Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 14: 114, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26246267

RESUMO

BACKGROUND: Streptomyces filipinensis is the industrial producer of filipin, a pentaene macrolide, archetype of non-glycosylated polyenes, and widely used for the detection and the quantitation of cholesterol in biological membranes and as a tool for the diagnosis of Niemann-Pick type C disease. Genetic manipulations of polyene biosynthetic pathways have proven useful for the discovery of products with improved properties. Here, we describe the late biosynthetic steps for filipin III biosynthesis and strategies for the generation of bioactive filipin III derivatives at high yield. RESULTS: A region of 13,778 base pairs of DNA from the S. filipinensis genome was isolated, sequenced, and characterized. Nine complete genes and two truncated ORFs were located. Disruption of genes proved that this genomic region is part of the biosynthetic cluster for the 28-membered ring of the polyene macrolide filipin. This set of genes includes two cytochrome P450 monooxygenase encoding genes, filC and filD, which are proposed to catalyse specific hydroxylations of the macrolide ring at C26 and C1' respectively. Gene deletion and complementation experiments provided evidence for their role during filipin III biosynthesis. Filipin III derivatives were accumulated by the recombinant mutants at high yield. These have been characterized by mass spectrometry and nuclear magnetic resonance following high-performance liquid chromatography purification thus revealing the post-polyketide steps during polyene biosynthesis. Two alternative routes lead to the formation of filipin III from the initial product of polyketide synthase chain assembly and cyclization filipin I, one trough filipin II, and the other one trough 1'-hydroxyfilipin I, all filipin III intermediates being biologically active. Moreover, minimal inhibitory concentration values against Candida utilis and Saccharomyces cerevisiae were obtained for all filipin derivatives, finding that 1'-hydroxyfilipin and especially filipin II show remarkably enhanced antifungal bioactivity. Complete nuclear magnetic resonance assignments have been obtained for the first time for 1'-hydroxyfilipin I. CONCLUSIONS: This report reveals the existence of two alternative routes for filipin III formation and opens new possibilities for the generation of biologically active filipin derivatives at high yield and with improved properties.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/genética , Sistema Enzimático do Citocromo P-450/genética , Filipina/biossíntese , Streptomyces/genética , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/metabolismo , Filipina/análogos & derivados , Dados de Sequência Molecular , Streptomyces/enzimologia , Streptomyces/metabolismo
2.
Appl Microbiol Biotechnol ; 98(22): 9311-24, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25104037

RESUMO

The DNA region encoding the filipin gene cluster in Streptomyces avermitilis (pte) contains a PAS-LuxR regulatory gene, pteF, orthologue to pimM, the final pathway-specific positive regulatory protein of pimaricin biosynthesis in Streptomyces natalensis. Gene replacement of the gene from S. avermitilis chromosome resulted in a severe loss of filipin production and delayed spore formation in comparison to that of the wild-type strain, suggesting that it acts as a positive regulator of filipin biosynthesis and that it may also have a role in sporulation. Complementation of the mutant with a single copy of the gene integrated into the chromosome restored wild-type phenotypes. Heterologous complementation with the regulatory counterpart from S. natalensis also restored parental phenotypes. Gene expression analyses in S. avermitilis wild-type and the mutant by reverse transcription-quantitative polymerase chain reaction of the filipin gene cluster suggested the targets for the regulatory protein. Transcription start points of all the genes of the cluster were studied by 5'-rapid amplification of complementary DNA ends. Transcription start point analysis of the pteF gene revealed that the annotated sequence in the databases is incorrect. Confirmation of target promoters was performed by in silico search of binding sites among identified promoters and the binding of the orthologous regulator for pimaricin biosynthesis PimM to gene promoters by electrophoretic mobility shift assays. Precise binding regions were investigated by DNAse I protection studies. Our results indicate that PteF activates the transcription from two promoters of polyketide synthase genes directly, and indirectly of other genes of the cluster.


Assuntos
Filipina/biossíntese , Regulação Bacteriana da Expressão Gênica , Streptomyces/genética , Streptomyces/metabolismo , Fatores de Transcrição/metabolismo , DNA Bacteriano/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Deleção de Genes , Perfilação da Expressão Gênica , Teste de Complementação Genética , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição
3.
Microbiology (Reading) ; 157(Pt 8): 2266-2275, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21622528

RESUMO

The γ-butyrolactone autoregulator receptor has been shown to control secondary metabolism and/or morphological differentiation across many Streptomyces species. Streptomyces avermitilis produces an important anthelmintic agent (avermectin) and two further polyketide antibiotics, filipin and oligomycin. Genomic analysis of S. avermitilis revealed that this micro-organism has the clustered putative autoregulator receptor genes distant from the antibiotic biosynthetic gene clusters. Here, we describe the characterization of avaR3, one of the clustered receptor genes, which encodes a protein containing an extra stretch of amino acid residues that has not been found in the family of autoregulator receptors. Disruption of avaR3 resulted in markedly decreased production of avermectins, with delayed expression of avermectin biosynthetic genes, suggesting that AvaR3 positively controls the avermectin biosynthetic genes. Moreover, the disruption caused increased production of filipin without any changes in the transcriptional profile of the filipin biosynthetic genes, suggesting that filipin production is indirectly controlled by AvaR3. The avaR3 disruptant displayed fragmented growth in liquid culture and conditional morphological defects on solid medium. These findings demonstrated that AvaR3 acts as a global regulator that controls antibiotic production and cell morphology.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Filipina/biossíntese , Regulação Bacteriana da Expressão Gênica , Ivermectina/análogos & derivados , Streptomyces/citologia , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Vias Biossintéticas/genética , Meios de Cultura/química , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Genes Bacterianos , Ivermectina/metabolismo , Família Multigênica , Mutagênese Insercional , Streptomyces/crescimento & desenvolvimento
4.
Biosci Biotechnol Biochem ; 75(6): 1191-3, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21670513

RESUMO

The filipin biosynthetic gene cluster of Streptomyces avermitilis contains pteB, a homolog of crotonyl-CoA carboxylase/reductase. PteB was predicted to be 2-octenoyl-CoA carboxylase/reductase, supplying hexylmalonyl-CoA to filipin biosynthesis. Recombinant PteB displayed selective reductase activity toward 2-octenoyl-CoA while generating a broad range of alkylmalonyl-CoAs in the presence of bicarbonate.


Assuntos
Acil Coenzima A/metabolismo , Acil-CoA Desidrogenases/metabolismo , Antibacterianos/química , Filipina , Streptomyces/enzimologia , Acil-CoA Desidrogenases/química , Acil-CoA Desidrogenases/genética , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Filipina/biossíntese , Família Multigênica , Plasmídeos , Homologia de Sequência de Aminoácidos , Espectrofotometria , Streptomyces/química , Streptomyces/genética , Transformação Bacteriana
6.
J Neurochem ; 83(5): 1154-63, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12437586

RESUMO

Niemann-Pick type-C (NPC) disease is characterized by a progressive loss of neurons and an accumulation of unesterified cholesterol within the endocytic pathway. Unlike other tissues, however, NPC1-deficient brains do not accumulate cholesterol but whether or not NPC1-deficient neurons accumulate cholesterol is not clear. Therefore, as most studies on cholesterol homeostasis in NPC1-deficient cells have been performed in fibroblasts we have investigated cholesterol homeostasis in cultured murine sympathetic neurons lacking functional NPC1. These neurons did not display obvious abnormalities in growth or morphology and appeared to respond normally to nerve growth factor. Filipin staining revealed numerous cholesterol-filled endosomes/lysosomes in NPC1-deficient neurons and the mass of cholesterol in cell bodies was greater than in wild-type neurons. Surprisingly, however, the cholesterol content of NPC1-deficient and wild-type neurons as a whole was the same. This apparent paradox was resolved when the cholesterol content of NPC1-deficient distal axons was found to be less than of wild-type axons. Cholesterol sequestration in cell bodies did not depend on exogenously supplied cholesterol since the cholesterol accumulated before birth and did not disperse when neurons were cultured without exogenous cholesterol. The altered cholesterol distribution between cell bodies and axons suggests that transport of cholesterol, particularly that synthesized endogenously, from cell bodies to distal axons is impaired in NPC1-deficient neurons.


Assuntos
Colesterol/metabolismo , Neurônios/metabolismo , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/metabolismo , Proteínas/genética , Animais , Antígenos CD/biossíntese , Transporte Axonal/genética , Axônios/metabolismo , Divisão Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colesterol/análise , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Filipina/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana Lisossomal , Camundongos , Camundongos Mutantes Neurológicos , Fator de Crescimento Neural/farmacologia , Neurônios/química , Neurônios/citologia , Proteína C1 de Niemann-Pick , Biossíntese de Proteínas , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA