Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
1.
Cell ; 173(5): 1111-1122.e10, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29606355

RESUMO

The development of interventions to prevent congenital Zika syndrome (CZS) has been limited by the lack of an established nonhuman primate model. Here we show that infection of female rhesus monkeys early in pregnancy with Zika virus (ZIKV) recapitulates many features of CZS in humans. We infected 9 pregnant monkeys with ZIKV, 6 early in pregnancy (weeks 6-7 of gestation) and 3 later in pregnancy (weeks 12-14 of gestation), and compared findings with uninfected controls. 100% (6 of 6) of monkeys infected early in pregnancy exhibited prolonged maternal viremia and fetal neuropathology, including fetal loss, smaller brain size, and histopathologic brain lesions, including microcalcifications, hemorrhage, necrosis, vasculitis, gliosis, and apoptosis of neuroprogenitor cells. High-resolution MRI demonstrated concordant lesions indicative of deep gray matter injury. We also observed spinal, ocular, and neuromuscular pathology. Our data show that vascular compromise and neuroprogenitor cell dysfunction are hallmarks of CZS pathogenesis, suggesting novel strategies to prevent and to treat this disease.


Assuntos
Feto/virologia , Neurônios/patologia , Infecção por Zika virus/patologia , Zika virus/patogenicidade , Animais , Animais Recém-Nascidos , Apoptose , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Calcinose/patologia , Calcinose/veterinária , Feminino , Idade Gestacional , Macaca mulatta , Imageamento por Ressonância Magnética , Necrose , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/virologia , Neurônios/virologia , Gravidez , Índice de Gravidade de Doença , Vasculite/patologia , Vasculite/veterinária , Infecção por Zika virus/veterinária , Infecção por Zika virus/virologia
2.
Cell ; 170(2): 273-283.e12, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28708997

RESUMO

The emergence of Zika virus (ZIKV) and its association with congenital malformations has prompted the rapid development of vaccines. Although efficacy with multiple viral vaccine platforms has been established in animals, no study has addressed protection during pregnancy. We tested in mice two vaccine platforms, a lipid nanoparticle-encapsulated modified mRNA vaccine encoding ZIKV prM and E genes and a live-attenuated ZIKV strain encoding an NS1 protein without glycosylation, for their ability to protect against transmission to the fetus. Vaccinated dams challenged with a heterologous ZIKV strain at embryo day 6 (E6) and evaluated at E13 showed markedly diminished levels of viral RNA in maternal, placental, and fetal tissues, which resulted in protection against placental damage and fetal demise. As modified mRNA and live-attenuated vaccine platforms can restrict in utero transmission of ZIKV in mice, their further development in humans to prevent congenital ZIKV syndrome is warranted.


Assuntos
Vacinas Virais/administração & dosagem , Infecção por Zika virus/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/fisiologia , Aedes/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Células Sanguíneas/virologia , Embrião de Mamíferos/virologia , Feminino , Feto/virologia , Humanos , Lipídeos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Organismos Livres de Patógenos Específicos , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/virologia
3.
Nat Immunol ; 18(11): 1261-1269, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28945244

RESUMO

The Zika virus (ZIKV) epidemic has resulted in congenital abnormalities in fetuses and neonates. Although some cross-reactive dengue virus (DENV)-specific antibodies can enhance ZIKV infection in mice, those recognizing the DENV E-dimer epitope (EDE) can neutralize ZIKV infection in cell culture. We evaluated the therapeutic activity of human monoclonal antibodies to DENV EDE for their ability to control ZIKV infection in the brains, testes, placentas, and fetuses of mice. A single dose of the EDE1-B10 antibody given 3 d after ZIKV infection protected against lethality, reduced ZIKV levels in brains and testes, and preserved sperm counts. In pregnant mice, wild-type or engineered LALA variants of EDE1-B10, which cannot engage Fcg receptors, diminished ZIKV burden in maternal and fetal tissues, and protected against fetal demise. Because neutralizing antibodies to EDE have therapeutic potential against ZIKV, in addition to their established inhibitory effects against DENV, it may be possible to develop therapies that control disease caused by both viruses.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Epitopos/imunologia , Proteínas do Envelope Viral/imunologia , Infecção por Zika virus/imunologia , Animais , Encéfalo/imunologia , Encéfalo/virologia , Chlorocebus aethiops , Reações Cruzadas/imunologia , Vírus da Dengue/classificação , Vírus da Dengue/metabolismo , Feminino , Feto/imunologia , Feto/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Masculino , Camundongos , Testes de Neutralização , Gravidez , Multimerização Proteica/imunologia , Testículo/imunologia , Testículo/virologia , Células Vero , Proteínas do Envelope Viral/química , Carga Viral/imunologia , Zika virus/imunologia , Zika virus/fisiologia , Infecção por Zika virus/virologia
4.
Arch Virol ; 169(6): 133, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829449

RESUMO

Akabane virus (AKAV), Aino virus, Peaton virus, Sathuperi virus, and Shamonda virus are arthropod-borne viruses belonging to the order Elliovirales, family Peribunyaviridae, genus Orthobunyavirus. These viruses cause or may cause congenital malformations in ruminants, including hydranencephaly, poliomyelitis, and arthrogryposis, although their pathogenicity may vary among field cases. AKAV may cause relatively severe congenital lesions such as hydranencephaly in calves. Furthermore, strains of AKAV genogroups I and II exhibit different disease courses. Genogroup I strains predominantly cause postnatal viral encephalomyelitis, while genogroup II strains are primarily detected in cases of congenital malformation. However, the biological properties of AKAV and other orthobunyaviruses are insufficiently investigated in hosts in the field and in vitro. Here, we used an immortalized bovine brain cell line (FBBC-1) to investigate viral replication efficiency, cytopathogenicity, and host innate immune responses. AKAV genogroup II and Shamonda virus replicated to higher titers in FBBC-1 cells compared with the other viruses, and only AKAV caused cytopathic effects. These results may be associated with the severe congenital lesions in the brain caused by AKAV genogroup II. AKAV genogroup II strains replicated to higher titers in FBBC-1 cells than AKAV genogroup I strains, suggesting that genogroup II strains replicated more efficiently in fetal brain cells, accounting for the detection of the latter strains mainly in fetal infection cases. Therefore, FBBC-1 cells may serve as a valuable tool for investigating the virulence and tropism of the orthobunyaviruses for bovine neonatal brain tissues in vitro.


Assuntos
Encéfalo , Infecções por Bunyaviridae , Orthobunyavirus , Replicação Viral , Animais , Bovinos , Orthobunyavirus/patogenicidade , Orthobunyavirus/genética , Orthobunyavirus/fisiologia , Orthobunyavirus/classificação , Encéfalo/virologia , Encéfalo/patologia , Linhagem Celular , Infecções por Bunyaviridae/virologia , Infecções por Bunyaviridae/veterinária , Infecções por Bunyaviridae/patologia , Doenças dos Bovinos/virologia , Feto/virologia , Efeito Citopatogênico Viral , Imunidade Inata
5.
BMC Vet Res ; 20(1): 255, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867209

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome virus 2 (PRRSV-2) infection during late gestation substantially lowers fetal viability and survival. In a previous genome-wide association study, a single nucleotide polymorphism on chromosome 7 was significantly associated with probability of fetuses being viable in response to maternal PRRSV-2 infection at 21 days post maternal inoculation. The iodothyronine deiodinase 2 (DIO2) gene, located ~ 14 Kilobase downstream of this SNP, was selected as a priority candidate related to fetal susceptibility following maternal PRRSV-2 infection. Our objectives were to identify mutation(s) within the porcine DIO2 gene and to determine if they were associated with fetal outcomes after PRRSV-2 challenge. Sequencing of the DIO2, genotyping identified variants, and association of DIO2 genotypes with fetal phenotypes including DIO2 mRNA levels, viability, survival, viral loads, cortisol and thyroid hormone levels, and growth measurements were conducted. RESULTS: A missense variant (p.Asn91Ser) was identified in the parental populations from two independent PRRSV-2 challenge trials. This variant was further genotyped to determine association with fetal PRRS outcomes. DIO2 mRNA levels in fetal heart and kidney differed by the genotypes of Asn91Ser substitution with significantly greater DIO2 mRNA expression in heterozygotes compared with wild-type homozygotes (P < 0.001 for heart, P = 0.002 for kidney). While Asn91Ser did not significantly alter fetal viability and growth measurements, interaction effects of the variant with fetal sex or trial were identified for fetal viability or crown rump length, respectively. However, this mutation was not related to dysregulation of the hypothalamic-pituitary-adrenal and thyroid axis, indicated by no differences in circulating cortisol, T4, and T3 levels in fetuses of the opposing genotypes following PRRSV-2 infection. CONCLUSIONS: The present study suggests that a complex relationship among DIO2 genotype, DIO2 expression, fetal sex, and fetal viability may exist during the course of fetal PRRSV infection. Our study also proposes the increase in cortisol levels, indicative of fetal stress response, may lead to fetal complications, such as fetal compromise, fetal death, or premature farrowing, during PRRSV infection.


Assuntos
Iodeto Peroxidase , Mutação de Sentido Incorreto , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/virologia , Feminino , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Gravidez , Iodotironina Desiodinase Tipo II , Genótipo , Feto/virologia
6.
Proc Natl Acad Sci U S A ; 117(14): 7981-7989, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32209664

RESUMO

Human infection by Zika virus (ZIKV) during pregnancy can lead to vertical transmission and fetal aberrations, including microcephaly. Prophylactic administration of antibodies can diminish or prevent ZIKV infection in animal models, but whether passive immunization can protect nonhuman primates and their fetuses during pregnancy has not been determined. Z004 and Z021 are neutralizing monoclonal antibodies to domain III of the envelope (EDIII) of ZIKV. Together the two antibodies protect nonpregnant macaques against infection even after Fc modifications to prevent antibody-dependent enhancement (ADE) in vitro and extend their half-lives. Here we report on prophylactic coadministration of the Fc-modified antibodies to pregnant rhesus macaques challenged three times with ZIKV during first and second trimester. The two antibodies did not entirely eliminate maternal viremia but limited vertical transmission, protecting the fetus from neurologic damage. Thus, maternal passive immunization with two antibodies to EDIII can shield primate fetuses from the harmful effects of ZIKV.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Complicações Infecciosas na Gravidez/prevenção & controle , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Feto/imunologia , Feto/virologia , Células HEK293 , Humanos , Fragmentos Fc das Imunoglobulinas/administração & dosagem , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/administração & dosagem , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/virologia , Engenharia de Proteínas , RNA Viral/isolamento & purificação , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Zika virus/genética , Zika virus/patogenicidade , Infecção por Zika virus/imunologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
7.
J Virol ; 95(21): e0081821, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34379510

RESUMO

Zika virus (ZIKV) is a flavivirus that causes a constellation of adverse fetal outcomes collectively termed congenital Zika syndrome (CZS). However, not all pregnancies exposed to ZIKV result in an infant with apparent defects. During the 2015 to 2016 American outbreak of ZIKV, CZS rates varied by geographic location. The underlying mechanisms responsible for this heterogeneity in outcomes have not been well defined. Therefore, we sought to characterize and compare the pathogenic potential of multiple Asian-/American-lineage ZIKV strains in an established Ifnar1-/- pregnant mouse model. Here, we show significant differences in the rate of fetal demise following maternal inoculation with ZIKV strains from Puerto Rico, Panama, Mexico, Brazil, and Cambodia. Rates of fetal demise broadly correlated with maternal viremia but were independent of fetus and placenta virus titer, indicating that additional underlying factors contribute to fetal outcome. Our results, in concert with those from other studies, suggest that subtle differences in ZIKV strains may have important phenotypic impacts. With ZIKV now endemic in the Americas, greater emphasis needs to be placed on elucidating and understanding the underlying mechanisms that contribute to fetal outcome. IMPORTANCE Zika virus (ZIKV) transmission has been reported in 87 countries and territories around the globe. ZIKV infection during pregnancy is associated with adverse fetal outcomes, including birth defects, microcephaly, neurological complications, and even spontaneous abortion. Rates of adverse fetal outcomes vary between regions, and not every pregnancy exposed to ZIKV results in birth defects. Not much is known about how or if the infecting ZIKV strain is linked to fetal outcomes. Our research provides evidence of phenotypic heterogeneity between Asian-/American-lineage ZIKV strains and provides insight into the underlying causes of adverse fetal outcomes. Understanding ZIKV strain-dependent pathogenic potential during pregnancy and elucidating underlying causes of diverse clinical sequelae observed during human infections is critical to understanding ZIKV on a global scale.


Assuntos
Feto/patologia , Complicações Infecciosas na Gravidez/virologia , Receptor de Interferon alfa e beta/genética , Infecção por Zika virus/imunologia , Animais , Modelos Animais de Doenças , Feminino , Feto/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placenta/virologia , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Infecção por Zika virus/congênito
8.
J Virol ; 95(17): e0070521, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34260264

RESUMO

The latest outbreak of Zika virus (ZIKV) in the Americas was associated with significant neurologic complications, including microcephaly of newborns. We evaluated mechanisms that regulate ZIKV entry into human fetal astrocytes (HFAs). Astrocytes are key players in maintaining brain homeostasis. We show that the central mediator of canonical Wnt signaling, ß-catenin, regulates Axl, a receptor for ZIKV infection of HFAs, at the transcriptional level. In turn, ZIKV inhibited ß-catenin, potentially as a mechanism to overcome its restriction of ZIKV internalization through regulation of Axl. This was evident with three ZIKV strains tested but not with a laboratory-adapted strain which has a large deletion in its envelope gene. Finally, we show that ß-catenin-mediated Axl-dependent internalization of ZIKV may be of increased importance for brain cells, as it regulated ZIKV infection of astrocytes and human brain microvascular cells but not kidney epithelial (Vero) cells. Collectively, our studies reveal a role for ß-catenin in ZIKV infection and highlight a dynamic interplay between ZIKV and ß-catenin to modulate ZIKV entry into susceptible target cells. IMPORTANCE ZIKV is an emerging pathogen with sporadic outbreaks throughout the world. The most recent outbreak in North America was associated with small brains (microcephaly) in newborns. We studied the mechanism(s) that may regulate ZIKV entry into astrocytes. Astrocytes are a critical resident brain cell population with diverse functions that maintain brain homeostasis, including neurogenesis and neuronal survival. We show that three ZIKV strains (and not a heavily laboratory-adapted strain with a large deletion in its envelope gene) require Axl for internalization. Most importantly, we show that ß-catenin, the central mediator of canonical Wnt signaling, negatively regulates Axl at the transcriptional level to prevent ZIKV internalization into human fetal astrocytes. To overcome this restriction, ZIKV downregulates ß-catenin to facilitate Axl expression. This highlights a dynamic host-virus interaction whereby ZIKV inhibits ß-catenin to promote its internalization into human fetal astrocytes through the induction of Axl.


Assuntos
Astrócitos/virologia , Encéfalo/virologia , Feto/virologia , Replicação Viral , Infecção por Zika virus/prevenção & controle , Zika virus/fisiologia , beta Catenina/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Chlorocebus aethiops , Feto/metabolismo , Humanos , Rim/metabolismo , Rim/virologia , Células Vero , Internalização do Vírus , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia , beta Catenina/genética
9.
Nature ; 534(7606): 267-71, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27279226

RESUMO

Zika virus (ZIKV) is an arbovirus belonging to the genus Flavivirus (family Flaviviridae) and was first described in 1947 in Uganda following blood analyses of sentinel Rhesus monkeys. Until the twentieth century, the African and Asian lineages of the virus did not cause meaningful infections in humans. However, in 2007, vectored by Aedes aegypti mosquitoes, ZIKV caused the first noteworthy epidemic on the Yap Island in Micronesia. Patients experienced fever, skin rash, arthralgia and conjunctivitis. From 2013 to 2015, the Asian lineage of the virus caused further massive outbreaks in New Caledonia and French Polynesia. In 2013, ZIKV reached Brazil, later spreading to other countries in South and Central America. In Brazil, the virus has been linked to congenital malformations, including microcephaly and other severe neurological diseases, such as Guillain-Barré syndrome. Despite clinical evidence, direct experimental proof showing that the Brazilian ZIKV (ZIKV(BR)) strain causes birth defects remains absent. Here we demonstrate that ZIKV(BR) infects fetuses, causing intrauterine growth restriction, including signs of microcephaly, in mice. Moreover, the virus infects human cortical progenitor cells, leading to an increase in cell death. We also report that the infection of human brain organoids results in a reduction of proliferative zones and disrupted cortical layers. These results indicate that ZIKV(BR) crosses the placenta and causes microcephaly by targeting cortical progenitor cells, inducing cell death by apoptosis and autophagy, and impairing neurodevelopment. Our data reinforce the growing body of evidence linking the ZIKV(BR) outbreak to the alarming number of cases of congenital brain malformations. Our model can be used to determine the efficiency of therapeutic approaches to counteracting the harmful impact of ZIKV(BR) in human neurodevelopment.


Assuntos
Modelos Animais de Doenças , Microcefalia/virologia , Zika virus/patogenicidade , Animais , Apoptose , Autofagia , Encéfalo/patologia , Encéfalo/virologia , Brasil/epidemiologia , Proliferação de Células , Feminino , Retardo do Crescimento Fetal/patologia , Retardo do Crescimento Fetal/virologia , Feto/virologia , Camundongos , Microcefalia/epidemiologia , Microcefalia/etiologia , Microcefalia/patologia , Células-Tronco Neurais/patologia , Células-Tronco Neurais/virologia , Organoides/patologia , Organoides/virologia , Placenta/virologia , Gravidez , Infecção por Zika virus/complicações , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia
10.
Nature ; 540(7633): 443-447, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27819683

RESUMO

Zika virus (ZIKV) is an emerging mosquito-transmitted flavivirus that can cause severe disease, including congenital birth defects during pregnancy. To develop candidate therapeutic agents against ZIKV, we isolated a panel of human monoclonal antibodies from subjects that were previously infected with ZIKV. We show that a subset of antibodies recognize diverse epitopes on the envelope (E) protein and exhibit potent neutralizing activity. One of the most inhibitory antibodies, ZIKV-117, broadly neutralized infection of ZIKV strains corresponding to African and Asian-American lineages. Epitope mapping studies revealed that ZIKV-117 recognized a unique quaternary epitope on the E protein dimer-dimer interface. We evaluated the therapeutic efficacy of ZIKV-117 in pregnant and non-pregnant mice. Monoclonal antibody treatment markedly reduced tissue pathology, placental and fetal infection, and mortality in mice. Thus, neutralizing human antibodies can protect against maternal-fetal transmission, infection and disease, and reveal important determinants for structure-based rational vaccine design efforts.


Assuntos
Anticorpos Neutralizantes/imunologia , Doenças Fetais/prevenção & controle , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Replicação Viral/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia , Zika virus/crescimento & desenvolvimento , Zika virus/imunologia , África , América , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Especificidade de Anticorpos , Ásia , Linfócitos B/imunologia , Modelos Animais de Doenças , Mapeamento de Epitopos , Feminino , Doenças Fetais/imunologia , Doenças Fetais/virologia , Feto/imunologia , Feto/virologia , Humanos , Masculino , Camundongos , Modelos Moleculares , Placenta/imunologia , Placenta/virologia , Gravidez , Multimerização Proteica , Taxa de Sobrevida , Proteínas Virais/química , Proteínas Virais/imunologia , Vacinas Virais/química , Vacinas Virais/imunologia , Infecção por Zika virus/patologia
12.
Cereb Cortex ; 31(5): 2309-2321, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33341889

RESUMO

Zika virus is a teratogen similar to other neurotropic viruses, notably cytomegalovirus and rubella. The goal of these studies was to address the direct impact of Zika virus on fetal development by inoculating early gestation fetal rhesus monkeys using an ultrasound-guided approach (intraperitoneal vs. intraventricular). Growth and development were monitored across gestation, maternal samples collected, and fetal tissues obtained in the second trimester or near term. Although normal growth and anatomical development were observed, significant morphologic changes were noted in the cerebral cortex at 3-weeks post-Zika virus inoculation including massive alterations in the distribution, density, number, and morphology of microglial cells in proliferative regions of the fetal cerebral cortex; an altered distribution of Tbr2+ neural precursor cells; increased diameter and volume of blood vessels in the cortical proliferative zones; and a thinner cortical plate. At 3-months postinoculation, alterations in morphology, distribution, and density of microglial cells were also observed with an increase in blood vessel volume; and a thinner cortical plate. Only transient maternal viremia was observed but sustained maternal immune activation was detected. Overall, these studies suggest persistent changes in cortical structure result from early gestation Zika virus exposure with durable effects on microglial cells.


Assuntos
Células-Tronco Neurais/virologia , Infecção por Zika virus/complicações , Infecção por Zika virus/virologia , Zika virus/patogenicidade , Animais , Desenvolvimento Fetal/fisiologia , Feto/virologia , Macaca mulatta/virologia , Microcefalia/virologia , Neurogênese/fisiologia
13.
J Infect Dis ; 224(Suppl 6): S647-S659, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34293137

RESUMO

BACKGROUND: Expression of angiotensin-converting enzyme 2 (ACE2) and type II transmembrane serine protease (TMPRSS2), host molecules required for viral entry, may underlie sex differences in vulnerability to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We investigated whether placental ACE2 and TMPRSS2 expression vary by fetal sex in the presence of maternal SARS-CoV-2 infection. METHODS: Placental ACE2 and TMPRSS2 expression was quantified by quantitative reverse transcription polymerase chain reaction (RT-PCR) and by Western blot in 68 pregnant women (38 SARS-CoV-2 positive, 30 SARS-CoV-2 negative) delivering at Mass General Brigham from April to June 2020. The impact of fetal sex and maternal SARS-CoV-2 exposure on ACE2 and TMPRSS2 was analyzed by 2-way analysis of variance (ANOVA). RESULTS: Maternal SARS-CoV-2 infection impacted placental TMPRSS2 expression in a sexually dimorphic fashion (2-way ANOVA interaction, P = .002). We observed no impact of fetal sex or maternal SARS-CoV-2 status on ACE2. TMPRSS2 expression was significantly correlated with ACE2 expression in males (Spearman ρ = 0.54, P = .02) but not females (ρ = 0.23, P = .34) exposed to maternal SARS-CoV-2. CONCLUSIONS: Sex differences in placental TMPRSS2 but not ACE2 were observed in the setting of maternal SARS-CoV-2 infection, which may have implications for offspring vulnerability to placental infection.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/diagnóstico , Sangue Fetal/imunologia , Placenta/metabolismo , SARS-CoV-2/imunologia , Serina Endopeptidases/metabolismo , Fatores Sexuais , Adulto , COVID-19/sangue , Feminino , Sangue Fetal/virologia , Feto/virologia , Expressão Gênica , Humanos , Transmissão Vertical de Doenças Infecciosas , Masculino , Gravidez , Complicações Infecciosas na Gravidez/virologia
14.
J Cell Physiol ; 236(7): 4913-4925, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33305387

RESUMO

Zika virus (ZIKV) re-emerged after circulating almost undetected for many years and the last spread in 2015 was the major outbreak reported. ZIKV infection was associated with congenital fetal growth anomalies such as microcephaly, brain calcifications, and low birth weight related to fetal growth restriction. In this study, we investigated the effect of ZIKV infection on first trimester trophoblast cell function and metabolism. We also studied the interaction of trophoblast cells with decidual immune populations. Results presented here demonstrate that ZIKV infection triggered a strong antiviral response in first trimester cytotrophoblast-derived cells, impaired cell migration, increased glucose uptake and GLUT3 expression, and reduced brain derived neurotrophic factor (BDNF) expression. ZIKV infection also conditioned trophoblast cells to favor a tolerogenic response since an increased recruitment of CD14+ monocytes bearing an anti-inflammatory profile, increased CD4+ T cells and NK CD56Dim and NK CD56Bright populations and an increment in the population CD4+ FOXP3+ IL-10+ cells was observed. Interestingly, when ZIKV infection of trophoblast cells occurred in the presence of the vasoactive intestinal peptide (VIP) there was lower detection of viral RNA and reduced toll-like receptor-3 and viperin messenger RNA expression, along with reduced CD56Dim cells trafficking to trophoblast conditioned media. The effects of ZIKV infection on trophoblast cell function and immune-trophoblast interaction shown here could contribute to defective placentation and ZIKV persistence at the fetal-maternal interface. The inhibitory effect of VIP on ZIKV infection of trophoblast cells highlights its potential as a candidate molecule to interfere ZIKV infection during early pregnancy.


Assuntos
Placenta/virologia , Placentação/fisiologia , Trofoblastos/imunologia , Trofoblastos/virologia , Infecção por Zika virus/patologia , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Linfócitos T CD4-Positivos/imunologia , Movimento Celular/fisiologia , Células Cultivadas , Anormalidades Congênitas/virologia , Metabolismo Energético/fisiologia , Feminino , Feto/anormalidades , Feto/virologia , Glucose/metabolismo , Transportador de Glucose Tipo 3/biossíntese , Humanos , Placenta/citologia , Gravidez , Primeiro Trimestre da Gravidez , Peptídeo Intestinal Vasoativo/metabolismo , Zika virus/imunologia
15.
Emerg Infect Dis ; 27(2): 638-641, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33185524

RESUMO

We documented fetal death associated with intrauterine transmission of severe acute respiratory syndrome coronavirus 2. We found chronic histiocytic intervillositis, maternal and fetal vascular malperfusion, microglial hyperplasia, and lymphocytic infiltrate in muscle in the placenta and fetal tissue. Placenta and umbilical cord blood tested positive for the virus by PCR, confirming transplacental transmission.


Assuntos
COVID-19/transmissão , Transmissão Vertical de Doenças Infecciosas , Complicações Infecciosas na Gravidez/virologia , SARS-CoV-2 , Adulto , COVID-19/virologia , Feminino , Morte Fetal/etiologia , Feto/virologia , Humanos , Placenta/virologia , Gravidez
16.
J Gen Virol ; 102(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34410903

RESUMO

An infectious agent's pathogenic and transmission potential is heavily influenced by early events during the asymptomatic or subclinical phase of disease. During this phase, the presence of infectious agent may be relatively low. An important example of this is Zika virus (ZIKV), which can cross the placenta and infect the foetus, even in mothers with subclinical infections. These subclinical infections represent roughly 80 % of all human infections. Initial ZIKV pathogenesis studies were performed in type I interferon receptor (IFNAR) knockout mice. Blunting the interferon response resulted in robust infectivity, and increased the utility of mice to model ZIKV infections. However, due to the removal of the interferon response, the use of these models impedes full characterization of immune responses to ZIKV-related pathologies. Moreover, IFNAR-deficient models represent severe disease whereas less is known regarding subclinical infections. Investigation of the anti-viral immune response elicited at the maternal-foetal interface is critical to fully understand mechanisms involved in foetal infection, foetal development, and disease processes recognized to occur during subclinical maternal infections. Thus, immunocompetent experimental models that recapitulate natural infections are needed. We have established subclinical intravaginal ZIKV infections in mice and guinea pigs. We found that these infections resulted in: the presence of both ZIKV RNA transcripts and infectious virus in maternal and placental tissues, establishment of foetal infections and ZIKV-mediated CXCL10 expression. These models will aid in discerning the mechanisms of subclinical ZIKV mother-to-offspring transmission, and by extension can be used to investigate other maternal infections that impact foetal development.


Assuntos
Feto , Placenta , Complicações Infecciosas na Gravidez , Infecção por Zika virus/virologia , Zika virus , Animais , Chlorocebus aethiops , Feminino , Feto/imunologia , Feto/virologia , Cobaias , Humanos , Transmissão Vertical de Doenças Infecciosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placenta/imunologia , Placenta/virologia , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/virologia , Células Vero , Zika virus/imunologia , Zika virus/patogenicidade
17.
PLoS Pathog ; 15(1): e1007507, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657788

RESUMO

Zika virus (ZIKV) infection during pregnancy in humans is associated with an increased incidence of congenital anomalies including microcephaly as well as fetal death and miscarriage and collectively has been referred to as Congenital Zika Syndrome (CZS). Animal models for ZIKV infection in pregnancy have been developed including mice and non-human primates (NHPs). In macaques, fetal CZS outcomes from maternal ZIKV infection range from none to significant. In the present study we develop the olive baboon (Papio anubis), as a model for vertical transfer of ZIKV during pregnancy. Four mid-gestation, timed-pregnant baboons were inoculated with the French Polynesian ZIKV isolate (104 ffu). This study specifically focused on the acute phase of vertical transfer. Dams were terminated at 7 days post infection (dpi; n = 1), 14 dpi (n = 2) and 21 dpi (n = 1). All dams exhibited mild to moderate rash and conjunctivitis. Viremia peaked at 5-7 dpi with only one of three dams remaining mildly viremic at 14 dpi. An anti-ZIKV IgM response was observed by 14 dpi in all three dams studied to this stage, and two dams developed a neutralizing IgG response by either 14 dpi or 21 dpi, the latter included transfer of the IgG to the fetus (cord blood). A systemic inflammatory response (increased IL2, IL6, IL7, IL15, IL16) was observed in three of four dams. Vertical transfer of ZIKV to the placenta was observed in three pregnancies (n = 2 at 14 dpi and n = 1 at 21 dpi) and ZIKV was detected in fetal tissues in two pregnancies: one associated with fetal death at ~14 dpi, and the other in a viable fetus at 21 dpi. ZIKV RNA was detected in the fetal cerebral cortex and other tissues of both of these fetuses. In the fetus studied at 21 dpi with vertical transfer of virus to the CNS, the frontal cerebral cortex exhibited notable defects in radial glia, radial glial fibers, disorganized migration of immature neurons to the cortical layers, and signs of pathology in immature oligodendrocytes. In addition, indices of pronounced neuroinflammation were observed including astrogliosis, increased microglia and IL6 expression. Of interest, in one fetus examined at 14 dpi without detection of ZIKV RNA in brain and other fetal tissues, increased neuroinflammation (IL6 and microglia) was observed in the cortex. Although the placenta of the 14 dpi dam with fetal death showed considerable pathology, only minor pathology was noted in the other three placentas. ZIKV was detected immunohistochemically in two placentas (14 dpi) and one placenta at 21 dpi but not at 7 dpi. This is the first study to examine the early events of vertical transfer of ZIKV in a NHP infected at mid-gestation. The baboon thus represents an additional NHP as a model for ZIKV induced brain pathologies to contrast and compare to humans as well as other NHPs.


Assuntos
Córtex Cerebral/patologia , Infecção por Zika virus/patologia , Zika virus/patogenicidade , Animais , Encéfalo/patologia , Córtex Cerebral/lesões , Córtex Cerebral/virologia , Modelos Animais de Doenças , Feminino , Morte Fetal , Doenças Fetais/patologia , Feto/virologia , Transmissão Vertical de Doenças Infecciosas , Microcefalia , Papio anubis/microbiologia , Papio anubis/virologia , Placenta/virologia , Gravidez , Complicações Infecciosas na Gravidez/virologia , Viremia , Zika virus/genética , Infecção por Zika virus/virologia
18.
PLoS Pathog ; 15(11): e1008038, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31725819

RESUMO

Zika virus (ZIKV) infection during human pregnancy may lead to severe fetal pathology and debilitating impairments in offspring. However, the majority of infections are subclinical and not associated with evident birth defects. Potentially detrimental life-long health outcomes in asymptomatic offspring evoke high concerns. Thus, animal models addressing sequelae in offspring may provide valuable information. To induce subclinical infection, we inoculated selected porcine fetuses at the mid-stage of development. Inoculation resulted in trans-fetal virus spread and persistent infection in the placenta and fetal membranes for two months. Offspring did not show congenital Zika syndrome (e.g., microcephaly, brain calcifications, congenital clubfoot, arthrogryposis, seizures) or other visible birth defects. However, a month after birth, a portion of offspring exhibited excessive interferon alpha (IFN-α) levels in blood plasma in a regular environment. Most affected offspring also showed dramatic IFN-α shutdown during social stress providing the first evidence for the cumulative impact of prenatal ZIKV exposure and postnatal environmental insult. Other eleven cytokines tested before and after stress were not altered suggesting the specific IFN-α pathology. While brains from offspring did not have histopathology, lesions, and ZIKV, the whole genome expression analysis of the prefrontal cortex revealed profound sex-specific transcriptional changes that most probably was the result of subclinical in utero infection. RNA-seq analysis in the placenta persistently infected with ZIKV provided independent support for the sex-specific pattern of in utero-acquired transcriptional responses. Collectively, our results provide strong evidence that two hallmarks of fetal ZIKV infection, altered type I IFN response and molecular brain pathology can persist after birth in offspring in the absence of congenital Zika syndrome.


Assuntos
Encéfalo/patologia , Doenças Fetais/epidemiologia , Feto/virologia , Interferon-alfa/metabolismo , Complicações Infecciosas na Gravidez/epidemiologia , Útero/virologia , Infecção por Zika virus/virologia , Animais , Antivirais/metabolismo , Encéfalo/metabolismo , Encéfalo/virologia , Doenças Transmissíveis/transmissão , Doenças Transmissíveis/virologia , Feminino , Doenças Fetais/metabolismo , Doenças Fetais/virologia , Feto/metabolismo , Feto/patologia , Masculino , Gravidez , Complicações Infecciosas na Gravidez/metabolismo , Complicações Infecciosas na Gravidez/virologia , Fatores Sexuais , Suínos , Útero/metabolismo , Útero/patologia , Zika virus/patogenicidade , Infecção por Zika virus/patologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/veterinária
19.
J Med Virol ; 93(12): 6788-6793, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34260081

RESUMO

This study aimed to report a case of mild novel coronavirus disease (COVID-19) in a pregnant woman with probable viremia, as reverse transcription-polymerase chain reaction (RT-PCR) testing of endometrial and placental swabs for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was positive. A 26-year-old multigravida at 35 weeks 2 days of gestation, who had extensive thigh and abdominal cellulitis, tested SARS-CoV-2 positive by RT-PCR performed on samples from the endometrium and maternal side of the placenta. However, other samples (amniotic fluid, fetal side of the placenta, umbilical cord, maternal vagina, and neonatal nasopharynx) tested negative for SARS-CoV-2. This is one of the rare reports of probable SARS-CoV-2 viremia with the presence of SARS-CoV-2 in the endometrium and placenta, but not leading to vertical transmission and neonatal infection. Because knowledge about transplacental transmission and results is very limited, we conclude that more RT-PCR tests on placental and cord blood samples are needed in order to safely make definite conclusions.


Assuntos
COVID-19/virologia , Feto/virologia , Placenta/virologia , Complicações Infecciosas na Gravidez/virologia , SARS-CoV-2/genética , Viremia/virologia , Adulto , Feminino , Humanos , Transmissão Vertical de Doenças Infecciosas , Gravidez , Gestantes
20.
J Med Virol ; 93(7): 4480-4487, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764543

RESUMO

To date, mother-to-fetus transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the coronavirus disease 2019 (COVID-19) pandemic, remains controversial. Although placental COVID-19 infection has been documented in some cases during the second- and third-trimesters, no reports are available for the first trimester of pregnancy, and no SARS-CoV-2 protein has been found in fetal tissues. We studied the placenta and fetal organs from an early pregnancy miscarriage in a COVID-19 maternal infection by immunohistochemical, reverse transcription quantitative real-time polymerase chain reaction, immunofluorescence, and electron microscopy methods. SARS-CoV-2 nucleocapsid protein, viral RNA, and particles consistent with coronavirus were found in the placenta and fetal tissues, accompanied by RNA replication revealed by double-stranded RNA (dsRNA) positive immunostain. Prominent damage of the placenta and fetal organs were associated with a hyperinflammatory process identified by histological examination and immunohistochemistry. The findings provided in this study document that congenital SARS-CoV-2 infection is possible during the first trimester of pregnancy and that fetal organs, such as lung and kidney, are targets for coronavirus. The infection and multi-organic fetal inflammation produced by SARS-CoV-2 during early pregnancy should alert clinicians in the assessment and management of pregnant women for possible fetal consequences and adverse perinatal outcomes.


Assuntos
COVID-19/transmissão , Transmissão Vertical de Doenças Infecciosas , Placenta/virologia , Complicações Infecciosas na Gravidez/virologia , SARS-CoV-2/metabolismo , Aborto Espontâneo/virologia , Adulto , COVID-19/patologia , Feminino , Feto/patologia , Feto/virologia , Humanos , Placenta/patologia , Gravidez , Resultado da Gravidez , Primeiro Trimestre da Gravidez , Gestantes , RNA Viral/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA