Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.448
Filtrar
1.
Cell ; 183(7): 1737-1739, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33357397

RESUMO

In this issue of Cell, Strickfaden et al. reveal that condensed chromatin shows a solid-like behavior at mesoscales both in vitro and in living cells. Using fluorescent microscopy, fluorescent recovery after photobleaching, and transmission electron microscopy, this work investigates chromatin condensates, providing new insights into the physical organization of the genome.


Assuntos
Cromatina , Heterocromatina , Recuperação de Fluorescência Após Fotodegradação , Microscopia de Fluorescência , Fotodegradação
2.
Cell ; 183(7): 1772-1784.e13, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33326747

RESUMO

The association of nuclear DNA with histones to form chromatin is essential for temporal and spatial control of eukaryotic genomes. In this study, we examined the physical state of condensed chromatin in vitro and in vivo. Our in vitro studies demonstrate that self-association of nucleosomal arrays under a wide range of solution conditions produces supramolecular condensates in which the chromatin is physically constrained and solid-like. By measuring DNA mobility in living cells, we show that condensed chromatin also exhibits solid-like behavior in vivo. Representative heterochromatin proteins, however, display liquid-like behavior and coalesce around the solid chromatin scaffold. Importantly, euchromatin and heterochromatin show solid-like behavior even under conditions that produce limited interactions between chromatin fibers. Our results reveal that condensed chromatin exists in a solid-like state whose properties resist external forces and create an elastic gel and provides a scaffold that supports liquid-liquid phase separation of chromatin binding proteins.


Assuntos
Cromatina/metabolismo , Acetilação/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatina/efeitos dos fármacos , Dano ao DNA , Eucromatina/metabolismo , Fluorescência , Heterocromatina/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Lasers , Camundongos , Modelos Biológicos , Concentração Osmolar , Fotodegradação
3.
Cell ; 174(2): 377-390.e20, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29961580

RESUMO

RNAs fold into defined tertiary structures to function in critical biological processes. While quantitative models can predict RNA secondary structure stability, we are still unable to predict the thermodynamic stability of RNA tertiary structure. Here, we probe conformational preferences of diverse RNA two-way junctions to develop a predictive model for the formation of RNA tertiary structure. We quantitatively measured tertiary assembly energetics of >1,000 of RNA junctions inserted in multiple structural scaffolds to generate a "thermodynamic fingerprint" for each junction. Thermodynamic fingerprints enabled comparison of junction conformational preferences, revealing principles for how sequence influences 3-dimensional conformations. Utilizing fingerprints of junctions with known crystal structures, we generated ensembles for related junctions that predicted their thermodynamic effects on assembly formation. This work reveals sequence-structure-energetic relationships in RNA, demonstrates the capacity for diverse compensation strategies within tertiary structures, and provides a path to quantitative modeling of RNA folding energetics based on "ensemble modularity."


Assuntos
RNA/metabolismo , Pareamento Incorreto de Bases , Biblioteca Gênica , Conformação de Ácido Nucleico , Fotodegradação , RNA/química , Dobramento de RNA , Estabilidade de RNA , Termodinâmica
4.
Nature ; 622(7981): 195-201, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730991

RESUMO

Type A γ-aminobutyric acid receptors (GABAARs) are the principal inhibitory receptors in the brain and the target of a wide range of clinical agents, including anaesthetics, sedatives, hypnotics and antidepressants1-3. However, our understanding of GABAAR pharmacology has been hindered by the vast number of pentameric assemblies that can be derived from 19 different subunits4 and the lack of structural knowledge of clinically relevant receptors. Here, we isolate native murine GABAAR assemblies containing the widely expressed α1 subunit and elucidate their structures in complex with drugs used to treat insomnia (zolpidem (ZOL) and flurazepam) and postpartum depression (the neurosteroid allopregnanolone (APG)). Using cryo-electron microscopy (cryo-EM) analysis and single-molecule photobleaching experiments, we uncover three major structural populations in the brain: the canonical α1ß2γ2 receptor containing two α1 subunits, and two assemblies containing one α1 and either an α2 or α3 subunit, in which the single α1-containing receptors feature a more compact arrangement between the transmembrane and extracellular domains. Interestingly, APG is bound at the transmembrane α/ß subunit interface, even when not added to the sample, revealing an important role for endogenous neurosteroids in modulating native GABAARs. Together with structurally engaged lipids, neurosteroids produce global conformational changes throughout the receptor that modify the ion channel pore and the binding sites for GABA and insomnia medications. Our data reveal the major α1-containing GABAAR assemblies, bound with endogenous neurosteroid, thus defining a structural landscape from which subtype-specific drugs can be developed.


Assuntos
Microscopia Crioeletrônica , Neuroesteroides , Receptores de GABA-A , Ácido gama-Aminobutírico , Animais , Camundongos , Sítios de Ligação/efeitos dos fármacos , Depressão Pós-Parto/tratamento farmacológico , Flurazepam/farmacologia , Ácido gama-Aminobutírico/metabolismo , Hipnóticos e Sedativos/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Neuroesteroides/metabolismo , Neuroesteroides/farmacologia , Fotodegradação , Pregnanolona/farmacologia , Conformação Proteica/efeitos dos fármacos , Subunidades Proteicas/química , Subunidades Proteicas/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Receptores de GABA-A/ultraestrutura , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Zolpidem/farmacologia
5.
Cell ; 148(5): 1029-38, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22385966

RESUMO

Neurotransmission requires anterograde axonal transport of dense core vesicles (DCVs) containing neuropeptides and active zone components from the soma to nerve terminals. However, it is puzzling how one-way traffic could uniformly supply sequential release sites called en passant boutons. Here, Drosophila neuropeptide-containing DCVs are tracked in vivo for minutes with a new method called simultaneous photobleaching and imaging (SPAIM). Surprisingly, anterograde DCVs typically bypass proximal boutons to accumulate initially in the most distal bouton. Then, excess distal DCVs undergo dynactin-dependent retrograde transport back through proximal boutons into the axon. Just before re-entering the soma, DCVs again reverse for another round of anterograde axonal transport. While circulating over long distances, both anterograde and retrograde DCVs are captured sporadically in en passant boutons. Therefore, vesicle circulation, which includes long-range retrograde transport and inefficient bidirectional capture, overcomes the limitations of one-way anterograde transport to uniformly supply release sites with DCVs.


Assuntos
Neuropeptídeos/metabolismo , Vesículas Secretórias/metabolismo , Sinapses/metabolismo , Animais , Axônios/metabolismo , Drosophila melanogaster , Microscopia Confocal/métodos , Neurônios/citologia , Neurônios/metabolismo , Fotodegradação , Terminações Pré-Sinápticas/metabolismo , Transporte Proteico
6.
Development ; 149(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35993388

RESUMO

Cell and developmental biology increasingly require live imaging of protein dynamics in cells, tissues or living organisms. Thanks to the discovery and development of a panel of fluorescent proteins over the last decades, live imaging has become a powerful and commonly used approach. However, multicolor live imaging remains challenging. The generation of long Stokes shift red fluorescent proteins offers interesting new perspectives to bypass this limitation. Here, we provide a detailed characterization of mBeRFP for in vivo live imaging and its applications in Drosophila. Briefly, we show that a single illumination source is sufficient to stimulate mBeRFP and GFP simultaneously. We demonstrate that mBeRFP can be easily combined with classical green and red fluorescent proteins without any crosstalk. We also show that the low photobleaching of mBeRFP is suitable for live imaging, and that this protein can be used for quantitative applications, such as FRAP or laser ablation. Finally, we believe that this fluorescent protein, with the set of new possibilities it offers, constitutes an important tool for cell, developmental and mechano-biologists in their current research.


Assuntos
Proteínas Luminescentes , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Fotodegradação
7.
Nat Methods ; 19(10): 1262-1267, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076039

RESUMO

A common goal of fluorescence microscopy is to collect data on specific biological events. Yet, the event-specific content that can be collected from a sample is limited, especially for rare or stochastic processes. This is due in part to photobleaching and phototoxicity, which constrain imaging speed and duration. We developed an event-driven acquisition framework, in which neural-network-based recognition of specific biological events triggers real-time control in an instant structured illumination microscope. Our setup adapts acquisitions on-the-fly by switching between a slow imaging rate while detecting the onset of events, and a fast imaging rate during their progression. Thus, we capture mitochondrial and bacterial divisions at imaging rates that match their dynamic timescales, while extending overall imaging durations. Because event-driven acquisition allows the microscope to respond specifically to complex biological events, it acquires data enriched in relevant content.


Assuntos
Bioensaio , Mitocôndrias , Microscopia de Fluorescência/métodos , Fotodegradação
8.
Nat Methods ; 19(10): 1268-1275, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076037

RESUMO

Monitoring the proteins and lipids that mediate all cellular processes requires imaging methods with increased spatial and temporal resolution. STED (stimulated emission depletion) nanoscopy enables fast imaging of nanoscale structures in living cells but is limited by photobleaching. Here, we present event-triggered STED, an automated multiscale method capable of rapidly initiating two-dimensional (2D) and 3D STED imaging after detecting cellular events such as protein recruitment, vesicle trafficking and second messengers activity using biosensors. STED is applied in the vicinity of detected events to maximize the temporal resolution. We imaged synaptic vesicle dynamics at up to 24 Hz, 40 ms after local calcium activity; endocytosis and exocytosis events at up to 11 Hz, 40 ms after local protein recruitment or pH changes; and the interaction between endosomal vesicles at up to 3 Hz, 70 ms after approaching one another. Event-triggered STED extends the capabilities of live nanoscale imaging, enabling novel biological observations in real time.


Assuntos
Técnicas Biossensoriais , Cálcio , Técnicas Biossensoriais/métodos , Lipídeos , Microscopia de Fluorescência/métodos , Fotodegradação
9.
Nat Methods ; 19(3): 359-369, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35277709

RESUMO

Long-term visualization of the dynamic interactions between intracellular structures throughout the three-dimensional space of whole live cells is essential to better understand their functions, but this task remains challenging due to the limitations of existing three-dimensional fluorescence microscopy techniques, such as an insufficient axial resolution, low volumetric imaging rate and photobleaching. Here, we present the combination of a progressive deep-learning super-resolution strategy with a double-ring-modulated selective plane illumination microscopy design capable of visualizing the dynamics of intracellular structures in live cells for hours at an isotropic spatial resolution of roughly 100 nm in three dimensions at speeds up to roughly 17 Hz. Using this approach, we reveal the complex spatial relationships and interactions between endoplasmic reticulum (ER) and mitochondria throughout live cells, providing new insights into ER-mediated mitochondrial division. We also examined the motion of Drp1 oligomers involved in mitochondrial fission and revealed the dynamic interactions between Drp1 and mitochondria in three dimensions.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Retículo Endoplasmático/metabolismo , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Fotodegradação
10.
Nat Methods ; 19(11): 1419-1426, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36280718

RESUMO

Structured illumination microscopy (SIM) doubles the spatial resolution of a fluorescence microscope without requiring high laser powers or specialized fluorophores. However, the excitation of out-of-focus fluorescence can accelerate photobleaching and phototoxicity. In contrast, light-sheet fluorescence microscopy (LSFM) largely avoids exciting out-of-focus fluorescence, thereby enabling volumetric imaging with low photobleaching and intrinsic optical sectioning. Combining SIM with LSFM would enable gentle three-dimensional (3D) imaging at doubled resolution. However, multiple orientations of the illumination pattern, which are needed for isotropic resolution doubling in SIM, are challenging to implement in a light-sheet format. Here we show that multidirectional structured illumination can be implemented in oblique plane microscopy, an LSFM technique that uses a single objective for excitation and detection, in a straightforward manner. We demonstrate isotropic lateral resolution below 150 nm, combined with lower phototoxicity compared to traditional SIM systems and volumetric acquisition speed exceeding 1 Hz.


Assuntos
Imageamento Tridimensional , Iluminação , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Fotodegradação
11.
Nat Methods ; 19(2): 149-158, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34949811

RESUMO

The last three decades have brought a revolution in fluorescence microscopy. The development of new microscopes, fluorescent labels and analysis techniques has pushed the frontiers of biological imaging forward, moving from fixed to live cells, from diffraction-limited to super-resolution imaging and from simple cell culture systems to experiments in vivo. The large and ever-evolving collection of tools can be daunting for biologists, who must invest substantial time and effort in adopting new technologies to answer their specific questions. This is particularly relevant when working with small-molecule fluorescent labels, where users must navigate the jargon, idiosyncrasies and caveats of chemistry. Here, we present an overview of chemical dyes used in biology and provide frank advice from a chemist's perspective.


Assuntos
Bioquímica/métodos , Corantes Fluorescentes/química , Aminas/química , Fotodegradação , Compostos de Sulfidrila/química , Raios Ultravioleta
12.
Lab Invest ; 104(6): 102072, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679160

RESUMO

Optical tissue clearing and three-dimensional (3D) immunofluorescence (IF) microscopy is transforming imaging of the complex tumor microenvironment (TME). However, current 3D IF microscopy has restricted multiplexity; only 3 or 4 cellular and noncellular TME components can be localized in cleared tumor tissue. Here we report a light-emitting diode (LED) photobleaching method and its application for 3D multiplexed optical mapping of the TME. We built a high-power LED light irradiation device and temperature-controlled chamber for completely bleaching fluorescent signals throughout optically cleared tumor tissues without compromise of tissue and protein antigen integrity. With newly developed tissue mounting and selected region-tracking methods, we established a cyclic workflow involving IF staining, tissue clearing, 3D confocal microscopy, and LED photobleaching. By registering microscope channel images generated through 3 work cycles, we produced 8-plex image data from individual 400 µm-thick tumor macrosections that visualize various vascular, immune, and cancer cells in the same TME at tissue-wide and cellular levels in 3D. Our method was also validated for quantitative 3D spatial analysis of cellular remodeling in the TME after immunotherapy. These results demonstrate that our LED photobleaching system and its workflow offer a novel approach to increase the multiplexing power of 3D IF microscopy for studying tumor heterogeneity and response to therapy.


Assuntos
Imageamento Tridimensional , Microscopia de Fluorescência , Fotodegradação , Microambiente Tumoral , Animais , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Camundongos , Humanos , Linhagem Celular Tumoral , Microscopia Confocal/métodos , Feminino
13.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35319069

RESUMO

Fluorescence microscopy images should not be treated as perfect representations of biology. Many factors within the biospecimen itself can drastically affect quantitative microscopy data. Whereas some sample-specific considerations, such as photobleaching and autofluorescence, are more commonly discussed, a holistic discussion of sample-related issues (which includes less-routine topics such as quenching, scattering and biological anisotropy) is required to appropriately guide life scientists through the subtleties inherent to bioimaging. Here, we consider how the interplay between light and a sample can cause common experimental pitfalls and unanticipated errors when drawing biological conclusions. Although some of these discrepancies can be minimized or controlled for, others require more pragmatic considerations when interpreting image data. Ultimately, the power lies in the hands of the experimenter. The goal of this Review is therefore to survey how biological samples can skew quantification and interpretation of microscopy data. Furthermore, we offer a perspective on how to manage many of these potential pitfalls.


Assuntos
Biologia , Luz , Anisotropia , Microscopia de Fluorescência/métodos , Fotodegradação
14.
Anal Chem ; 96(12): 4854-4859, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38497530

RESUMO

Fluorescence recovery after photobleaching (FRAP) is now an indispensable tool to analyze the diffusion of molecules in vivo and in vitro. However, a conventional fluorescence intensity-based approach has difficulty in analyzing the diffusion of multiple species simultaneously. Here, we report fluorescence lifetime recovery after photobleaching (FLRAP) that incorporates fluorescence lifetime information into FRAP. By using FLRAP, the fluorescence intensity-recovery curves of each species can be successfully extracted from the ensemble photon data by utilizing their species-specific fluorescence decay curves, which are verified by applying FLRAP to two heterogeneous systems. Thus, FLRAP can be a powerful tool to quantitatively elucidate the molecular diffusion of multiple species in complex systems such as in living cells.


Assuntos
Fótons , Recuperação de Fluorescência Após Fotodegradação , Fotodegradação , Difusão
15.
Nat Methods ; 18(3): 253-257, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33633409

RESUMO

Illumination of fluorophores can induce a loss of the ability to fluoresce, known as photobleaching. Interestingly, some fluorophores photoconvert to a blue-shifted fluorescent molecule as an intermediate on the photobleaching pathway, which can complicate multicolor fluorescence imaging, especially under the intense laser irradiation used in super-resolution fluorescence imaging. Here, we discuss the mechanisms of photoblueing of fluorophores and its impact on fluorescence imaging, and show how it can be prevented.


Assuntos
Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Fotodegradação , Artefatos , Fluorescência , Corantes Fluorescentes/química
16.
Nature ; 557(7705): 387-391, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29743676

RESUMO

The human body represents a notable example of ciliary diversification. Extending from the surface of most cells, cilia accomplish a diverse set of tasks. Predictably, mutations in ciliary genes cause a wide range of human diseases such as male infertility and blindness. In Caenorhabditis elegans sensory cilia, this functional diversity appears to be traceable to the differential regulation of the kinesin-2-powered intraflagellar-transport (IFT) machinery. Here we reconstituted the first, to our knowledge, functional multi-component IFT complex that is deployed in the sensory cilia of C. elegans. Our bottom-up approach revealed the molecular basis of specific motor recruitment to the IFT trains. We identified the key component that incorporates homodimeric kinesin-2 into its physiologically relevant context, which in turn allosterically activates the motor for efficient transport. These results will enable the molecular delineation of IFT regulation, which has eluded understanding since its discovery more than two decades ago.


Assuntos
Caenorhabditis elegans/metabolismo , Flagelos/metabolismo , Movimento , Animais , Transporte Biológico , Cinesinas/metabolismo , Fotodegradação
17.
Angew Chem Int Ed Engl ; 63(1): e202316192, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37975636

RESUMO

Fluorescent probes are essential for single-molecule imaging. However, their application in biological systems is often limited by the short photobleaching lifetime. To overcome this, we developed a novel thiolation strategy for squaraine dyes. By introducing thiolation of the central cyclobutene of squaraine (thio-squaraine), we observed a ≈5-fold increase in photobleaching lifetime. Our single-molecule data analysis attributes this improvement to improved photostability resulting from thiolation. Interestingly, bulk measurements show rapid oxidation of thio-squaraine to its oxo-analogue under irradiation, giving the perception of inferior photostability. This discrepancy between bulk and single-molecule environments can be ascribed to the factors in the latter, including larger intermolecular distances and restricted mobility, which reduce the interactions between a fluorophore and reactive oxygen species produced by other fluorophores, ultimately impacting photobleaching and photoconversion rate. We demonstrate the remarkable performance of thio-squaraine probes in various imaging buffers, such as glucose oxidase with catalase (GLOX) and GLOX+trolox. We successfully employed these photostable probes for single-molecule tracking of CD56 membrane protein and monitoring mitochondria movements in live neurons. CD56 tracking revealed distinct motion states and the corresponding protein fractions. This investigation is expected to propel the development of single-molecule imaging probes, particularly in scenarios where bulk measurements show suboptimal performance.


Assuntos
Ciclobutanos , Corantes Fluorescentes , Fotodegradação , Fenóis , Ionóforos
18.
Angew Chem Int Ed Engl ; 63(6): e202314595, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37991081

RESUMO

Lanthanides have unique photoluminescence (PL) emission properties, including very long PL lifetimes. This makes them ideal for biological imaging applications, especially using PL lifetime imaging microscopy (PLIM). PLIM is an inherently multidimensional technique with exceptional advantages for quantitative biological imaging. Unfortunately, due to the required prolonged acquisitions times, photobleaching of lanthanide PL emission currently constitutes one of the main drawbacks of PLIM. In this study, we report a small aqueous-soluble, lanthanide antenna, 8-methoxy-2-oxo-1,2,4,5-tetrahydrocyclopenta[de]quinoline-3-phosphonic acid, PAnt, specifically designed to dynamically interact with lanthanide ions, serving as exchangeable dye aimed at mitigating photobleaching in PLIM microscopy in cellulo. Thus, self-assembled lanthanide complexes that may be photobleached during image acquisition are continuously replenished by intact lanthanide antennas from a large reservoir. Remarkably, our self-assembled lanthanide complex clearly demonstrated a significant reduction of PL photobleaching when compared to well-established lanthanide cryptates, used for bioimaging. This concept of exchangeable lanthanide antennas opens new possibilities for quantitative PLIM bioimaging.


Assuntos
Elementos da Série dos Lantanídeos , Microscopia , Luminescência , Fotodegradação
19.
Biophys J ; 122(22): 4316-4325, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37828742

RESUMO

Techniques combining optical tweezers with fluorescence microscopy have become increasingly popular. Unfortunately, the high-power, infrared lasers used to create optical traps can have a deleterious effect on dye stability. Previous studies have shown that dye photobleaching is enhanced by absorption of visible fluorescence excitation plus infrared trap photons, a process that can be significantly reduced by minimizing simultaneous exposure to both light sources. Here, we report another photobleaching pathway that results from direct excitation by the trapping laser alone. Our results show that this trap-induced fluorescence loss is a two-photon absorption process, as demonstrated by a quadratic dependence on the intensity of the trapping laser. We further show that, under conditions typical of many trap-based experiments, fluorescence emission of certain fluorophores near the trap focus can drop by 90% within 1 min. We investigate how photostability is affected by the choice of dye molecule, excitation and emission wavelength, and labeled molecule. Finally, we discuss the different photobleaching pathways in combined trap-fluorescence measurements, which guide the selection of optimal dyes and conditions for more robust experimental protocols.


Assuntos
Pinças Ópticas , Fótons , Fotodegradação , Corantes Fluorescentes/farmacologia , Luz
20.
J Am Chem Soc ; 145(34): 18968-18976, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37596976

RESUMO

We report the development of a self-renewable tag (srTAG) for protein fluorescence imaging. srTAG leverages the "on-protein" fluorophore equilibrium between the fluorescent zwitterion and non-fluorescent spirocyclic form and the reversible fluorescence labeling to enable self-recovery of fluorescence after photobleaching. This small-sized srTAG allows 2-6 times longer imaging duration compared to other commonly used self-labeling tags and is compatible with fluorophores with different spectral properties. This study provides a new strategy for fine tuning of self-labeling tags.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Ionóforos , Fotodegradação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA