Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(3): 446-461.e7, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38423012

RESUMO

In response to viral infection, how cells balance translational shutdown to limit viral replication and the induction of antiviral components like interferons (IFNs) is not well understood. Moreover, how distinct isoforms of IFN-induced oligoadenylate synthetase 1 (OAS1) contribute to this antiviral response also requires further elucidation. Here, we show that human, but not mouse, OAS1 inhibits SARS-CoV-2 replication through its canonical enzyme activity via RNase L. In contrast, both mouse and human OAS1 protect against West Nile virus infection by a mechanism distinct from canonical RNase L activation. OAS1 binds AU-rich elements (AREs) of specific mRNAs, including IFNß. This binding leads to the sequestration of IFNß mRNA to the endomembrane regions, resulting in prolonged half-life and continued translation. Thus, OAS1 is an ARE-binding protein with two mechanisms of antiviral activity: driving inhibition of translation but also a broader, non-canonical function of protecting IFN expression from translational shutdown.


Assuntos
2',5'-Oligoadenilato Sintetase , Interferons , Oligorribonucleotídeos , Viroses , Febre do Nilo Ocidental , Animais , Humanos , Camundongos , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Nucleotídeos de Adenina , Antivirais/farmacologia , Febre do Nilo Ocidental/genética , Febre do Nilo Ocidental/metabolismo , Vírus do Nilo Ocidental/metabolismo , Vírus do Nilo Ocidental/patogenicidade
2.
Immunol Cell Biol ; 102(4): 280-291, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38421112

RESUMO

Natural killer (NK) cells are cytotoxic lymphocytes important for viral defense. West Nile virus (WNV) infection of the central nervous system (CNS) causes marked recruitment of bone marrow (BM)-derived monocytes, T cells and NK cells, resulting in severe neuroinflammation and brain damage. Despite substantial numbers of NK cells in the CNS, their function and phenotype remain largely unexplored. Here, we demonstrate that NK cells mature from the BM to the brain, upregulate inhibitory receptors and show reduced cytokine production and degranulation, likely due to the increased expression of the inhibitory NK cell molecule, MHC-I. Intriguingly, this correlated with a reduction in metabolism associated with cytotoxicity in brain-infiltrating NK cells. Importantly, the degranulation and killing capability were restored in NK cells isolated from WNV-infected tissue, suggesting that WNV-induced NK cell inhibition occurs in the CNS. Overall, this work identifies a potential link between MHC-I inhibition of NK cells and metabolic reduction of their cytotoxicity during infection.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/genética , Encéfalo , Células Matadoras Naturais , Linfócitos T
3.
Biomolecules ; 14(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39062523

RESUMO

Microglia, the resident macrophages of the central nervous system, exhibit altered gene expression in response to various neurological conditions. This study investigates the relationship between West Nile Virus infection and microglial senescence, focusing on the role of LGALS3BP, a protein implicated in both antiviral responses and aging. Using spatial transcriptomics, RNA sequencing and flow cytometry, we characterized changes in microglial gene signatures in adult and aged mice following recovery from WNV encephalitis. Additionally, we analyzed Lgals3bp expression and generated Lgals3bp-deficient mice to assess the impact on neuroinflammation and microglial phenotypes. Our results show that WNV-activated microglia share transcriptional signatures with aged microglia, including upregulation of genes involved in interferon response and inflammation. Lgals3bp was broadly expressed in the CNS and robustly upregulated during WNV infection and aging. Lgals3bp-deficient mice exhibited reduced neuroinflammation, increased homeostatic microglial numbers, and altered T cell populations without differences in virologic control or survival. These data indicate that LGALS3BP has a role in regulating neuroinflammation and microglial activation and suggest that targeting LGALS3BP might provide a potential route for mitigating neuroinflammation-related cognitive decline in aging and post-viral infections.


Assuntos
Córtex Cerebral , Glicoproteínas , Microglia , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Masculino , Camundongos , Envelhecimento/genética , Envelhecimento/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Senescência Celular/genética , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/virologia , Microglia/patologia , Fenótipo , Febre do Nilo Ocidental/genética , Febre do Nilo Ocidental/virologia , Febre do Nilo Ocidental/patologia , Febre do Nilo Ocidental/metabolismo , Vírus do Nilo Ocidental/fisiologia , Glicoproteínas/genética , Glicoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA