Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(15): e2210808120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37023125

RESUMO

African swine fever virus (ASFV) is a large, double-stranded DNA virus that causes a fatal disease in pigs, posing a threat to the global pig industry. Whereas some ASFV proteins have been found to play important roles in ASFV-host interaction, the functional roles of many proteins are still largely unknown. In this study, we identified I73R, an early viral gene in the replication cycle of ASFV, as a key virulence factor. Our findings demonstrate that pI73R suppresses the host innate immune response by broadly inhibiting the synthesis of host proteins, including antiviral proteins. Crystallization and structural characterization results suggest that pI73R is a nucleic-acid-binding protein containing a Zα domain. It localizes in the nucleus and inhibits host protein synthesis by suppressing the nuclear export of cellular messenger RNA (mRNAs). While pI73R promotes viral replication, the deletion of the gene showed that it is a nonessential gene for virus replication. In vivo safety and immunogenicity evaluation results demonstrate that the deletion mutant ASFV-GZΔI73R is completely nonpathogenic and provides effective protection to pigs against wild-type ASFV. These results reveal I73R as a virulence-related gene critical for ASFV pathogenesis and suggest that it is a potential target for virus attenuation. Accordingly, the deletion mutant ASFV-GZΔI73R can be a potent live-attenuated vaccine candidate.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Virulência/genética , Febre Suína Africana/prevenção & controle , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Genes Virais
2.
J Virol ; 98(7): e0062224, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38953377

RESUMO

African swine fever virus causes a lethal hemorrhagic disease in domestic swine and wild boar for which currently licensed commercial vaccines are only available in Vietnam. Development of subunit vaccines is complicated by the lack of information on protective antigens as well as suitable delivery systems. Our previous work showed that a pool of eight African swine fever virus genes vectored using an adenovirus prime and modified vaccinia virus boost could prevent fatal disease after challenge with a virulent genotype I isolate of the virus. Here, we identify antigens within this pool of eight that are essential for the observed protection and demonstrate that adenovirus-prime followed by adenovirus-boost can also induce protective immune responses against genotype I African swine fever virus. Immunization with a pool of adenoviruses expressing individual African swine fever virus genes partially tailored to genotype II virus did not protect against challenge with genotype II Georgia 2007/1 strain, suggesting that different antigens may be required to induce cross-protection for genetically distinct viruses. IMPORTANCE: African swine fever virus causes a lethal hemorrhagic disease in domestic pigs and has killed millions of animals across Europe and Asia since 2007. Development of safe and effective subunit vaccines against African swine fever has been problematic due to the complexity of the virus and a poor understanding of protective immunity. In a previous study, we demonstrated that a complex combination of eight different virus genes delivered using two different viral vector vaccine platforms protected domestic pigs from fatal disease. In this study, we show that three of the eight genes are required for protection and that one viral vector is sufficient, significantly reducing the complexity of the vaccine. Unfortunately, this combination did not protect against the current outbreak strain of African swine fever virus, suggesting that more work to identify immunogenic and protective viral proteins is required to develop a truly effective African swine fever vaccine.


Assuntos
Adenoviridae , Vírus da Febre Suína Africana , Febre Suína Africana , Vetores Genéticos , Genótipo , Vacinas Virais , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/prevenção & controle , Febre Suína Africana/virologia , Febre Suína Africana/imunologia , Suínos , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/administração & dosagem , Vetores Genéticos/genética , Adenoviridae/genética , Adenoviridae/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/genética , Antígenos Virais/imunologia , Antígenos Virais/genética
3.
J Virol ; 97(11): e0071923, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37929962

RESUMO

IMPORTANCE: African swine fever virus (ASFV) is a highly fatal swine disease that severely affects the pig industry. Although ASFV has been prevalent for more than 100 years, effective vaccines or antiviral strategies are still lacking. In this study, we identified four Bacillus subtilis strains that inhibited ASFV proliferation in vitro. Pigs fed with liquid biologics or powders derived from four B. subtilis strains mixed with pellet feed showed reduced morbidity and mortality when challenged with ASFV. Further analysis showed that the antiviral activity of B. subtilis was based on its metabolites arctiin and genistein interfering with the function of viral topoisomerase II. Our findings offer a promising new strategy for the prevention and control of ASFV that may significantly alleviate the economic losses in the pig industry.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Bacillus subtilis , Animais , Febre Suína Africana/prevenção & controle , Antivirais/farmacologia , DNA Topoisomerases Tipo II/farmacologia , Genisteína/farmacologia , Suínos
4.
J Virol ; 97(5): e0022823, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37162350

RESUMO

African swine fever (ASF), caused by the African swine fever virus (ASFV), is a transboundary infectious disease of domestic pigs and wild boars, resulting in significant swine production losses. Currently, no effective commercial ASF vaccines or therapeutic options are available. A previous study has shown that deletions of ASFV MGF110-9L and MGF505-7R genes (ASFV-Δ110-9L/505-7R) attenuated virulence in pigs and provided complete protection against parental lethal ASFV CN/GS/2018 (wild-type ASFV [ASFV-WT]) challenge, but the underlying mechanism is unclear. This study found that ASFV-Δ110-9L/505-7R weakened TBK1 degradation compared with ASFV-WT through RNA sequencing (RNA-seq) and Western blotting analyses. Furthermore, we confirmed that ASFV-Δ110-9L/505-7R blocked the degradation of TBK1 through the autophagy pathway. We also identified that the downregulation of an autophagy-related protein PIK3C2B was involved in the inhibition of TBK1 degradation induced by ASFV-Δ110-9L/505-7R. Additionally, we also confirmed that PIK3C2B promoted ASFV-Δ110-9L/505-7R replication in vitro. Together, this study elucidated a novel mechanism of virulence change of ASFV-Δ110-9L/505-7R, revealing a new mechanism of ASF live attenuated vaccines (LAVs) and providing theoretical guidance for the development of ASF vaccines. IMPORTANCE African swine fever (ASF) is a contagious and lethal hemorrhagic disease of pigs caused by the African swine fever virus (ASFV), leading to significant economic consequences for the global pig industry. The development of an effective and safe ASF vaccine has been unsuccessful. Previous studies have shown that live attenuated vaccines (LAVs) of ASFV are the most effective vaccine candidates to prevent ASF. Understanding the host responses caused by LAVs of ASFV is important in optimizing vaccine design and diversifying the resources available to control ASF. Recently, our laboratory found that the live attenuated ASFV-Δ110-9L/505-7R provided complete protection against parental ASFV-WT challenge. This study further demonstrated that ASFV-Δ110-9L/505-7R inhibits TBK1 degradation mediated by an autophagy activator PIK3C2B to increase type I interferon production. These results revealed an important mechanism for candidate vaccine ASFV-Δ110-9L/505-7R, providing strategies for exploring the virulence of multigene-deleted live attenuated ASFV strains and the development of vaccines.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Vacinas Virais , Animais , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/genética , Interferon Tipo I/metabolismo , Sus scrofa , Suínos , Vacinas Atenuadas , Genes Virais
5.
J Virol ; 97(10): e0070423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37768081

RESUMO

IMPORTANCE: African swine fever (ASF) caused by ASF virus (ASFV) is a highly contagious and acute hemorrhagic viral disease in domestic pigs. Until now, no effective commercial vaccine and antiviral drugs are available for ASF control. Here, we generated a new live-attenuated vaccine candidate (ASFV-ΔH240R-Δ7R) by deleting H240R and MGF505-7R genes from the highly pathogenic ASFV HLJ/18 genome. Piglets immunized with ASFV-ΔH240R-Δ7R were safe without any ASF-related signs and produced specific antibodies against p30. Challenged with a virulent ASFV HLJ/18, the piglets immunized with high-dose group (105 HAD50) exhibited 100% protection without clinical symptoms, showing that low levels of virus replication with no observed pathogenicity by postmortem and histological analysis. Overall, our results provided a new strategy by designing live-attenuated vaccine candidate, resulting in protection against ASFV infection.


Assuntos
Vírus da Febre Suína Africana , Deleção de Genes , Genes Virais , Vacinas Atenuadas , Vacinas Virais , Animais , Febre Suína Africana/imunologia , Febre Suína Africana/prevenção & controle , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/classificação , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/patogenicidade , Sus scrofa/virologia , Vacinas Atenuadas/imunologia , Proteínas Virais/genética , Vacinas Virais/genética , Vacinas Virais/imunologia , Virulência , Replicação Viral , Genes Virais/genética
6.
FASEB J ; 37(6): e22934, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37144880

RESUMO

African swine fever (ASF) caused by African swine fever virus (ASFV) is a devastating disease for the global pig industry and economic benefit. The limited knowledge on the pathogenesis and infection mechanisms of ASF restricts progress toward vaccine development and ASF control. Previously, we illustrated that deletion of the MGF-110-9L gene from highly virulent ASFV CN/GS/2018 strains (ASFV∆9L) results in attenuated virulence in swine, but the underlying mechanism remains unclear. In this study, we found that the difference in virulence between wild-type ASFV (wt-ASFV) and ASFV∆9L strains was mainly caused by the difference in TANK Binding Kinase 1 (TBK1) reduction. TBK1 reduction was further identified to be mediated by the autophagy pathway and this degradative process requires the up-regulation of a positive autophagy regulation molecule- Phosphatidylinositol-4-Phosphate 3-Kinase Catalytic Subunit Type 2 Beta (PIK3C2B). Moreover, TBK1 over-expression was confirmed to inhibit ASFV replication in vitro. In summary, these results indicate that wt-ASFV counteracts type I interferon (IFN) production by degrading TBK1, while ASFVΔ9L enhanced type I IFN production by weakening TBK1 reduction, clarifying the mechanism that ASFVΔ9L present the attenuated virulence in vitro.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Virulência , Expressão Gênica , Interferon Tipo I/metabolismo , Deleção de Genes
7.
Arch Virol ; 169(2): 22, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193974

RESUMO

African swine fever (ASF) is an infectious disease caused by ASF virus (ASFV), which is characterized by high infectivity, rapid onset of disease, and a high mortality rate. Outbreaks of ASFV have caused great economic losses to the global pig industry, and there is a need to develop safe and effective vaccines. In this study, two recombinant pseudorabies virus (PRV) strains, rGXGG-2016-ΔgI/ΔgE-EP364R and rGXGG-2016-ΔgI/ΔgE-B119L, expressing the EP364R and B119L protein, respectively, of ASFV, were constructed by homologous recombination technology. Western blotting and immunofluorescence analysis showed that these foreign proteins were expressed in cells infected with the recombinant strains. The strains showed good genetic stability and proliferative characteristics for 20 passages in BHK-21 cells. Both of these strains were immunogenic in mice, inducing the production of specific antibodies against the expressed ASFV proteins while providing protection against lethal challenge with PRV. Thus, the recombinant strains rGXGG-2016-ΔgI/ΔgE-EP364R and rGXGG-2016-ΔgI/ΔgE-B119L could be used as candidate vaccines for both ASFV and PRV. In addition, our study identifies two potential target genes for the development of safe and efficient ASFV vaccines, provides a reference for the construction of bivalent ASFV and PRV vaccines, and demonstrates the feasibility of developing a live ASFV vector vaccine.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Herpesvirus Suídeo 1 , Animais , Camundongos , Suínos , Vírus da Febre Suína Africana/genética , Herpesvirus Suídeo 1/genética , Febre Suína Africana/prevenção & controle , Vacinas Atenuadas , Imunidade
8.
Epidemiol Infect ; 152: e27, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38282573

RESUMO

Introduction of African swine fever (ASF) to China in mid-2018 and the subsequent transboundary spread across Asia devastated regional swine production, affecting live pig and pork product-related markets worldwide. To explore the spatiotemporal spread of ASF in China, we reconstructed possible ASF transmission networks using nearest neighbour, exponential function, equal probability, and spatiotemporal case-distribution algorithms. From these networks, we estimated the reproduction numbers, serial intervals, and transmission distances of the outbreak. The mean serial interval between paired units was around 29 days for all algorithms, while the mean transmission distance ranged 332 -456 km. The reproduction numbers for each algorithm peaked during the first two weeks and steadily declined through the end of 2018 before hovering around the epidemic threshold value of 1 with sporadic increases during 2019. These results suggest that 1) swine husbandry practices and production systems that lend themselves to long-range transmission drove ASF spread; 2) outbreaks went undetected by the surveillance system. Efforts by China and other affected countries to control ASF within their jurisdictions may be aided by the reconstructed spatiotemporal model. Continued support for strict implementation of biosecurity standards and improvements to ASF surveillance is essential for halting transmission in China and spread across Asia.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Epidemias , Doenças dos Suínos , Suínos , Humanos , Animais , Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Surtos de Doenças/veterinária , China/epidemiologia , Sus scrofa , Doenças dos Suínos/epidemiologia
9.
J Virol ; 96(14): e0032922, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35867564

RESUMO

Multigene family (MGF) gene products are increasingly reported to be implicated in African swine fever virus (ASFV) virulence and attenuation of host defenses, among which the MGF360-9L and MGF505-7R gene products are characterized by convergent but distinct mechanisms of immune evasion. Herein, a recombinant ASFV mutant, ASFV-Δ9L/Δ7R, bearing combinational deletions of MGF360-9L and MGF505-7R, was constructed from the highly virulent ASFV strain CN/GS/2018 of genotype II that is currently circulating in China. Pigs inoculated intramuscularly with 104 50% hemadsorption doses (HAD50) of the mutant remained clinically healthy without any serious side effects. Importantly, in a virulence challenge, all four within-pen contact pigs demonstrated clinical signs and pathological findings consistent with ASF. In contrast, vaccinated pigs (5/6) were protected and clinical indicators tended to be normal, accompanied by extensive tissue repairs. Similar to most viral infections, innate immunity and both humoral and cellular immune responses appeared to be vital for protection. Notably, transcriptome sequencing (RNA-seq) and quantitative PCR (qPCR) analysis revealed a regulatory function of the mutant in dramatic and sustained expression of type I/III interferons and inflammatory and innate immune genes in vitro. Furthermore, infection with the mutant elicited an early and robust p30-specific IgG response, which coincided and was strongly correlated with the protective efficacy. Analysis of the cellular response revealed a strong ASFV-specific interferon gamma (IFN-γ) response and immunostaining of CD4+ T cells coupled with a high level of CD163+ macrophage infiltration in spleens of vaccinated pigs. Our study identifies a new mechanism of immunological regulation by ASFV MGFs that rationalizes the design of live attenuated vaccine for implementation of improved control strategies to eradicate ASFV. IMPORTANCE Currently, the deficiency in commercially available vaccines or therapeutic options against African swine fever constitutes a matter of major concern in the swine industry globally. Here, we report the design and construction of a recombinant ASFV mutant harboring combinational deletions of interferon inhibitors MGF360-9L and MGF505-7R based on a genotype II ASFV CN/GS/2018 strain currently circulating in China. The mutant was completely attenuated when inoculated at a high dose of 104 HAD50. In the virulence challenge with homologous virus, sterile immunity was achieved, demonstrating the mutant's potential as a promising vaccine candidate. This sufficiency of effectiveness supports the claim that this live attenuated virus may be a viable vaccine option with which to fight ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/genética , Animais , Deleção de Genes , Interferon Tipo I , Suínos , Vacinas Atenuadas , Vacinas Virais/genética
10.
J Virol ; 96(14): e0059722, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35862688

RESUMO

African swine fever virus (ASFV) is responsible for an ongoing pandemic that is affecting central Europe, Asia, and recently the Dominican Republic, the first report of the disease in the Western Hemisphere in over 40 years. ASFV is a large, complex virus with a double-stranded DNA (dsDNA) genome that carries more than 150 genes, most of which have not been studied. Here, we assessed the role of the MGF110-5L-6L gene during virus replication in cell cultures and experimental infection in swine. A recombinant virus with MGF110-5L-6L deleted (ASFV-G-ΔMGF110-5L-6L) was developed using the highly virulent ASFV Georgia (ASFV-G) isolate as a template. ASFV-G-ΔMGF110-5L-6L replicates in swine macrophage cultures as efficiently as the parental virus ASFV-G, indicating that the MGF110-5L-6L gene is nonessential for virus replication. Similarly, domestic pigs inoculated with ASFV-G-ΔMGF110-5L-6L presented with a clinical disease undistinguishable from that caused by the parental ASFV-G, confirming that the MGF110-5L-6L gene is not involved in producing disease in swine. Sera from animals inoculated with an efficacious vaccine candidate, ASFV-G-ΔMGF, strongly recognized the protein encoded by the MGF110-5L-6L gene as a potential target for the development of an antigenic marker differentiation of infected from vaccinated animals (DIVA) vaccine. To test this hypothesis, the MGF110-5L-6L gene was deleted from the highly efficacious ASFV vaccine candidate ASFV-G-ΔI177L, generating the recombinant ASFV-G-ΔI177L/ΔMGF110-5L-6L. Animals inoculated with ASFV-G-ΔI177L/ΔMGF110-5L-6L developed an ASFV-specific antibody response detected by enzyme-linked immunosorbent assay (ELISA). The sera strongly recognized ASFV p30 expressed in eukaryotic cells but did not recognize ASFV MGF110-5L-6L protein, demonstrating that deletion of the MGF110-5L-6L gene can enable DIVA capabilities in preexisting vaccine candidates. IMPORTANCE Currently, there are no African swine fever (ASF) commercial vaccines that can be used to prevent or control the spread of ASF. The only effective experimental vaccines against ASF are live-attenuated vaccines. However, these experimental vaccines, which rely on a deletion of a specific gene of the current circulating strain of ASF, make it hard to tell the difference between a vaccinated and an infected animal. In our search for a serological marker, we identified that the virus protein encoded by the MGF110-5L-6L gene induced an immune response, making a virus lacking this gene a vaccine candidate that allows the differentiation of infected from vaccinated animals (DIVA). Here, we show that deletion of MGF110-5L-6L does not affect virulence or virus replication. However, when the deletion of MGF110-5L-6L was added to vaccine candidate ASFV-G-ΔI177L, a reduction in the effectiveness of the vaccine occurred.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Deleção de Genes , Vacinas Virais , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/patogenicidade , Animais , Genes Virais , Pandemias , Sus scrofa , Suínos , Vacinas Atenuadas/genética , Vacinas Virais/genética , Virulência/genética
11.
J Virol ; 96(6): e0189921, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044212

RESUMO

African swine fever virus multigene family (MGF) 360 and 505 genes have roles in suppressing the type I interferon response and in virulence in pigs. The role of the individual genes is poorly understood. Different combinations of these genes were deleted from the virulent genotype II Georgia 2007/1 isolate. Deletion of five copies of MGF 360 genes, MGF360-10L, -11L, -12L, -13L, and -14L, and three copies of MGF505-1R, -2R, and -3R reduced virus replication in macrophages and attenuated virus in pigs. However, only 25% of the immunized pigs were protected against challenge. Deletion of MGF360-12L, -13L, and -14L and MGF505-1R in combination with a negative serology marker, K145R (GeorgiaΔK145RΔMGF(A)), reduced virus replication in macrophages and virulence in pigs, since no clinical signs or virus genome in blood were observed following immunization. Four of six pigs were protected after challenge. In contrast, deletion of MGF360-13L and -14L, MGF505-2R and -3R, and K145R (GeorgiaΔK145RΔMGF(B)) did not reduce virus replication in macrophages. Following immunization of pigs, clinical signs were delayed, but all pigs reached the humane endpoint. Deletion of genes MGF360-12L, MGF505-1R, and K145R reduced replication in macrophages and attenuated virulence in pigs since no clinical signs or virus genome in blood were observed following immunization. Thus, the deletion of MGF360-12L and MGF505-1R, in combination with K145R, was sufficient to dramatically attenuate virus infection in pigs. However, only two of six pigs were protected, suggesting that deletion of additional MGF genes is required to induce a protective immune response. Deletion of MGF360-12L, but not MGF505-1R, from the GeorgiaΔK145R virus reduced virus replication in macrophages, indicating that MGF360-12L was most critical for maintaining high levels of virus replication in macrophages. IMPORTANCE African swine fever has a high socioeconomic impact and no vaccines to aid control. The African swine fever virus (ASFV) has many genes that inhibit the host's interferon response. These include related genes that are grouped into multigene families, including MGF360 and 505. Here, we investigated which MGF360 and 505 genes were most important for viral attenuation and protection against genotype II strains circulating in Europe and Asia. We compared viruses with deletions of MGF genes. Deletion of just two MGF genes in combination with a third gene, K145R, a possible marker for vaccination, is sufficient for virus attenuation in pigs. Deletion of additional MGF360 genes was required to induce higher levels of protection. Furthermore, we showed that the deletion of MGF360-12L, combined with K145R, impairs virus replication in macrophages in culture. Our results have important implications for understanding the roles of the ASFV MGF genes and for vaccine development.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteínas Virais , Vacinas Virais , Virulência , Replicação Viral , Febre Suína Africana/prevenção & controle , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Animais , Deleção de Genes , Genótipo , Macrófagos/virologia , Família Multigênica/genética , Suínos , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Virulência/genética , Replicação Viral/genética
12.
J Virol ; 96(14): e0054522, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35862691

RESUMO

African swine fever virus (ASFV) is the etiological agent of African swine fever (ASF), a devastating disease affecting domestic and wild swine and currently causing a global pandemic, severely affecting swine production. Here, we demonstrate that the deletion of the previously uncharacterized ASFV gene, H108R from the highly virulent ASFV-Georgia2007 (ASFV-G) genome strain, reduces virulence in domestic swine. ASFV-G-ΔH108R, a recombinant virus with the H108R gene deleted, was used to evaluate the involvement of the H108R gene for ASFV replication and virulence in swine. ASFV-G-ΔH108R showed a delayed replication in swine macrophage cultures. A group of five pigs, intramuscularly inoculated with 102 HAD50 of ASFV-G-ΔH108R, was observed over a 28-day period and compared with a similar group of animals inoculated with similar doses of the parental virulent virus. While all animals inoculated with ASFV-G developed an acute fatal disease, ASFV-G-ΔH108R inoculated animals, with the exception of one animal showing a protracted but fatal form of the disease, all survived the infection, remaining clinically healthy during the observational period. The surviving animals presented protracted viremias with lower virus titers compared with those of animals inoculated with the parental virus, and all of them developed a strong virus-specific antibody response. Importantly, all animals surviving ASFV-G-ΔAH108R infection were protected when challenged with the virulent parental strain, ASFV-G. This report constitutes the first evidence that the H108R gene is involved in ASFV virulence in swine and that the deletion of this gene may be used as a tool to increase the attenuation of currently experimental vaccines to improve their safety profiles. IMPORTANCE Currently, there is no commercial vaccine available to prevent ASF. ASFV-Georgia2007 (ASFV-G) and its field isolate derivatives are producing a large pandemic which is drastically affecting pork production in Eurasia. We present here the discovery of a novel virus determinant of virulence, the H108R gene, which, when deleted from the ASFV-G genome, significantly reduces virus virulence in domestic swine. Additionally, animals that survive the inoculation with a recombinant virus harboring a deletion of the H108R gene, ASFV-G-ΔH108R, are protected against a challenge with the virulent parental virus. Although presenting residual virulence, ASFV-G-ΔH108R confers protection even at low doses (102 HAD50), demonstrating its potential to be used as an additional gene deletion to increase the safety profile of the preexisting vaccine candidate.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Animais , Deleção de Genes , Genes Virais , Pandemias , Suínos , Vacinas Virais/genética , Virulência/genética
13.
Microb Pathog ; 175: 105957, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36572196

RESUMO

African swine fever (ASF) is an infectious disease caused by the African swine fever virus (ASFV), and has a high mortality rate. It has caused serious socioeconomic consequences worldwide. Currently, there are no available commercial vaccines or antiviral drug interventions. D1133L is one of the key genes for ASFV replication and antiviral drug screening. In this study, a virtual screening software program, PyRx, was used to screen libraries of compounds against the potential drug target D1133L. Twelve compounds with a high affinity for ASFV D1133L were screened, and cyproheptadine hydrochloride (periactin) was identified as a candidate drug. The periactin has little cytotoxicity, and which dose-dependently inhibited ASFV replication in vitro. Further research indicated that periactin could significantly down-regulate D1133L at the transcriptional and protein levels with RT-qPCR and western blot methods. This study has provided important candidate drugs for the prevention and treatment of ASF, as well as biological materials and new fields of view for the research and development of vaccines and drugs for ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/tratamento farmacológico , Febre Suína Africana/prevenção & controle , Replicação Viral , Antivirais/farmacologia , Antivirais/metabolismo , Ciproeptadina/metabolismo , Ciproeptadina/farmacologia
14.
J Comput Aided Mol Des ; 37(9): 453-461, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452977

RESUMO

African swine fever virus (ASFV), an extremely contagious virus with high mortality rates, causes severe hemorrhagic viral disease in both domestic and wild pigs. Fortunately, ASFV cannot be transmitted from pigs to humans. However, ongoing ASFV outbreaks could have severe economic consequences for global food security. Although ASFV was discovered several years ago, no vaccines or treatments are commercially available yet; therefore, the identification of new anti-ASFV drugs is urgently warranted. Using molecular docking and machine learning, we have previously identified pentagastrin, cangrelor, and fostamatinib as potential antiviral drugs against ASFV. Here, using machine learning combined with docking simulations, we identified natural products with a high affinity for AsfvPolX proteins. We selected five natural products (NPs) that are located close in chemical space to the six known natural flavonoids that possess anti-ASFV activity. Polygalic acid markedly reduced AsfvPolX polymerase activity in a dose-dependent manner. We propose an efficient protocol for identifying NPs as potential antiviral drugs by identifying chemical spaces containing high-affinity binders against ASFV in NP databases.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Humanos , Suínos , Animais , Febre Suína Africana/prevenção & controle , Simulação de Acoplamento Molecular , Proteínas Virais , Antivirais/farmacologia , Técnicas In Vitro , Aprendizado de Máquina
15.
Virus Genes ; 59(1): 13-24, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36229722

RESUMO

African swine fever virus (ASFV) is a highly pathogenic double-stranded DNA virus. It affects various breeds of pigs, causing serious economic losses and health threats because of its rapid spread and high pathogenicity and infectivity. This situation is not helped by the lack of a validated vaccine or effective therapies. Since the 1960s, different strains of ASFV have been subjected to serial passage in a variety of cell lines. The attenuated ASFV strains obtained through serial passage are not only candidates for ASF vaccine research, but also are useful to study the molecular genetic characteristics and pathogenic mechanism of the virus. This review summarizes related studies on the attenuated strains of ASFV acquired through cell passage over the last 60 years, with the aim of providing inspiration for the rational design of vaccines in future.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Virulência , Técnicas de Cultura de Células , Vacinas Atenuadas
16.
Appl Microbiol Biotechnol ; 107(15): 4947-4959, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37306707

RESUMO

Infectious African swine fever virus (ASFV) can cause the spread and morbidity of African swine fever, while the inactivated virus cannot. When they are not distinguished separately, the detection results will lack authenticity and cause unnecessary panic and detection cost. The detection technology based on cell culture is complex, high-cost, and time-consuming in practice, which is not conducive to the rapid detection of infectious ASFV. In this study, a propidium monoazide (PMA) qPCR detection method for rapid diagnosis of infectious ASFV was constructed. Parameters of PMA concentration, light intensity, and lighting time were under strict safety verification and comparative analysis for optimization. The results determined that the optimal condition for PMA to pretreat ASFV was the final concentration of PMA 100 µM. The light intensity was 40 W, the light duration was 20 min, the target fragment size of the optimal primer probe was 484 bp, and its detection sensitivity for infectious ASFV was 101.28 HAD50/mL. In addition, the method was innovatively applied to the rapid evaluation of disinfection effect. When ASFV concentration was less than 102.28 HAD50/mL, the method could still be effective for the evaluation of thermal inactivation effect, and the evaluation ability of chlorine-containing disinfectants was better, and the applicable concentration could reach 105.28 HAD50/mL. It is worth mentioning that this method can not only reflect whether the virus is inactivated, but also indirectly reflect the degree of damage to viral nucleic acid caused by disinfectants. In conclusion, the PMA-qPCR constructed in this study can be applied to laboratory diagnosis, disinfection effect evaluation, drug development, and other aspects of infectious ASFV and can provide new technical support for effective prevention and control of ASF. KEY POINTS: • A rapid detection method for infectious ASFV was developed • Provide a new scheme for rapid evaluation of disinfection effect of chlorine-containing disinfectants • PMA-qPCR can simultaneously show the survival status of the virus and the damage of nucleic acid.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Desinfetantes , Suínos , Animais , Febre Suína Africana/prevenção & controle , Desinfecção/métodos , Cloro/farmacologia , Desinfetantes/farmacologia
17.
J Nanobiotechnology ; 21(1): 424, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964304

RESUMO

The African swine fever (ASF) pandemics pose a significant threat to the global swine industry, and the development of safe and effective vaccines is a daunting but necessary challenge. The level and persistence of immunity are very important for the effectiveness of the vaccine. Targeting antigens to antigen presenting cells (APCs) can greatly enhance immunogenicity. In this study, we developed a self-assembled nano-ASFV vaccine candidate (NanoFVax) targeting DCs, by covalently coupling the self-assembled 24-mer ferritin with the dominant B and T cell epitopes of the highly immunogenic ASFV antigen (p72, CD2v, pB602L and p30) and fused with the chemokine receptor XCL1 (a DC targeting molecule) through the SpyTag/SpyCatcher protein ligase system. Compared to monomeric protein, the nanoparticle vaccines can induce a more robust T-cell response, and the high-level antibody response against ASFV can last for more than 231 days. Therefore, the NanoFVax is a novel and promising vaccine candidate for ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Suínos , Febre Suína Africana/prevenção & controle , Nanovacinas , Epitopos de Linfócito T , Imunidade
18.
Biologicals ; 83: 101685, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37276750

RESUMO

African swine fever (ASF) is a devastating disease that is currently producing a panzootic significantly impacting the swine industry worldwide. One of the major challenges for advancing the development of ASF vaccines has been the absence of international standards for ASF vaccine purity, potency, safety, and efficacy. To date, the most effective experimental vaccines have been live attenuated strains of viruses. Most of these promising vaccine candidates have been developed by deleting virus genes involved in the process of viral pathogenesis and disease production. This approach requires genomic modification of a parental virus field strain through a process of homologous recombination followed by purification of the recombinant attenuated virus. In this scenario, it is critical to confirm the absence of any parental virulent virus in the final virus stock used for vaccine production. We present here a protocol to establish the purity of virus stock using the live attenuated vaccine candidates ASFV-G-ΔMGF, ASFV-G-Δ9 GLΔUK and ASFV-G-ΔI177L. Procedures described here includes inoculation in susceptible pigs followed by the assessment of the obtained material by differential qPCRs that allows the identification of vaccine virus from ASFV field isolates. This protocol is proposed as a model to ensure that master seed virus stock used for vaccine production does not contain residual parental virulent virus. Procedures described here includes a passage in susceptible pigs followed by the assessment of the obtained material by differential qPCRs that allows the identification of vaccine virus from ASFV field isolates.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Vacinas Atenuadas , Virulência , Proteínas Virais/genética , Vacinas Sintéticas
19.
Proc Natl Acad Sci U S A ; 117(20): 11000-11009, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32358196

RESUMO

African swine fever virus (ASFV) is a highly contagious nucleocytoplasmic large DNA virus (NCLDV) that causes nearly 100% mortality in swine. The development of effective vaccines and drugs against this virus is urgently needed. pA104R, an ASFV-derived histone-like protein, shares sequence and functional similarity with bacterial HU/IHF family members and is essential for viral replication. Herein, we solved the crystal structures of pA104R in its apo state as well as in complex with DNA. Apo-pA104R forms a homodimer and folds into an architecture conserved in bacterial heat-unstable nucleoid proteins/integration host factors (HUs/IHFs). The pA104R-DNA complex structure, however, uncovers that pA104R has a DNA binding pattern distinct from its bacterial homologs, that is, the ß-ribbon arms of pA104R stabilize DNA binding by contacting the major groove instead of the minor groove. Mutations of the basic residues at the base region of the ß-strand DNA binding region (BDR), rather than those in the ß-ribbon arms, completely abolished DNA binding, highlighting the major role of the BDR base in DNA binding. An overall DNA bending angle of 93.8° is observed in crystal packing of the pA104R-DNA complex structure, which is close to the DNA bending angle in the HU-DNA complex. Stilbene derivatives SD1 and SD4 were shown to disrupt the binding between pA104R and DNA and inhibit the replication of ASFV in primary porcine alveolar macrophages. Collectively, these results reveal the structural basis of pA104R binding to DNA highlighting the importance of the pA104R-DNA interaction in the ASFV replication cycle and provide inhibitor leads for ASFV chemotherapy.


Assuntos
Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/fisiologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/efeitos dos fármacos , DNA/química , Estilbenos/farmacologia , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/genética , Animais , Sequência de Bases , Proteínas de Ligação a DNA/metabolismo , Escherichia coli , Histonas/química , Modelos Moleculares , Conformação Proteica , Suínos , Replicação Viral/efeitos dos fármacos
20.
Rev Sci Tech ; 42: 149-160, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37232309

RESUMO

African swine fever (ASF) and classical swine fever (CSF) are transboundary animal diseases (TADs) of pigs. Much effort and resources are regularly put into preventing these diseases' introduction in free areas. Passive surveillance activities bring the highest chances for the early detection of TAD incursions because they are routinely and widely conducted at farms, and because these activities focus on the time between introduction and when the first sample is sent for diagnostic testing. The authors proposed the implementation of an enhanced passive surveillance (EPS) protocol based on collecting data through participatory surveillance actions using an objective and adaptable scoring system to aid the early detection of ASF or CSF at the farm level. The protocol was applied in two commercial pig farms for ten weeks in the Dominican Republic, which is a CSF- and ASF-infected country. This study was a proof of concept, based on the EPS protocol to aid detection of substantial variations in the risk score triggering testing. One of the followed farms had score variation, which triggered testing of the animals, although the test results were negative. The study enables assessment of some of the weaknesses associated with passive surveillance and provides lessons applicable to the problem. Results demonstrate the potential for overcoming some issues preventing the broad application of EPS protocols and suggest that standardised approaches may contribute to the early detection of CSF and ASF introductions.


La peste porcine africaine (PPA) et la peste porcine classique (PPC) sont des maladies animales transfrontalières touchant les porcs. De nombreux efforts et ressources sont régulièrement alloués pour prévenir l'introduction de ces maladies dans des zones indemnes. Les activités de surveillance passive offrent les meilleures perspectives de détection précoce des incursions de maladies animales transfrontalières parce qu'elles sont menées de manière systématique et exhaustive dans les élevages, et parce qu'elles se concentrent sur la période entre l'introduction de la maladie et le moment où le premier échantillon est envoyé au laboratoire pour analyse. Les auteurs proposent la mise en oeuvre d'un protocole de surveillance passive renforcée fondé sur la collecte de données via des actions de surveillance participative utilisant un système de notation objectif et adaptable, en vue d'une détection précoce de la PPA et de la PPC dans les élevages. Ce protocole a été appliqué en République dominicaine, pays infecté par la PPA et la PPC, dans deux élevages porcins commerciaux pendant dix semaines. Cette étude était destinée à valider le principe de la méthode et se fondait sur le protocole de surveillance passive renforcée pour mieux détecter les variations substantielles de la note de risque qui conduisent à tester les animaux. L'un des élevages suivis a présenté une variation de cette note, ce qui a conduit à tester les animaux mais les tests se sont révélés négatifs. L'étude permet d'évaluer certaines des faiblesses associées à la surveillance passive et apporte des enseignements applicables à ce problème. Les résultats illustrent le potentiel de l'approche à surmonter certaines des problématiques empêchant l'application extensive des protocoles de surveillance passive renforcée. Ils suggèrent également que des approches normalisées pourraient contribuer à la détection précoce des cas d'introduction de la PPC et de la PPA.


La peste porcina africana (PPA) y la peste porcina clásica (PPC) son enfermedades animales transfronterizas que afectan al cerdo. Periódicamente se dedican grandes esfuerzos y cuantiosos recursos a evitar que estas enfermedades penetren en zonas que están exentas de ellas. Las actividades de vigilancia pasiva son las más eficaces para detectar con prontitud toda incursión de enfermedades animales transfronterizas, no solo por la regularidad y amplitud con que se llevan a cabo en las explotaciones, sino también porque inciden específicamente en el intervalo entre la penetración de una enfermedad y el momento en que se envía la primera muestra para que sea sometida a pruebas de diagnóstico. Los autores propusieron que se aplicara un protocolo de vigilancia pasiva reforzada que reposaba en la obtención de datos mediante actividades de vigilancia participativa, empleando para ello un sistema objetivo y adaptable de puntuación que ayudaba a detectar con prontitud la presencia en las explotaciones de PPA o PPC. Dicho protocolo fue aplicado a lo largo de diez semanas en dos explotaciones porcinas industriales de la República Dominicana, país en el que ambas infecciones están presentes. El estudio, que sirvió para poner a prueba la idea, pasaba por la aplicación del protocolo de vigilancia pasiva reforzada para ayudar a detectar variaciones sustanciales de la puntuación del nivel de riesgo que activa la realización de pruebas. En una de las explotaciones estudiadas se produjo una variación de la puntuación, cosa que activó la realización de pruebas en los animales, aunque estas arrojaron resultado negativo. El estudio aquí descrito permite evaluar algunos de los puntos débiles de la vigilancia pasiva y extraer enseñanzas aplicables al problema. Los resultados demuestran que es posible salvar algunas de las dificultades que impiden la aplicación generalizada de protocolos de vigilancia pasiva reforzada y dejan pensar que quizá el uso de planteamientos normalizados pueda ayudar a detectar con prontitud los casos de penetración de PPC o PPA.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Peste Suína Clássica , Doenças dos Suínos , Suínos , Animais , Peste Suína Clássica/diagnóstico , Peste Suína Clássica/epidemiologia , Peste Suína Clássica/prevenção & controle , Febre Suína Africana/diagnóstico , Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Fatores de Risco , Fazendas , Sus scrofa , Doenças dos Suínos/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA