prognosis and unravelled the close correlation between HLF levels and c-Jun expression in patient HCCs. Importantly, HLF/c-Jun axis determines the responses of hepatoma cells to sorafenib treatment, and interference of HLF abrogated c-Jun activation and enhanced sorafenib response. Analysis of patient cohorts and PDXs further suggests that HLF/c-Jun axis might serve as a biomarker for sorafenib benefits in HCC patients. CONCLUSIONS: Our findings uncovered HLF as a novel oncofetal protein and revealed the crucial role of the HLF/c-Jun axis in HCC development and sorafenib response, rendering HLF as an optimal target for the prevention and intervention of HCC.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Carcinoma Hepatocelular/genética , Resistencia a Medicamentos Antineoplásicos , Genes jun/genética , Neoplasias Hepáticas/genética , Sorafenibe/farmacologia , Adulto , Antineoplásicos/farmacologia , Apoptose , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , DNA de Neoplasias/genética , Progressão da Doença , Feminino , Humanos , Imunoprecipitação , Zíper de Leucina , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , PrognósticoRESUMO
BATF functions in T cells and B cells to control the host response to antigen and promote the production of class switched immunoglobulins. In this study, we demonstrate that BATF expression increases rapidly, and transiently, following B cell stimulation and use an inducible murine model of BATF deletion to show that this induction is necessary, and sufficient, for immunoglobulin (Ig) class switch recombination (CSR). We examine two genes (Nfil3 and miR155gh) that are positively regulated, and one gene (Wnt10a) that is negatively regulated by BATF during CSR. These genes play essential roles in CSR and each impacts the expression and/or function of the others. Our observations allow these targets of BATF regulation to be positioned in a network upstream of the activation of germline transcripts (GLT) from the IgH locus and of transcriptional activation of Aicda - the gene encoding the enzyme directing Ig gene rearrangements. This work extends the knowledge of the molecular control of CSR and, importantly, positions the induction and function of BATF as an early event in this process.
Assuntos
Linfócitos B/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Switching de Imunoglobulina/genética , Isotipos de Imunoglobulinas/genética , MicroRNAs/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Proteínas Wnt/biossíntese , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Células Cultivadas , Citidina Desaminase/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Ativação Transcricional/genéticaRESUMO
Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that causes malignant and inflammatory diseases in â¼10% of infected people. A typical host has between 10(4) and 10(5) clones of HTLV-1-infected T lymphocytes, each clone distinguished by the genomic integration site of the single-copy HTLV-1 provirus. The HTLV-1 bZIP (HBZ) factor gene is constitutively expressed from the minus strand of the provirus, whereas plus-strand expression, required for viral propagation to uninfected cells, is suppressed or intermittent in vivo, allowing escape from host immune surveillance. It remains unknown what regulates this pattern of proviral transcription and latency. Here, we show that CTCF, a key regulator of chromatin structure and function, binds to the provirus at a sharp border in epigenetic modifications in the pX region of the HTLV-1 provirus in T cells naturally infected with HTLV-1. CTCF is a zinc-finger protein that binds to an insulator region in genomic DNA and plays a fundamental role in controlling higher order chromatin structure and gene expression in vertebrate cells. We show that CTCF bound to HTLV-1 acts as an enhancer blocker, regulates HTLV-1 mRNA splicing, and forms long-distance interactions with flanking host chromatin. CTCF-binding sites (CTCF-BSs) have been propagated throughout the genome by transposons in certain primate lineages, but CTCF binding has not previously been described in present-day exogenous retroviruses. The presence of an ectopic CTCF-BS introduced by the retrovirus in tens of thousands of genomic locations has the potential to cause widespread abnormalities in host cell chromatin structure and gene expression.
Assuntos
Epigênese Genética , Genoma Humano , Infecções por HTLV-I/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Mutagênese Insercional/genética , Provírus/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Proteínas Virais Reguladoras e Acessórias/genética , Integração Viral/genética , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Sítios de Ligação , Fator de Ligação a CCCTC , Linfócitos T CD4-Positivos/virologia , Cromatina/ultraestrutura , Imunoprecipitação da Cromatina , Sequência Consenso , DNA/genética , DNA/metabolismo , Metilação de DNA , DNA Viral/genética , DNA Viral/metabolismo , Regulação Viral da Expressão Gênica , Infecções por HTLV-I/virologia , Código das Histonas , Humanos , Ligação Proteica , Proteínas dos Retroviridae/biossíntese , Proteínas dos Retroviridae/genética , Transcrição GênicaRESUMO
ILC populations elaborate a similar cytokine expression pattern with helper T cell subsets Th1, Th2 and Th17. Recent studies indicate that CD25+ILC2 could alleviate atherosclerosis by altering lipid metabolism, whereas the depletion of CD90-expressing ILCs had no influence on atherosclerosis. Thus, these findings raise the question of whether ILC1 cells react on atherosclerosis. Hence, our group attempted to explore the role of ILC1 cells in atherosclerosis. We found that ILC1 cells have a high Th1-like gene expression of T-bet and IFN-γ, which is distinct from ILC2, ILC3 or conventional NK (cNK) cells. Moreover, atherosclerotic lesions were greatly reduced in ApoE-/-Rag1-/- mice treated with anti-NK1.1 mAbs for depleting ILC1 cells (ILC1+cNK cells), compared to ApoE-/-Rag1-/- mice treated with anti-IL-15R mAbs for depleting cNK cells, and these effects could be fully rescued through the adoptive transfer of ILC1 cells sorted from the spleen of ApoE-/-TLR4+/+ mice into ApoE-/-Rag1-/- mice treated with anti-NK1.1 mAbs. However, the adoptive transfer of ILC1 cells sorted from the spleen of ApoE-/-TLR4-/- mice into ApoE-/-Rag1-/- mice treated with anti-NK1.1 mAbs blocked the progression of atherosclerosis, indicating that the pro-atherosclerotic role of ILC1 cells is dependent on TLR4. Furthermore, oxLDL-induced increase in IFN-γ expression from ApoE-/- ILC1 cells was correlated with the decrease in BACH2 expression. Taken together, ILC1 cells exist in atherosclerosis and aggravate atherosclerosis via increasing pro-inflammatory cytokine expression in a TLR4/BACH2-dependent manner.
Assuntos
Aterosclerose/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Imunidade Inata/imunologia , Células Th1/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Anticorpos Monoclonais/imunologia , Apolipoproteínas E/genética , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Células Cultivadas , Proteínas de Homeodomínio/genética , Imunidade Inata/genética , Interferon gama/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Subunidade alfa de Receptor de Interleucina-7/imunologia , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/citologia , Baço/imunologia , Proteínas com Domínio T/genética , Células Th1/transplanteRESUMO
Drought and other abiotic stresses negatively affect plant growth and development and thus reduce productivity. The plant-specific NAM/ATAF1/2/CUC2 (NAC) transcription factors have important roles in abiotic stress-responsive signaling. Here, we show that Arabidopsis thaliana NAC016 is involved in drought stress responses; nac016 mutants have high drought tolerance, and NAC016-overexpressing (NAC016-OX) plants have low drought tolerance. Using genome-wide gene expression microarray analysis and MEME motif searches, we identified the NAC016-specific binding motif (NAC16BM), GATTGGAT[AT]CA, in the promoters of genes downregulated in nac016-1 mutants. The NAC16BM sequence does not contain the core NAC binding motif CACG (or its reverse complement CGTG). NAC016 directly binds to the NAC16BM in the promoter of ABSCISIC ACID-RESPONSIVE ELEMENT BINDING PROTEIN1 (AREB1), which encodes a central transcription factor in the stress-responsive abscisic acid signaling pathway and represses AREB1 transcription. We found that knockout mutants of the NAC016 target gene NAC-LIKE, ACTIVATED BY AP3/PI (NAP) also exhibited strong drought tolerance; moreover, NAP binds to the AREB1 promoter and suppresses AREB1 transcription. Taking these results together, we propose that a trifurcate feed-forward pathway involving NAC016, NAP, and AREB1 functions in the drought stress response, in addition to affecting leaf senescence in Arabidopsis.
Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Envelhecimento/fisiologia , Proteínas de Arabidopsis/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Desidratação/fisiopatologia , Regulação para Baixo , Técnicas de Inativação de Genes , Folhas de Planta/fisiologia , Transdução de Sinais/fisiologiaRESUMO
Human T-cell lymphotropic virus 1 (HTLV-1) is associated with two progressive diseases: HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukemia/lymphoma (ATLL). Although HTLV-1 proviral load (PVL) has been introduced as a risk factor for these diseases' progression, it is not sufficient on its own to yield an accurate estimation of the outcome of the infection. In the present study, PVL and HTLV-1 basic leucine zipper factor (HBZ) expression level as viral factors, and IFN λ3 as a host factor, were evaluated in HAM/TSP patients and HTLV-1 asymptomatic carriers (ACs). During 2014-2015, 12 HAM/TSP patients and 18 ACs who had been referred to the HTLV-1 Clinic, Ghaem Hospital, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran, were enrolled in this study. Peripheral blood mononuclear cells (PBMCs) were isolated and the DNA and mRNA were extracted for quantification of HBZ, IFN λ3 expression, and PVL using real-time PCR (TaqMan method). Although the PVL was higher in the HAM/TSP group, with a 94% confidence interval, there were no considerable differences in terms of HBZ mRNA and PVL between ACs and HAM patients. IFN λ3 expression in the HAM/TSP group was significantly higher than in the ACs (P = 0.02). To the best of our knowledge, no study has evaluated the expression level of IFN λ3 in HTLV-1 positive patients. The immune response against HTLV-1 viral antigens and virulent factors will therefore further refine our knowledge of interactions between the virus and host in the pathogenesis of HTLV-1-related disorders. The virus PVL and the host IFN λ3 can be used as pathogenic factors of HTLV-1 infected patients at risk of HAM/TSP manifestation. J. Med. Virol. 89:1102-1107, 2017. © 2016 Wiley Periodicals, Inc.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Interleucinas/biossíntese , Provírus/patogenicidade , Proteínas dos Retroviridae/biossíntese , Carga Viral , Adulto , Fatores de Transcrição de Zíper de Leucina Básica/genética , DNA Viral/análise , Feminino , Perfilação da Expressão Gênica , Infecções por HTLV-I/patologia , Interações Hospedeiro-Patógeno , Vírus Linfotrópico T Tipo 1 Humano/isolamento & purificação , Humanos , Interferons , Interleucinas/genética , Irã (Geográfico) , Leucócitos Mononucleares/virologia , Masculino , Pessoa de Meia-Idade , Provírus/isolamento & purificação , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , Proteínas dos Retroviridae/genéticaRESUMO
The immunoregulatory functions of vitamin D have been well documented in various immunological disorders, including multiple sclerosis, arthritis, and asthma. IL-10 is considered a chief effector molecule that promotes the vitamin D-induced immunosuppressive states of T cells and accessory cells. In this article, we demonstrate that the active form of vitamin D, 1,25-dihydroxyvitamin D3 (calcitriol), has a profound inhibitory effect on the development of human Th9, a CD4 T cell subset that is highly associated with asthma, in an IL-10-independent manner. Our data show that calcitriol represses the expression of BATF, a transcription factor essential for Th9, via suppressing the expression of aryl hydrocarbon receptor, without an increase in IL-10. The data show a novel link between vitamin D and two key transcription factors involved in T cell differentiation.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Calcitriol/farmacologia , Diferenciação Celular/imunologia , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Linfócitos T Auxiliares-Indutores/citologia , Asma/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Diferenciação Celular/efeitos dos fármacos , Humanos , Interleucina-10/antagonistas & inibidores , Interleucina-10/imunologia , Ativação Linfocitária/imunologia , Interferência de RNA , RNA Interferente Pequeno , Receptores de Hidrocarboneto Arílico/biossíntese , Linfócitos T Auxiliares-Indutores/imunologiaRESUMO
Light is one of the most important environmental cues regulating multiple aspects of plant growth and development, and abscisic acid (ABA) is a plant hormone that plays important roles during many phases of the plant life cycle and in plants' responses to various environmental stresses. How plants integrate the external light signal with endogenous ABA pathway for better adaptation and survival remains poorly understood. Here, we show that BBX21 (also known as SALT TOLERANCE HOMOLOG 2), a B-box (BBX) protein previously shown to positively regulate seedling photomorphogenesis, is also involved in ABA signaling. Our genetic data show that BBX21 may act upstream of several ABA INSENSITIVE (ABI) genes and ELONGATED HYPOCOTYL 5 (HY5) in ABA control of seed germination. Previous studies showed that HY5 acts as a direct activator of ABI5 expression, and that BBX21 interacts with HY5. We further demonstrate that BBX21 negatively regulates ABI5 expression by interfering with HY5 binding to the ABI5 promoter. In addition, ABI5 was shown to directly activate its own expression, whereas BBX21 negatively regulates this activity by directly interacting with ABI5. Together, our study indicates that BBX21 coordinates with HY5 and ABI5 on the ABI5 promoter and that these transcriptional regulators work in concert to integrate light and ABA signaling in Arabidopsis thaliana.
Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Luz , Fatores de Transcrição/genética , Ácido Abscísico/genética , Arabidopsis , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Mutação , Proteínas Nucleares/biossíntese , Regiões Promotoras Genéticas , Sementes/genética , Sementes/crescimento & desenvolvimento , Transdução de Sinais , Fatores de Transcrição/metabolismoRESUMO
The mainstay of asthma therapy, glucocorticoids (GCs) exert their therapeutic effects through the inhibition of inflammatory signaling and induction of eosinophil apoptosis. However, laboratory and clinical observations of GC-resistant asthma suggest that GCs' effects on eosinophil viability may depend on the state of eosinophil activation. In the present study we demonstrate that eosinophils stimulated with IL-5 show impaired pro-apoptotic response to GCs. We sought to determine the contribution of GC-mediated transactivating (TA) and transrepressing (TR) pathways in modulation of activated eosinophils' response to GC by comparing their response to the selective GC receptor (GR) agonist Compound A (CpdA) devoid of TA activity to that upon treatment with Dexamethasone (Dex). IL-5-activated eosinophils showed contrasting responses to CpdA and Dex, as IL-5-treated eosinophils showed no increase in apoptosis compared to cells treated with Dex alone, while CpdA elicited an apoptotic response regardless of IL-5 stimulation. Proteomic analysis revealed that both Nuclear Factor IL-3 (NFIL3) and Map Kinase Phosphatase 1 (MKP1) were inducible by IL-5 and enhanced by Dex; however, CpdA had no effect on NFIL3 and MKP1 expression. We found that inhibiting NFIL3 with specific siRNA or by blocking the IL-5-inducible Pim-1 kinase abrogated the protective effect of IL-5 on Dex-induced apoptosis, indicating crosstalk between IL-5 anti-apoptotic pathways and GR-mediated TA signaling occurring via the NFIL3 molecule. Collectively, these results indicate that (1) GCs' TA pathway may support eosinophil viability in IL-5-stimulated cells through synergistic upregulation of NFIL3; and (2) functional inhibition of IL-5 signaling (anti-Pim1) or the use of selective GR agonists that don't upregulate NFIL3 may be effective strategies for the restoring pro-apoptotic effect of GCs on IL-5-activated eosinophils.
Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Dexametasona/farmacologia , Fosfatase 1 de Especificidade Dupla/genética , Interleucina-5/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Asma/tratamento farmacológico , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fosfatase 1 de Especificidade Dupla/biossíntese , Eosinófilos , Humanos , Interleucina-5/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacosRESUMO
The serine/threonine kinase glycogen synthase kinase-3 (GSK3) plays an important role in balancing pro- and anti-inflammatory cytokines. We have examined the role of GSK3 in production of IL-10 by subsets of CD4(+) T helper cells. Treatment of naive murine CD4(+) T cells with GSK3 inhibitors did not affect their production of IL-10. However, treatment of Th1 and Th2 cells with GSK3 inhibitors dramatically increased production of IL-10. GSK3 inhibition also led to upregulation of IL-10 among Th1, Th2, and Th17 subsets isolated from human blood. The encephalitogenic potential of GSK3 inhibitor treated murine Th1 cells was significantly reduced in adoptive transfer experiments by an IL-10-dependent mechanism. Analysis of the murine IL-10 promoter in response to inhibition of GSK3 in Th1 cells showed modification to a transcriptionally active state indicated by changes in histone H3 acetylation and methylation. Additionally, GSK3 inhibition increased expression of the transcription factors c-Maf, Nfil3, and GATA3, correlating with the increase in IL-10. These findings are important in the context of autoimmune disease since they show that it is possible to reprogram disease-causing cells through GSK3 inhibition.
Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Interleucina-10/biossíntese , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Acetilação , Transferência Adotiva , Animais , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Células Cultivadas , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Fator de Transcrição GATA3/biossíntese , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Histonas/metabolismo , Humanos , Inflamação/imunologia , Interleucina-10/genética , Metilação , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-maf/biossíntese , Células Th1/transplanteRESUMO
B cells undergo affinity maturation and class switch recombination of their immunoglobulin receptors during a germinal center (GC) reaction, before they differentiate into long-lived antibody-secreting plasma cells (PCs). Transcription factors such as Bach2 and Mitf are essential during this process, as they delay premature differentiation of GC B cells by repressing Blimp-1 and IRF4, two transcription factors required for terminal PC differentiation. Therefore, Bach2 and Mitf expression must be attenuated in activated B cells to allow terminal PC differentiation, but the precise mechanism remains enigmatic. Here, we provide evidence that miR-148a, a small noncoding microRNA, fosters PC differentiation and survival. Next-generation sequencing revealed that miR-148a is the most abundant microRNA in primary human and murine PCs, and its expression is upregulated in activated murine B cells and coincides with Blimp-1 synthesis. miR-148a targets Bach2, Mitf and proapoptotic factors such as PTEN and Bim. When prematurely expressed, miR-148a promotes the differentiation and survival of plasmablasts and reduces frequencies of IgG1(+) cells in primary B-cell cultures. In summary, we propose that miR-148a is a new player in the regulatory network controlling terminal PC differentiation and could, therefore, be a therapeutic target for interfering with PC differentiation and survival.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Diferenciação Celular/genética , MicroRNAs/fisiologia , Fator de Transcrição Associado à Microftalmia/biossíntese , Plasmócitos/citologia , Animais , Proteínas Reguladoras de Apoptose/biossíntese , Linfócitos B/imunologia , Sequência de Bases , Proteína 11 Semelhante a Bcl-2 , Diferenciação Celular/imunologia , Sobrevivência Celular , Técnicas de Silenciamento de Genes , Centro Germinativo/citologia , Células HEK293 , Humanos , Switching de Imunoglobulina/genética , Switching de Imunoglobulina/imunologia , Fatores Reguladores de Interferon/biossíntese , Ativação Linfocitária/genética , Proteínas de Membrana/biossíntese , Camundongos , MicroRNAs/genética , PTEN Fosfo-Hidrolase/biossíntese , Fator 1 de Ligação ao Domínio I Regulador Positivo , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Repressoras/biossíntese , Análise de Sequência de DNARESUMO
IL-1R antagonist-deficient (Il1rn(-/-)) mice develop autoimmune arthritis in which IL-17A plays a crucial role. Although many studies have shown that Th17 cell differentiation is dependent on TGF-ß and IL-6, we found that Th17 cells developed normally in Il1rn(-/-)Il6(-/-) mice in vivo. Then, we analyzed the mechanisms of Th17 cell differentiation in Il1rn(-/-)Il6(-/-) mice. We found that IL-21 production was increased in the lymph nodes of Il1rn(-/-) mice, naive Il6(-/-) CD4(+) T cells differentiated into Th17 cells when cultured with TGF-ß and IL-21, and the differentiation was greatly enhanced when IL-1 was added to the culture. Th17 cell differentiation was not induced by either TGF-ß or IL-1 alone or in combination. IL-21 induced IL-1R expression in naive CD4(+) T cells, and IL-1 inhibited TGF-ß-induced Foxp3 expression, resulting in the promotion of Th17 cell differentiation. Furthermore, IL-1 augmented the expression of Th17 cell-specific transcription factors such as Nfkbiz and Batf. These results indicate that excess IL-1 signaling can overcome the requirement of IL-6 in the differentiation of Th17 cells by suppressing Foxp3 expression and inducing Th17 cell-specific transcription factors.
Assuntos
Artrite Reumatoide/imunologia , Fatores de Transcrição Forkhead/metabolismo , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Células Th17/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Animais , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Diferenciação Celular , Células Cultivadas , Fatores de Transcrição Forkhead/biossíntese , Proteína Antagonista do Receptor de Interleucina 1/deficiência , Proteína Antagonista do Receptor de Interleucina 1/genética , Interleucina-17/metabolismo , Interleucina-6/deficiência , Interleucina-6/genética , Interleucinas/biossíntese , Interleucinas/metabolismo , Linfonodos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/biossíntese , Receptores Tipo I de Interleucina-1/antagonistas & inibidores , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismoRESUMO
Leishmania major infection induces self-healing cutaneous lesions in C57BL/6 mice. Both IL-12 and IFN-γ are essential for the control of infection. We infected Jun dimerization protein p21SNFT (Batf3(-/-) ) mice (C57BL/6 background) that lack the major IL-12 producing and cross-presenting CD8α(+) and CD103(+) DC subsets. Batf3(-/-) mice displayed enhanced susceptibility with larger lesions and higher parasite burden. Additionally, cells from draining lymph nodes of infected Batf3(-/-) mice secreted less IFN-γ, but more Th2- and Th17-type cytokines, mirrored by increased serum IgE and Leishmania-specific immunoglobulin 1 (Th2 indicating). Importantly, CD8α(+) DCs isolated from lymph nodes of L. major-infected mice induced significantly more IFN-γ secretion by L. major-stimulated immune T cells than CD103(+) DCs. We next developed CD11c-diptheria toxin receptor: Batf3(-/-) mixed bone marrow chimeras to determine when the DCs are important for the control of infection. Mice depleted of Batf-3-dependent DCs from day 17 or wild-type mice depleted of cross-presenting DCs from 17-19 days after infection maintained significantly larger lesions similar to mice whose Batf-3-dependent DCs were depleted from the onset of infection. Thus, we have identified a crucial role for Batf-3-dependent DCs in protection against L. major.