RESUMO
FGD2, a member of FGD family, contains a Dbl homology domain (DH) and two pleckstrin homology domains segregated by a FYVE domain. The DH domain has been deduced to be responsible for guanine nucleotide exchange of CDC42 to activate downstream factors. Our aim was to build a prokaryotic expression system for the DH domain and to examine its guanine nucleotide exchange activity toward CDC42 in vitro. A recombinant vector, which was successfully constructed based on pGEX-6P-1, was employed to express the DH domain of human FGD2 (FGD2-DH) in E. coli BL21 (DE3). Purified FGD2-DH behaved as a homogeneous monomer with an estimated molecular weight that corresponded to the theoretical molecular weight and was predicted to be an α-helix protein by circular dichroism spectroscopy. FGD2-DH displayed weak guanine nucleotide exchange activity in vitro and very weak interactions with CDC42 following glutaraldehyde cross-linking.
Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Nucleotídeos de Guanina/química , Proteína cdc42 de Ligação ao GTP/química , Escherichia coli/genética , Escherichia coli/metabolismo , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Nucleotídeos de Guanina/metabolismo , Humanos , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismoRESUMO
Resistance to Inhibitors of Cholinesterase-8 (Ric-8) proteins are molecular chaperones that fold heterotrimeric G protein α subunits shortly after biosynthesis. Ric-8 proteins also act as test tube guanine nucleotide exchange factors (GEF) that promote Gα subunit GDP for GTP exchange. The GEF and chaperoning activities of Ric-8A are regulated by phosphorylation of five serine and threonine residues within protein kinase CK2 consensus sites. The traditional way that Ric-8A proteins have been purified is from Spodoptera frugiperda (Sf9) or Trichoplusia ni (Tni) insect cells. Endogenous insect cell kinases do phosphorylate the critical regulatory sites of recombinant Ric-8A reasonably well, but there is batch-to-batch variability among recombinant Ric-8A preparations. Additionally, insect cell-production of some Ric-8 proteins with phosphosite alanine substitution mutations is proscribed as there seems to be interdependency of multi-site phosphorylation for functional protein production. Here, we present a method to produce wild type and phosphosite mutant Ric-8A proteins that are fully occupied with bound phosphate at each of the regulatory positions. Ric-8A proteins were expressed and purified from E. coli. Purified Ric-8A was phosphorylated in vitro with protein kinase CK2 and then re-isolated to remove kinase. The phosphorylated Ric-8A proteins were â¼99% pure and the completeness of phosphorylation was verified by chromatography, phos-tag SDS-PAGE mobility shifts, immunoblotting using phospho-site specific antibodies, and mass spectrometry analysis. E. coli-produced Ric-8A that was phosphorylated using this method promoted a faster rate of Gα subunit guanine nucleotide exchange than Ric-8A that was variably phosphorylated during production in insect cells.
Assuntos
Caseína Quinase II , Fatores de Troca do Nucleotídeo Guanina , Fosfoproteínas , Caseína Quinase II/química , Caseína Quinase II/genética , Caseína Quinase II/isolamento & purificação , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Humanos , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/isolamento & purificação , Fosforilação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificaçãoRESUMO
Centrosomes are composed of a centriole pair surrounded by an intricate proteinaceous matrix referred to as pericentriolar material. Although the mechanisms underpinning the control of centriole duplication are now well understood, we know relatively little about the control of centrosome size and shape. Here we used interaction proteomics to identify the E3 ligase HERC2 and the neuralized homologue NEURL4 as novel interaction partners of the centrosomal protein CP110. Using high resolution imaging, we find that HERC2 and NEURL4 localize to the centrosome and that interfering with their function alters centrosome morphology through the appearance of aberrant filamentous structures that stain for a subset of pericentriolar material proteins including pericentrin and CEP135. Using an RNA interference-resistant transgene approach in combination with structure-function analyses, we show that the association between CP110 and HERC2 depends on nonoverlapping regions of NEURL4. Whereas CP110 binding to NEURL4 is dispensable for the regulation of pericentriolar material architecture, its association with HERC2 is required to maintain normal centrosome integrity. NEURL4 is a substrate of HERC2, and together these results indicate that the NEURL4-HERC2 complex participates in the ubiquitin-dependent regulation of centrosome architecture.
Assuntos
Proteínas de Transporte/metabolismo , Centrossomo/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Proteínas de Ciclo Celular/metabolismo , Cromatografia de Afinidade , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Células HEK293 , Humanos , Proteínas Associadas aos Microtúbulos/isolamento & purificação , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transporte Proteico , Proteômica , Interferência de RNA , Ubiquitina-Proteína Ligases , UbiquitinaçãoRESUMO
Rho GTPases regulate the assembly of cellular actin structures and are activated by GEFs (guanine-nucleotide-exchange factors) and rendered inactive by GAPs (GTPase-activating proteins). Using the Rho GTPases Cdc42, Rac1 and RhoA, and the GTPase-binding portions of the effector proteins p21-activated kinase and Rhophilin1, we have developed split luciferase assays for detecting both GEF and GAP regulation of these GTPases. The system relies on purifying split luciferase fusion proteins of the GTPases and effectors from bacteria, and our results show that the assays replicate GEF and GAP specificities at nanomolar concentrations for several previously characterized Rho family GEFs (Dbl, Vav2, Trio and Asef) and GAPs [p190, Cdc42 GAP and PTPL1-associated RhoGAP]. The assay detected activities associated with purified recombinant GEFs and GAPs, cell lysates expressing exogenous proteins, and immunoprecipitates of endogenous Vav1 and p190. The results demonstrate that the split luciferase system provides an effective sensitive alternative to radioactivity-based assays for detecting GTPase regulatory protein activities and is adaptable to a variety of assay conditions.
Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Luciferases/genética , Medições Luminescentes/métodos , Extratos Celulares/química , Proteínas Ativadoras de GTPase/análise , Proteínas Ativadoras de GTPase/isolamento & purificação , Genes Reporter/fisiologia , Fatores de Troca do Nucleotídeo Guanina/análise , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Células HEK293 , Humanos , Imunoprecipitação/métodos , Células Jurkat , Luciferases/análise , Luciferases/metabolismo , Modelos Biológicos , Modelos Moleculares , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho , Sensibilidade e Especificidade , TransfecçãoRESUMO
ADP-ribosylation factors (ARFs) have crucial roles in vesicular trafficking. Brefeldin A-inhibited guanine nucleotide-exchange proteins (BIG)1 and BIG2 catalyze the activation of class I ARFs by accelerating replacement of bound GDP with GTP. Several additional and differing actions of BIG1 and BIG2 have been described. These include the presence in BIG2 of 3 A kinase-anchoring protein (AKAP) domains, one of which is identical in BIG1. Proteins that contain AKAP sequences act as scaffolds for the assembly of PKA with other enzymes, substrates, and regulators in complexes that constitute molecular machines for the reception, transduction, and integration of signals from cAMP or other sources, which are initiated, propagated, and transmitted by chemical, electrical, or mechanical means. Specific depletion of HeLa cell PDE3A with small interfering RNA significantly decreased membrane-associated BIG1 and BIG2, which by confocal immunofluorescence microscopy were widely dispersed from an initial perinuclear Golgi concentration. Concurrently, activated ARF1-GTP was significantly decreased. Selective inhibition of PDE3A by 1-h incubation of cells with cilostamide similarly decreased membrane-associated BIG1. We suggest that decreasing PDE3A allowed cAMP to accumulate in microdomains where its enzymatic activity limited cAMP concentration. There, cAMP-activated PKA phosphorylated BIG1 and BIG2 (AKAPs for assembly of PKA, PDE3A, and other molecules), which decreased their GEP activity and thereby amounts of activated ARF1-GTP. Thus, PDE3A in these BIG1 and BIG2 AKAP complexes may contribute to the regulation of ARF function via limitation of cAMP effects with spatial and temporal specificity.
Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/isolamento & purificação , Citosol/efeitos dos fármacos , Citosol/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Inibidores da Fosfodiesterase 3 , Ligação Proteica , RNA Interferente Pequeno/genéticaRESUMO
Legionella pneumophila infects eukaryotic cells by forming a replicative organelle - the Legionella containing vacuole. During this process, the bacterial protein DrrA/SidM is secreted and manipulates the activity and post-translational modification (PTM) states of the vesicular trafficking regulator Rab1. As a result, Rab1 is modified with an adenosine monophosphate (AMP), and this process is referred to as AMPylation. Here, we use a chemical approach to stabilise low-affinity Rab:DrrA complexes in a site-specific manner to gain insight into the molecular basis of the interaction between the Rab protein and the AMPylation domain of DrrA. The crystal structure of the Rab:DrrA complex reveals a previously unknown non-conventional Rab-binding site (NC-RBS). Biochemical characterisation demonstrates allosteric stimulation of the AMPylation activity of DrrA via Rab binding to the NC-RBS. We speculate that allosteric control of DrrA could in principle prevent random and potentially cytotoxic AMPylation in the host, thereby perhaps ensuring efficient infection by Legionella.
Assuntos
Monofosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Legionella pneumophila/patogenicidade , Doença dos Legionários/patologia , Proteínas rab1 de Ligação ao GTP/metabolismo , Regulação Alostérica , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação/genética , Cristalografia por Raios X , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Fatores de Troca do Nucleotídeo Guanina/ultraestrutura , Guanosina Trifosfato/metabolismo , Humanos , Legionella pneumophila/metabolismo , Doença dos Legionários/microbiologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Fagocitose , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Proteínas rab1 de Ligação ao GTP/genética , Proteínas rab1 de Ligação ao GTP/isolamento & purificação , Proteínas rab1 de Ligação ao GTP/ultraestruturaRESUMO
The Rac-specific GEF (guanine-nucleotide exchange factor) Tiam1 has important functions in multiple cellular processes including proliferation, apoptosis and adherens junction maintenance. Here we describe a modified tandem affinity purification (TAP) technique that we have applied to specifically enrich Tiam1-containing protein complexes from mammalian cells. Using this technique in conjunction with LC-MS/MS mass spectrometry, we have identified additional Tiam1-interacting proteins not seen with the standard technique, and have identified multiple 14-3-3 family members as Tiam1 interactors. We confirm the Tiam1/14-3-3 protein interaction by GST-pulldown and coimmunoprecipitation experiments, show that it is phosphorylation-dependent, and that they colocalize in cells. The interaction is largely dependent on the N-terminal region of Tiam1; within this region, there are four putative phospho-serine-containing 14-3-3 binding motifs, and we confirm that two of them (Ser172 and Ser231) are phosphorylated in cells using mass spectrometry. Moreover, we show that phosphorylation at three of these motifs (containing Ser60, Ser172 and Ser231) is required for the binding of 14-3-3 proteins to this region of Tiam1. We show that phosphorylation of these sites does not affect Tiam1 activity; significantly however, we demonstrate that phosphorylation of the Ser60-containing motif is required for the degradation of Tiam1. Thus, we have established and proven methodology that allows the identification of additional protein-protein interactions in mammalian cells, resulting in the discovery of a novel mechanism of regulating Tiam1 stability.
Assuntos
Proteínas 14-3-3/química , Cromatografia de Afinidade/métodos , Fatores de Troca do Nucleotídeo Guanina/química , Proteínas 14-3-3/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Cromatografia de Afinidade/instrumentação , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/isolamento & purificação , Fosforilação , Ligação Proteica , Estabilidade Proteica , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Espectrometria de Massas em TandemRESUMO
Guanine nucleotide exchange factors (GEFs) stimulate guanine nucleotide exchange and the subsequent activation of Rho-family proteins in response to extracellular stimuli acting upon cytokine, tyrosine kinase, adhesion, integrin, and G-protein-coupled receptors (GPCRs). Upon Rho activation, several downstream events occur, such as morphological and cytoskeletal changes, motility, growth, survival, and gene transcription. The leukemia-associated RhoGEF (LARG) is a member of the regulators of G-protein signaling homology domain (RH) family of GEFs originally identified as a result of chromosomal translocation in acute myeloid leukemia. Using a novel fluorescence polarization guanine nucleotide-binding assay using BODIPY-Texas Red-GTPgammaS (BODIPY-TR-GTPgammaS), the authors performed a 10,000-compound high-throughput screen for inhibitors of LARG-stimulated RhoA nucleotide binding. Five compounds identified from the high-throughput screen were confirmed in a nonfluorescent radioactive guanine nucleotide-binding assay measuring LARG-stimulated [( 35)S] GTPgammaS binding to RhoA, thus ruling out nonspecific fluorescent effects. All 5 compounds selectively inhibited LARG-stimulated RhoA [( 35)S] GTPgammaS binding but had little to no effect on RhoA or Galpha( o) [(35)S] GTPgammaS binding. Therefore, these 5 compounds should serve as promising starting points for the development of small-molecule inhibitors of LARG-mediated nucleotide exchange as both pharmacological tools and therapeutics. In addition, the fluorescence polarization guanine nucleotide-binding assay described here should serve as a useful approach for both high-throughput screening and general biological applications.
Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores do Crescimento/isolamento & purificação , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Bibliotecas de Moléculas Pequenas/análise , Proteína rhoA de Ligação ao GTP/metabolismo , Algoritmos , Polarização de Fluorescência/métodos , Inibidores do Crescimento/farmacologia , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Humanos , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Fatores de Troca de Nucleotídeo Guanina Rho , Relação Estrutura-Atividade , Especificidade por Substrato , Proteína rhoA de Ligação ao GTP/antagonistas & inibidoresRESUMO
SEC2 is an essential gene required for polarized growth of the yeast Saccharomyces cerevisiae. It encodes a protein of 759 amino acids that functions as a guanine nucleotide exchange factor for the small GTPase Sec4p, a regulator of Golgi to plasma membrane transport. Activation of Sec4p by Sec2p is needed for polarized transport of vesicles to exocytic sites. Temperature-sensitive (ts) mutations in sec2 and sec4 result in a tight block in secretion and the accumulation of secretory vesicles randomly distributed in the cell. The proper localization of Sec2p to secretory vesicles is essential for its function and is largely independent of Sec4p. Although the ts mutation sec2-78 does not affect nucleotide exchange activity, the protein is mislocalized. Here we present evidence that Ypt31/32p, members of Rab family of GTPases, regulate Sec2p function. First, YPT31/YPT32 suppress the sec2-78 mutation. Second, overexpression of Ypt31/32p restores localization of Sec2-78p. Third, Ypt32p and Sec2p interact biochemically, but Sec2p has no exchange activity on Ypt32p. We propose that Ypt32p and Sec4p act as part of a signaling cascade in which Ypt32p recruits Sec2p to secretory vesicles; once on the vesicle, Sec2p activates Sec4p, enabling the polarized transport of vesicles to the plasma membrane.
Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Vesículas Secretórias/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Ativação Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas de Ligação ao GTP/genética , Regulação Fúngica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Mutação Puntual , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Supressão Genética , Temperatura , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/isolamento & purificaçãoRESUMO
Rho family GTPases are important regulators of epithelial tight junctions (TJs); however, little is known about how the GTPases themselves are controlled during TJ assembly and function. We have identified and cloned a canine guanine nucleotide exchange factor (GEF) of the Dbl family of proto-oncogenes that activates Rho and associates with TJs. Based on sequence similarity searches and immunological and functional data, this protein is the canine homologue of human GEF-H1 and mouse Lfc, two previously identified Rho-specific exchange factors known to associate with microtubules in nonpolarized cells. In agreement with these observations, immunofluorescence of proliferating MDCK cells revealed that the endogenous canine GEF-H1/Lfc associates with mitotic spindles. Functional analysis based on overexpression and RNA interference in polarized MDCK cells revealed that this exchange factor for Rho regulates paracellular permeability of small hydrophilic tracers. Although overexpression resulted in increased size-selective paracellular permeability, such cell lines exhibited a normal overall morphology and formed fully assembled TJs as determined by measuring transepithelial resistance and by immunofluorescence and freeze-fracture analysis. These data indicate that GEF-H1/Lfc is a component of TJs and functions in the regulation of epithelial permeability.
Assuntos
Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Proteínas Proto-Oncogênicas/isolamento & purificação , Junções Íntimas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Comunicação Celular/genética , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular/genética , Células Cultivadas , Cães , Células Epiteliais/ultraestrutura , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/fisiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Imuno-Histoquímica , Microscopia Eletrônica , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Proteínas Proto-Oncogênicas/genética , Interferência de RNA/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , Junções Íntimas/ultraestruturaRESUMO
Translation elongation factor 1Bß (eEF1Bß) is a metazoan-specific protein involved into the macromolecular eEF1B complex, containing also eEF1Bα and eEF1Bγ subunits. Both eEF1Bα and eEF1Bß ensure the guanine nucleotide exchange on eEF1A while eEF1Bγ is thought to have a structural role. The structures of the eEF1Bß catalytic C-terminal domain and neighboring central acidic region are known while the structure of the protein-binding N-terminal domain remains unidentified which prevents clear understanding of architecture of the eEF1B complex. Here we show that the N-terminal domain comprising initial 77 amino acids of eEF1Bß, eEF1Bß(1-77), is a monomer in solution with increased hydrodynamic volume. This domain binds eEF1Bγ in equimolar ratio. The CD spectra reveal that the secondary structure of eEF1Bß(1-77) consists predominantly of α-helices and a portion of disordered region. Very rapid hydrogen/deuterium exchange for all eEF1Bß(1-77) peptides favors a flexible tertiary organization of eEF1Bß(1-77). Computational modeling of eEF1Bß(1-77) suggests several conformation states each composed of three α-helices connected by flexible linkers. Altogether, the data imply that the protein-binding domain of eEF1Bß shows flexible spatial organization which may be needed for interaction with eEF1Bγ or other protein partners.
Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Humanos , Modelos Moleculares , Fator 1 de Elongação de Peptídeos/isolamento & purificação , Peptídeos/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Proteínas Recombinantes/isolamento & purificação , Reprodutibilidade dos Testes , Relação Estrutura-AtividadeRESUMO
Membrane microdomains (MDs), or lipid rafts, are recently identified dynamic membrane domains on which various signal-transductions are performed. Intracellular Ca(2+)-binding proteins participate in the Ca(2+) signaling through interaction with various proteins. Neurocalcin alpha (NCalpha) is a member of neuronal calcium sensor (NCS) protein family and shows Ca(2+)-dependent binding to the cell membrane through N-terminal myristoyl moiety. Since NCalpha was identified as a Ca(2+)-dependent binding protein to neuronal MDs, its binding proteins may participate in the signal-transduction on the MDs. In an immunoprecipitate using anti-NCalpha antibody, alsin (ALS2), a protein product of one of the responsive genes for amyotrophic lateral sclerosis, was detected through LC-MS/MS. Specific antibody to alsin was produced and immunoprecipitation using this antibody showed co-sedimentation of NCalpha. Some part of alsin bound to brain-derived MD fraction in the presence of Ca(2+) ions and eluted out by the chelation of Ca(2+) ions, as in the case of NCalpha. Immunostaining of cultured neurons showed broad distribution of alsin and NCalpha, and membrane association of these proteins were increased through Ca(2+) loading by maitotoxin. These results suggest that alsin binds cell membrane in a Ca(2+)-dependent manner through NCalpha and regulates membrane dynamics.
Assuntos
Encéfalo/metabolismo , Sinalização do Cálcio/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Microdomínios da Membrana/metabolismo , Neurocalcina/metabolismo , Neurônios/metabolismo , Ligação Proteica/fisiologia , Animais , Animais Recém-Nascidos , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Cálcio/metabolismo , Células Cultivadas , GMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/análise , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Cobaias , Toxinas Marinhas/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Ácido Mirístico/metabolismo , Oxocinas/farmacologia , Estrutura Terciária de Proteína/fisiologia , Ratos , Transdução de Sinais/fisiologia , Frações SubcelularesAssuntos
Membrana Celular/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Endocitose/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/isolamento & purificação , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Celular/genética , Vesículas Revestidas por Clatrina/genética , Endossomos/genética , Endossomos/metabolismo , Ativação Enzimática/fisiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Proteínas rab5 de Ligação ao GTP/genéticaRESUMO
We report here the identification and characterization of a novel Vav family member, Vav-3. Signaling experiments demonstrate that Vav-3 participates in pathways activated by protein tyrosine kinases. Vav-3 promotes the exchange of nucleotides on RhoA, on RhoG and, to a lesser extent, on Rac-1. During this reaction, Vav-3 binds physically to the nucleotide-free states of those GTPases. These functions are stimulated by tyrosine phosphorylation in wild-type Vav-3 and become constitutively activated upon deletion of the entire calponin-homology region. Expression of truncated versions of Vav-3 leads to drastic actin relocalization and to the induction of stress fibers, lamellipodia, and membrane ruffles. Moreover, expression of Vav-3 alters cytokinesis, resulting in the formation of binucleated cells. All of these responses need only the expression of the central region of Vav-3 encompassing the Dbl homology (DH), pleckstrin homology (PH), and zinc finger (ZF) domains but do not require the presence of the C-terminal SH3-SH2-SH3 regions. Studies conducted with Vav-3 proteins containing loss-of-function mutations in the DH, PH, and ZF regions indicate that only the DH and ZF regions are essential for Vav-3 biological activity. Finally, we show that one of the functions of the Vav-3 ZF region is to work coordinately with the catalytic DH region to promote both the binding to GTP-hydrolases and their GDP-GTP nucleotide exchange. These results highlight the role of Vav-3 in signaling and cytoskeletal pathways and identify a novel functional cross-talk between the DH and ZF domains of Vav proteins that is imperative for the binding to, and activation of, Rho GTP-binding proteins.
Assuntos
Proteínas de Ciclo Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosfoproteínas , Proteínas Proto-Oncogênicas/metabolismo , Células 3T3/citologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas Sanguíneas/genética , Compartimento Celular , Transformação Celular Neoplásica , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Humanos , Camundongos , Dados de Sequência Molecular , Família Multigênica , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-vav , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Distribuição Tecidual , Dedos de Zinco/genética , Proteínas rho de Ligação ao GTP/metabolismoRESUMO
Epac1 and Epac2 are cAMP-dependent guanine nucleotide exchange factors (GEF) for the small G-proteins Rap1 and Rap2. Epac is inactive in the absence of cAMP, and binding of cAMP to a cyclic nucleotide-binding domain in the N-terminal regulatory region results in activation of the protein. The cAMP-dependent activity of Epac proteins can be analyzed by a fluorescence-based assay in vitro. These kinds of measurements can help to unravel the molecular mechanism by which cAMP binding is translated in activation of the protein. For this purpose, Epac mutants can be analyzed. In addition, the interaction of cAMP itself might be the focus of the research. Thus, modified cAMP analogs can be characterized by their ability to activate Epac. This is of particular interest for the development of Epac-specific analogs, which do not act on other cellular cAMP targets such as protein kinase A (PKA) or for the design of therapeutic agents targeting Epac.
Assuntos
AMP Cíclico/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/análise , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Cinética , Matemática , Proteínas rap de Ligação ao GTP/isolamento & purificaçãoRESUMO
The P-Rex family of guanine-nucleotide exchange factors (GEFs) are activators of the small GTPase Rac (Donald et al., 2004; Rosenfeldt et al., 2004; Welch et al., 2002). They are directly regulated in vitro and in vivo by the lipid second messenger phosphatidylinositol (3,4,5)-triphosphate (PtdIns(3,4,5)P3) and by the betagamma subunits of heterotrimeric G proteins (Donald et al., 2004; Rosenfeldt et al., 2004; Welch et al., 2002). Activation by PtdIns(3,4,5)P3 occurs by means of the PH domain of P-Rex1 and activation by Gbetagamma subunits by means of the catalytic DH domain (Hill et al., 2005). P-Rex1 and P-Rex2 also contain two DEP and two PDZ protein interaction domains, as well as homology over their COOH-terminal half to inositol polyphosphate 4-phosphatase (Donald et al., 2004; Welch et al., 2002). These domains, although not necessary for P-Rex1 activity in vitro, influence its basal and/or stimulated Rac-GEF activity, suggesting that their interaction with the DH/PH domain tandem is important for P-Rex1 function (Hill et al., 2005). P-Rex2B, a splice variant of P-Rex2, lacks the C-terminal half (Rosenfeldt et al., 2004). P-Rex1 was originally identified during a search for PtdIns(3,4,5)P3-dependent activators of Rac in neutrophils and purified to homogeneity from pig leukocyte cytosol, in which it is the major such activity (Welch et al., 2002). P-Rex1 is mainly expressed in neutrophils and regulates reactive oxygen species formation in these cells (Welch et al., 2002), whereas P-Rex2 is expressed in a wide variety of tissues but not in neutrophils (Donald et al., 2004), and P-Rex2B is expressed in the heart (Rosenfeldt et al., 2004). This Chapter describes our methods for (1) the purification of endogenous P-Rex1 from pig leukocyte cytosol, (2) the production and purification of recombinant P-Rex proteins and their substrate GTPase Rac from Sf9 cells, and (3) the in vitro assay for measuring the GEF activities of native or recombinant P-Rex proteins.
Assuntos
Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Neutrófilos/química , Animais , Cromatografia em Gel , Citosol/química , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Lipossomos/metabolismo , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/isolamento & purificação , Spodoptera , Suínos , TransfecçãoRESUMO
The Cool (Cloned out of Library)/Pix (Pak interactive exchange factor) proteins have been implicated in a diversity of biological activities, ranging from pathways initiated by growth factors and chemoattractants to X-linked mental retardation. Initially discovered through yeast two-hybrid and biochemical analyses as binding partners for the Cdc42/Rac-target/effector, Pak (p21 activated kinase), the sequences for the Cool/Pix proteins revealed a DH (Dbl homology) domain. Because the DH domain is the limit functional unit for stimulating guanine nucleotide exchange on Rho family GTP-binding proteins, it was assumed that the Cool/Pix proteins would act as guanine nucleotide exchange factors (GEFs) for the Rho proteins. Of the three known isoforms, (p50Cool-1, p85Cool-1/beta-Pix, and 90Cool-2/alpha-Pix), only Cool-2/alpha-Pix has exhibited significant GEF activity. A number of experimental techniques have been used to characterize Cool-2, and in vitro analysis has revealed that its GEF activity is under tight control through intramolecular interactions involving several binding partners. Here we describe the biochemical methods used to study the Cool/Pix proteins and, in particular, the regulation of the GEF activity of Cool-2/alpha-Pix.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Escherichia coli/metabolismo , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Guanosina Difosfato/metabolismo , Camundongos , Células NIH 3T3 , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/isolamento & purificação , Fatores de Troca de Nucleotídeo Guanina Rho , Spodoptera , Proteína cdc42 de Ligação ao GTP/biossíntese , Proteína cdc42 de Ligação ao GTP/isolamento & purificação , Quinases Ativadas por p21 , Proteínas rac de Ligação ao GTP/biossíntese , Proteínas rac de Ligação ao GTP/isolamento & purificaçãoRESUMO
Rab GTPases function as ubiquitous key regulators of membrane-vesicle transport in eukaryotic cells. MSS4 is an evolutionarily conserved protein that binds to exocytotic Rabs and facilitates nucleotide release. The MSS4 protein in complex with nucleotide-free Rab8 GTPase has been purified and crystallized in a form suitable for structure analysis. The crystals belonged to space group P1, with unit-cell parameters a = 40.92, b = 49.85, c = 83.48 A, alpha = 102.88, beta = 97.46, gamma = 90.12 degrees. A complete data set has been collected to 2 A resolution.
Assuntos
GTP Fosfo-Hidrolases/isolamento & purificação , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Proteínas rab de Ligação ao GTP/isolamento & purificação , Animais , Cristalização , Cristalografia por Raios X , GTP Fosfo-Hidrolases/química , Fatores de Troca do Nucleotídeo Guanina/química , Humanos , Camundongos , Proteínas rab de Ligação ao GTP/químicaRESUMO
The PRONE domain of the guanine nucleotide exchange factor RopGEF8 (PRONE8) was purified and crystallized free and in complex with the Rho-family protein Rop4 using the hanging-drop vapour-diffusion method. PRONE8 crystals were obtained using NaCl as precipitating agent and belong to the hexagonal space group P6(5)22. Native and anomalous data sets were collected using synchrotron radiation at 100 K to 2.2 and 2.8 A resolution, respectively. Crystals of the Rop4-PRONE8 complex belonging to space group P6(3) were obtained using Tacsimate and PEG 3350 as precipitating agents and diffracted to 3.1 A resolution.
Assuntos
Proteínas de Arabidopsis/química , Proteínas de Ligação ao GTP/química , Fatores de Troca do Nucleotídeo Guanina/química , Proteínas de Arabidopsis/isolamento & purificação , Domínio Catalítico , Cristalização/métodos , Proteínas de Ligação ao GTP/isolamento & purificação , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Ligação Proteica , Solventes , Difração de Raios XRESUMO
Rab3A, a member of the Rab3 small GTP-binding protein (G protein) family, regulates Ca(2+)-dependent exocytosis of neurotransmitter. Rab3A cycles between the GDP-bound inactive and GTP-bound active forms, and the former is converted to the latter by the action of a GDP/GTP exchange protein (GEP). We have previously purified a GEP from rat brain with lipid-modified Rab3A as a substrate. Purified Rab3 GEP is active on all the Rab3 subfamily members including Rab3A, -3B, -3C, and -3D. Purified Rab3 GEP is active on the lipid-modified form, but not on the lipid-unmodified form. Purified Rab3 GEP is inactive on Rab3A complexed with Rab GDI. The recombinant protein is prepared from the Rab3 GEP-expressed Spodoptera frugiperda cells (Sf9 cells). The properties of recombinant Rab3 GEP, including the requirement for lipid modifications of Rab3A, the substrate specificity, and the sensitivity to Rab GDI, are similar to those of purified Rab3 GEP. Overexpression of Rab3 GEP inhibits Ca(2+)-dependent exocytosis from PC12 cells. On the other hand, Rab3 GEP is identical to a protein named DENN/MADD: differentially expressed in normal versus neoplastic (DENN)/mitogen-activated protein kinase-activating death domain (MADD). Here, we describe the purification method for recombinant Rab3 GEP from Sf9 cells and the functional properties of Rab3 GEP in Ca(2+)-dependent exocytosis by use of the human growth hormone coexpression assay system of PC12 cells.