Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.993
Filtrar
1.
Cell ; 187(6): 1402-1421.e21, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38428422

RESUMO

Neonates are highly susceptible to inflammation and infection. Here, we investigate how late fetal liver (FL) mouse hematopoietic stem and progenitor cells (HSPCs) respond to inflammation, testing the hypothesis that deficits in the engagement of emergency myelopoiesis (EM) pathways limit neutrophil output and contribute to perinatal neutropenia. We show that fetal HSPCs have limited production of myeloid cells at steady state and fail to activate a classical adult-like EM transcriptional program. Moreover, we find that fetal HSPCs can respond to EM-inducing inflammatory stimuli in vitro but are restricted by maternal anti-inflammatory factors, primarily interleukin-10 (IL-10), from activating EM pathways in utero. Accordingly, we demonstrate that the loss of maternal IL-10 restores EM activation in fetal HSPCs but at the cost of fetal demise. These results reveal the evolutionary trade-off inherent in maternal anti-inflammatory responses that maintain pregnancy but render the fetus unresponsive to EM activation signals and susceptible to infection.


Assuntos
Inflamação , Interleucina-10 , Mielopoese , Animais , Camundongos , Gravidez/imunologia , Feto , Hematopoese , Células-Tronco Hematopoéticas/citologia , Inflamação/imunologia , Interleucina-10/imunologia , Animais Recém-Nascidos , Feminino
2.
Cell ; 185(25): 4826-4840.e17, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36402135

RESUMO

Congenital Zika virus (ZIKV) infection results in neurodevelopmental deficits in up to 14% of infants born to ZIKV-infected mothers. Neutralizing antibodies are a critical component of protective immunity. Here, we demonstrate that plasma IgM contributes to ZIKV immunity in pregnancy, mediating neutralization up to 3 months post-symptoms. From a ZIKV-infected pregnant woman, we isolated a pentameric ZIKV-specific IgM (DH1017.IgM) that exhibited ultrapotent ZIKV neutralization dependent on the IgM isotype. DH1017.IgM targets an envelope dimer epitope within domain II. The epitope arrangement on the virion is compatible with concurrent engagement of all ten antigen-binding sites of DH1017.IgM, a solution not available to IgG. DH1017.IgM protected mice against viremia upon lethal ZIKV challenge more efficiently than when expressed as an IgG. Our findings identify a role for antibodies of the IgM isotype in protection against ZIKV and posit DH1017.IgM as a safe and effective candidate immunotherapeutic, particularly during pregnancy.


Assuntos
Imunoglobulina M , Gravidez , Infecção por Zika virus , Zika virus , Animais , Feminino , Camundongos , Gravidez/imunologia , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Testes de Neutralização , Infecção por Zika virus/imunologia , Imunoglobulina M/imunologia , Imunoglobulina M/isolamento & purificação
3.
Cell ; 162(3): 467-9, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26232215

RESUMO

Mendelian genetics presumes inheritance of fitness through DNA. Kinder et al. find that maternal microchimerism induces stable immune tolerance to non-inherited maternal antigens in offspring. Female offspring that share these antigens with their mate experience reduced fetal wasting, establishing a role for vertical transmission of non-genetic information in reproductive fitness.


Assuntos
Feto/imunologia , Aptidão Genética , Tolerância Imunológica , Mamíferos/fisiologia , Gravidez/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Humanos , Masculino
4.
Cell ; 162(3): 505-15, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26213383

RESUMO

Exposure to maternal tissue during in utero development imprints tolerance to immunologically foreign non-inherited maternal antigens (NIMA) that persists into adulthood. The biological advantage of this tolerance, conserved across mammalian species, remains unclear. Here, we show maternal cells that establish microchimerism in female offspring during development promote systemic accumulation of immune suppressive regulatory T cells (Tregs) with NIMA specificity. NIMA-specific Tregs expand during pregnancies sired by males expressing alloantigens with overlapping NIMA specificity, thereby averting fetal wastage triggered by prenatal infection and non-infectious disruptions of fetal tolerance. Therefore, exposure to NIMA selectively enhances reproductive success in second-generation females carrying embryos with overlapping paternally inherited antigens. These findings demonstrate that genetic fitness, canonically thought to be restricted to Mendelian inheritance, is enhanced in female placental mammals through vertically transferred maternal cells that promote conservation of NIMA and enforce cross-generational reproductive benefits.


Assuntos
Feto/imunologia , Aptidão Genética , Tolerância Imunológica , Mamíferos/fisiologia , Gravidez/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos/imunologia , Quimerismo , Feminino , Humanos , Masculino , Mamíferos/imunologia , Camundongos , Placenta/imunologia
5.
Nature ; 603(7901): 497-502, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236989

RESUMO

Discrimination of self from non-self is fundamental to a wide range of immunological processes1. During pregnancy, the mother does not recognize the placenta as immunologically foreign because antigens expressed by trophoblasts, the placental cells that interface with the maternal immune system, do not activate maternal T cells2. Currently, these activation defects are thought to reflect suppression by regulatory T cells3. By contrast, mechanisms of B cell tolerance to trophoblast antigens have not been identified. Here we provide evidence that glycan-mediated B cell suppression has a key role in establishing fetomaternal tolerance in mice. B cells specific for a model trophoblast antigen are strongly suppressed through CD22-LYN inhibitory signalling, which in turn implicates the sialylated glycans of the antigen as key suppressive determinants. Moreover, B cells mediate the MHC-class-II-restricted presentation of antigens to CD4+ T cells, which leads to T cell suppression, and trophoblast-derived sialoglycoproteins are released into the maternal circulation during pregnancy in mice and humans. How protein glycosylation promotes non-immunogenic placental self-recognition may have relevance to immune-mediated pregnancy complications and to tumour immune evasion. We also anticipate that our findings will bolster efforts to harness glycan biology to control antigen-specific immune responses in autoimmune disease.


Assuntos
Antígenos , Placenta , Trofoblastos , Animais , Doenças Autoimunes , Linfócitos B , Feminino , Tolerância Imunológica , Camundongos , Placenta/imunologia , Polissacarídeos/metabolismo , Gravidez/imunologia
6.
Nature ; 606(7915): 769-775, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676476

RESUMO

Adaptive immune components are thought to exert non-overlapping roles in antimicrobial host defence, with antibodies targeting pathogens in the extracellular environment and T cells eliminating infection inside cells1,2. Reliance on antibodies for vertically transferred immunity from mothers to babies may explain neonatal susceptibility to intracellular infections3,4. Here we show that pregnancy-induced post-translational antibody modification enables protection against the prototypical intracellular pathogen Listeria monocytogenes. Infection susceptibility was reversed in neonatal mice born to preconceptually primed mothers possessing L. monocytogenes-specific IgG or after passive transfer of antibodies from primed pregnant, but not virgin, mice. Although maternal B cells were essential for producing IgGs that mediate vertically transferred protection, they were dispensable for antibody acquisition of protective function, which instead required sialic acid acetyl esterase5 to deacetylate terminal sialic acid residues on IgG variable-region N-linked glycans. Deacetylated L. monocytogenes-specific IgG protected neonates through the sialic acid receptor CD226,7, which suppressed IL-10 production by B cells leading to antibody-mediated protection. Consideration of the maternal-fetal dyad as a joined immunological unit reveals protective roles for antibodies against intracellular infection and fine-tuned adaptations to enhance host defence during pregnancy and early life.


Assuntos
Imunidade Materno-Adquirida , Imunoglobulina G , Espaço Intracelular , Listeria monocytogenes , Mães , Gravidez , Acetilesterase , Animais , Animais Recém-Nascidos , Linfócitos B , Feminino , Imunidade Materno-Adquirida/imunologia , Imunoglobulina G/imunologia , Interleucina-10/biossíntese , Espaço Intracelular/imunologia , Espaço Intracelular/microbiologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Listeriose/prevenção & controle , Camundongos , Ácido N-Acetilneuramínico/metabolismo , Gravidez/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Linfócitos T
7.
Immunity ; 49(3): 397-412, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231982

RESUMO

Successful pregnancy requires carefully-coordinated communications between the mother and fetus. Immune cells and cytokine signaling pathways participate as mediators of these communications to promote healthy pregnancy. At the same time, certain infections or inflammatory conditions in pregnant mothers cause severe disease and have detrimental impacts on the developing fetus. In this review, we examine evidence for the role of maternal and fetal immune responses affecting pregnancy and fetal development, both under homeostasis and following infection. We discuss immune responses that are necessary to promote healthy pregnancy and those that lead to congenital disorders and pregnancy complications, with a particular emphasis on the role of interferons and cytokines. Understanding the contributions of the immune system in pregnancy and fetal development provides important insights into the pathogenesis underlying maternal and fetal diseases and sheds insights on possible targets for therapy.


Assuntos
Citocinas/metabolismo , Desenvolvimento Fetal/imunologia , Mediadores da Inflamação/metabolismo , Interferons/metabolismo , Complicações na Gravidez/imunologia , Gravidez/imunologia , Animais , Feminino , Humanos , Exposição Materna/efeitos adversos
8.
Cell ; 150(1): 29-38, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22770213

RESUMO

Regulatory T (Treg) cells, whose differentiation and function are controlled by X chromosome-encoded transcription factor Foxp3, are generated in the thymus (tTreg) and extrathymically (peripheral, pTreg), and their deficiency results in fatal autoimmunity. Here, we demonstrate that a Foxp3 enhancer, conserved noncoding sequence 1 (CNS1), essential for pTreg but dispensable for tTreg cell generation, is present only in placental mammals. CNS1 is largely composed of mammalian-wide interspersed repeats (MIR) that have undergone retrotransposition during early mammalian radiation. During pregnancy, pTreg cells specific to a model paternal alloantigen were generated in a CNS1-dependent manner and accumulated in the placenta. Furthermore, when mated with allogeneic, but not syngeneic, males, CNS1-deficient females showed increased fetal resorption accompanied by increased immune cell infiltration and defective remodeling of spiral arteries. Our results suggest that, during evolution, a CNS1-dependent mechanism of extrathymic differentiation of Treg cells emerged in placental animals to enforce maternal-fetal tolerance.


Assuntos
Tolerância Imunológica , Mamíferos/imunologia , Placenta/citologia , Placenta/imunologia , Gravidez/imunologia , Linfócitos T Reguladores/imunologia , Animais , Elementos Facilitadores Genéticos , Feminino , Feto/imunologia , Fatores de Transcrição Forkhead/genética , Humanos , Masculino , Mamíferos/genética , Camundongos , Gambás
9.
Curr Top Microbiol Immunol ; 441: 253-280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37695432

RESUMO

Pregnancy is an immunological paradox, with renowned Nobel Prize winning transplantation biologist Sir Peter Brian Medawar being the first to introduce this concept back in 1953. This concept considers how the maternal immune system can tolerate the developing fetus, which is 50% antigenically foreign to the uterus. There have been significant advances in our understanding of the immune system in regulating fertility, pregnancy and in complications of these, and what was once considered a paradox can be seen as a highly evolved system. Indeed, the complexity of the maternal-fetal interface along with our ever-advancing knowledge of immune cells and mediators means that we have a better understanding of these interactions, with gaps still present.  This chapter will summarise the key aspects of the role of the immune system at each stage of pregnancy and highlight the recent advances in our knowledge.


Assuntos
Sistema Imunitário , Gravidez , Feminino , Humanos , Gravidez/imunologia
10.
Inflamm Res ; 73(5): 793-807, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492049

RESUMO

The juxtaposition of two seemingly disparate physiological phenomena within the human body-namely, cancer and pregnancy-may offer profound insights into the intricate interplay between malignancies and the immune system. Recent investigations have unveiled striking similarities between the pivotal processes underpinning fetal implantation and successful gestation and those governing tumor initiation and progression. Notably, a confluence of features has emerged, underscoring parallels between the microenvironment of tumors and the maternal-fetal interface. These shared attributes encompass establishing vascular networks, cellular mobilization, recruitment of auxiliary tissue components to facilitate continued growth, and, most significantly, the orchestration of immune-suppressive mechanisms.Our particular focus herein centers on the phenomenon of immune suppression and its protective utility in both of these contexts. In the context of pregnancy, immune suppression assumes a paramount role in shielding the semi-allogeneic fetus from the potentially hostile immune responses of the maternal host. In stark contrast, in the milieu of cancer, this very same immunological suppression fosters the transformation of the tumor microenvironment into a sanctuary personalized for the neoplastic cells.Thus, the striking parallels between the immunosuppressive strategies deployed during pregnancy and those co-opted by malignancies offer a tantalizing reservoir of insights. These insights promise to inform novel avenues in the realm of cancer immunotherapy. By harnessing our understanding of the immunological events that detrimentally impact fetal development, a knowledge grounded in the context of conditions such as preeclampsia or miscarriage, we may uncover innovative immunotherapeutic strategies to combat cancer.


Assuntos
Neoplasias , Gravidez , Animais , Feminino , Humanos , Gravidez/imunologia , Tolerância Imunológica , Imunoterapia , Neoplasias/imunologia , Complicações Neoplásicas na Gravidez/imunologia , Microambiente Tumoral/imunologia
11.
Nature ; 563(7731): 347-353, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30429548

RESUMO

During early human pregnancy the uterine mucosa transforms into the decidua, into which the fetal placenta implants and where placental trophoblast cells intermingle and communicate with maternal cells. Trophoblast-decidual interactions underlie common diseases of pregnancy, including pre-eclampsia and stillbirth. Here we profile the transcriptomes of about 70,000 single cells from first-trimester placentas with matched maternal blood and decidual cells. The cellular composition of human decidua reveals subsets of perivascular and stromal cells that are located in distinct decidual layers. There are three major subsets of decidual natural killer cells that have distinctive immunomodulatory and chemokine profiles. We develop a repository of ligand-receptor complexes and a statistical tool to predict the cell-type specificity of cell-cell communication via these molecular interactions. Our data identify many regulatory interactions that prevent harmful innate or adaptive immune responses in this environment. Our single-cell atlas of the maternal-fetal interface reveals the cellular organization of the decidua and placenta, and the interactions that are critical for placentation and reproductive success.


Assuntos
Comunicação Celular , Feto/citologia , Histocompatibilidade Materno-Fetal/imunologia , Placenta/citologia , Placenta/metabolismo , Gravidez/imunologia , Análise de Célula Única , Comunicação Celular/imunologia , Diferenciação Celular/genética , Decídua/citologia , Decídua/imunologia , Decídua/metabolismo , Feminino , Feto/imunologia , Feto/metabolismo , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Ligantes , Placenta/imunologia , RNA Citoplasmático Pequeno/genética , Análise de Sequência de RNA , Células Estromais/citologia , Células Estromais/metabolismo , Transcriptoma , Trofoblastos/citologia , Trofoblastos/imunologia , Trofoblastos/metabolismo
12.
Ann Diagn Pathol ; 62: 152080, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36535188

RESUMO

Novel biomarkers of in utero infections are needed to help guide early therapy. The toll like receptors (TLRs) and retinoic acid-inducible gene 1 (RIG-1) are proteins involved in the initial reaction of the innate immune system to infectious diseases. This study tested the hypothesis that a panel of TLRs and RIG-1 in the placenta could serve as an early biomarker of in utero infections. The TLRs and RIG-1 expression as determined by immunohistochemistry was scored in 10 control placentas (normal delivery or neonatal damage from known non-infectious cause), 8 placentas from documented in utero bacterial infection, and 7 placentas from documented in utero viral infections blinded to the clinical information. The non-infected placentas showed the following profile: no expression (TLR1, TLR3, TLR4, TLR7, TLR8), moderate expression (TLR2), and strong expression (RIG-1). The bacterial and viral infection cases shared the following profile: no to mild expression (TLR 2, TLR7, and RIG1), moderate expression (TLR4), and strong expression (TLR1, TLR3, and TLR8). The histologic findings in the chorionic villi were equivalent in the infected cases and controls, underscoring the need for molecular testing by the surgical pathologist when in utero infection is suspected. The results suggest that a panel of TLRs/RIG-1 analyses can allow the pathologist and/or clinician to diagnose in utero infections soon after birth. Also, treatments to antagonize the effects of TLR1, 3, and 8 may help abrogate in utero neonatal damage.


Assuntos
Placenta , Complicações Infecciosas na Gravidez , Feminino , Humanos , Recém-Nascido , Gravidez/imunologia , Placenta/imunologia , Placenta/metabolismo , Receptor 1 Toll-Like/genética , Receptor 1 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like , Receptor 7 Toll-Like , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Complicações Infecciosas na Gravidez/genética , Complicações Infecciosas na Gravidez/metabolismo
13.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068929

RESUMO

This Special Issue, the third dedicated to reproductive immunology and pregnancy, is another review of the latest trends in research topics in this field [...].


Assuntos
Gravidez , Reprodução , Feminino , Humanos , Gravidez/imunologia
14.
Trends Genet ; 35(7): 478-488, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31200807

RESUMO

We hypothesize that, ancestrally, sex-specific immune modulation evolved to facilitate survival of the pregnant person in the presence of an invasive placenta and an immunologically challenging pregnancy - an idea we term the 'pregnancy compensation hypothesis' (PCH). Further, we propose that sex differences in immune function are mediated, at least in part, by the evolution of gene content and dosage on the sex chromosomes, and are regulated by reproductive hormones. Finally, we propose that changes in reproductive ecology in industrialized environments exacerbate these evolved sex differences, resulting in the increasing risk of autoimmune disease observed in females, and a counteracting reduction in diseases such as cancer that can be combated by heightened immune surveillance. The PCH generates a series of expectations that can be tested empirically and that may help to identify the mechanisms underlying sex differences in modern human diseases.


Assuntos
Doenças Autoimunes/etiologia , Hormônios/fisiologia , Gravidez/imunologia , Cromossomos Sexuais , Fatores Sexuais , Animais , Doenças Autoimunes/epidemiologia , Evolução Molecular , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Mamíferos , Neoplasias/epidemiologia , Caracteres Sexuais , População Urbana
15.
Eur J Immunol ; 51(1): 167-179, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33012073

RESUMO

Circulating TFH (cTFH ) cells express CXCR5, PD-1, and, when activated, ICOS, and release IL-21. According to the production of IFN-γ, IL-4, and IL-17 and expression of FoxP3, these cells are also classified as cTFH 1, cTFH 2, cTFH 17, and cTFR cells, respectively. This CD4+ T-cell subset is pivotal to efficient humoral immunity, and pregnancy appears to favor IgG production. Here, not only pregnancy amplified the in vivo production of anti-HBsAg IgG in HBV immunized women, but the frequency of cTFH cells was directly correlated with estradiol levels. In vitro, pregnancy-related dose of 17-ß-estradiol (E2) directly increased the percentage of different cTFH subsets. While E2 and progesterone (P4) increased the proportion of differentiated TFH cells derived from naïve CD4+ T-cells, only E2 amplified the release of IL-21 in those cell cultures. In addition, E2 and P4 increased the proportion of memory B cells and plasma cells, respectively. In SEB-activated B/TFH cell co-cultures, E2, in the presence of P4, increased the production of total IgG. Finally, among the hormones, P4 was stronger in upregulating the percentage of IL-10+ TFR cells. Collectively, our findings suggested that E2 and P4 cooperate in the humoral immune response by favoring the expansion of different cTFH and B cell subsets.


Assuntos
Linfócitos B/imunologia , Estradiol/sangue , Estradiol/imunologia , Imunidade Humoral , Gravidez/sangue , Gravidez/imunologia , Progesterona/sangue , Progesterona/imunologia , Células T Auxiliares Foliculares/imunologia , Adulto , Subpopulações de Linfócitos B/efeitos dos fármacos , Subpopulações de Linfócitos B/imunologia , Diferenciação Celular , Citocinas/metabolismo , Estradiol/farmacologia , Feminino , Vacinas contra Hepatite B/imunologia , Humanos , Imunoglobulina G/biossíntese , Técnicas In Vitro , Interleucinas/biossíntese , Progesterona/farmacologia , Células T Auxiliares Foliculares/classificação , Células T Auxiliares Foliculares/citologia , Adulto Jovem
16.
Inflamm Res ; 71(5-6): 653-668, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35445873

RESUMO

OBJECTIVE: To comprehensively characterize monocyte and neutrophil responses to E. coli and its product [lipopolysaccharide (LPS) or endotoxin] in vitro during pregnancy. MATERIAL OR SUBJECTS: Peripheral blood was collected from pregnant women during the third trimester (n = 20) and from non-pregnant women (n = 20). METHODS: The number, phagocytic activity, and reactive oxygen species (ROS) production of peripheral monocytes and neutrophils were investigated using flow cytometry. The phenotypes of peripheral monocytes and neutrophils after acute or chronic LPS stimulation were also determined using flow cytometry. Cytokine profiles were quantified for LPS-stimulated peripheral blood mononuclear cells (PBMCs) and a whole blood TruCulture® system using a multiplex immunoassay. RESULTS: Increased number, phagocytic activity, and ROS production capacity of monocytes and neutrophils were found in pregnant compared to non-pregnant women. Additionally, specific subsets of pro-inflammatory monocytes (IL-6+CD14+ or MIP-1α+CD14+ cells) and neutrophils (IL-1ß+CD15+ or MIP-1ß+CD15+ cells) were increased in pregnant women in response to acute LPS stimulation. Moreover, distinct subsets of intermediate-activated monocytes expressing CD142, IL-6, and IL-1RA were increased in pregnant women upon chronic LPS stimulation. Last, pregnant women displayed a different cytokine profile than non-pregnant women in LPS-stimulated PBMCs and in whole blood. CONCLUSIONS: Pregnancy tailors the immune responses of circulating monocytes and neutrophils to endotoxin, a Gram-negative bacterial product.


Assuntos
Endotoxinas , Monócitos , Neutrófilos , Gravidez , Endotoxinas/farmacologia , Escherichia coli , Feminino , Humanos , Interleucina-6 , Lipopolissacarídeos/farmacologia , Monócitos/imunologia , Monócitos/fisiologia , Neutrófilos/imunologia , Neutrófilos/fisiologia , Gravidez/sangue , Gravidez/imunologia , Gravidez/fisiologia , Espécies Reativas de Oxigênio
17.
Immunol Invest ; 51(5): 1330-1346, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34132158

RESUMO

Understanding maternal immune tolerance is crucial for the development of therapeutics for immunological pregnancy complications. Decidual regulatory T cells (Tregs) play a pivotal role in the maintenance of maternal immune tolerance. Using a murine allogeneic pregnancy model in the current study, we identified the up-regulation of gonadotropin-releasing hormone receptor (GnRHR) in decidual T cell subsets including CD4+ conventional T cells, CD8+ T cells, and CD4+Foxp3+ Tregs. Using a lentivirus-mediated GnRHR overexpression system and a GnRHR agonist, we found that GnRHR activation decreased the expression of Treg functional molecules such as IL10 (IL-10), IL-35 subunit EBI3 (Ebi3), IL2RA (CD25), TNFRSF18 (GITR), ICOS, and Treg master regulator FOXP3. The functional analysis indicated that GnRHR activation impairs the ability of Tregs to inhibit conventional T cell proliferation. We also revealed that GnRHR activation suppressed the mechanistic target of rapamycin (mTOR) signaling in GnRHR-overexpressing splenic Tregs (Wild type C57BL/6 J background) and decidual Tregs. MHY1485, a potent mTOR activator, effectively abolished the effect of the GnRHR agonist and promoted the immunosuppressive capability of Tregs. Furthermore, in an adoptive transfer model, Treg-specific GnRHR knockdown increased Foxp3 expression in decidual Tregs while decreasing the production of IFN-γ and IL-17 in decidual effector CD4+ T cells and reducing the production of IFN-γ in decidual effector CD8+ T cells. Taken together, the present study unveils a novel mechanism by which the immunosuppressive function of decidual Tregs is modulated, and deepens our understanding of maternal immune tolerance.


Assuntos
Tolerância Imunológica , Gravidez , Receptores LHRH , Linfócitos T Reguladores , Serina-Treonina Quinases TOR , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Fatores de Transcrição Forkhead/imunologia , Tolerância Imunológica/imunologia , Camundongos , Gravidez/imunologia , Receptores LHRH/imunologia , Linfócitos T Reguladores/imunologia , Serina-Treonina Quinases TOR/imunologia
18.
J Immunol ; 204(11): 2931-2939, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32321754

RESUMO

During human pregnancy, proinflammatory responses in the placenta can cause severe fetal complications, including growth restriction, preterm birth, and stillbirth. Villitis of unknown etiology (VUE), an inflammatory condition characterized by the infiltration of maternal CD8+ T cells into the placenta, is hypothesized to be secondary to either a tissue rejection response to the haploidentical fetus or from an undiagnosed infection. In this study, we characterized the global TCR ß-chain profile in human T cells isolated from placentae diagnosed with VUE compared with control and infectious villitis-placentae by immunoSEQ. Immunosequencing demonstrated that VUE is driven predominantly by maternal T cell infiltration, which is significantly different from controls and infectious cases; however, these T cell clones show very little overlap between subjects. Mapping TCR clones to common viral epitopes (CMV, EBV, and influenza A) demonstrated that Ag specificity in VUE was equal to controls and significantly lower than CMV-specific clones in infectious villitis. Our data indicate VUE represents an allograft response, not an undetected infection. These observations support the development of screening methods to predict those at risk for VUE and the use of specific immunomodulatory therapies during gestation to improve outcomes in affected fetuses.


Assuntos
Vilosidades Coriônicas/imunologia , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Rejeição de Enxerto/imunologia , Inflamação/imunologia , Doenças Placentárias/imunologia , Gravidez/imunologia , Linfócitos T/imunologia , Adulto , Aloenxertos/imunologia , Antígenos Virais/imunologia , Movimento Celular , Estudos de Coortes , Epitopos de Linfócito T/imunologia , Feminino , Feto , Antígenos HLA/imunologia , Humanos , Adulto Jovem
19.
J Immunol ; 204(3): 694-706, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31882516

RESUMO

Many viruses are detrimental to pregnancy and negatively affect fetal growth and development. What is not well understood is how virus-induced inflammation impacts fetal-placental growth and developmental trajectories, particularly when inflammation occurs in early pregnancy during nascent placental and embryo development. To address this issue, we simulated a systemic virus exposure in early pregnant rats (gestational day 8.5) by administering the viral dsRNA mimic polyinosinic:polycytidylic acid (PolyI:C). Maternal exposure to PolyI:C induced a potent antiviral response and hypoxia in the early pregnant uterus, containing the primordial placenta and embryo. Maternal PolyI:C exposure was associated with decreased expression of the maternally imprinted genes Mest, Sfrp2, and Dlk1, which encode proteins critical for placental growth. Exposure of pregnant dams to PolyI:C during early pregnancy reduced fetal growth trajectories throughout gestation, concomitant with smaller placentas, and altered placental structure at midgestation. No detectable changes in placental hemodynamics were observed, as determined by ultrasound biomicroscopy. An antiviral response was not evident in rat trophoblast stem (TS) cells following exposure to PolyI:C, or to certain PolyI:C-induced cytokines including IL-6. However, TS cells expressed high levels of type I IFNR subunits (Ifnar1 and Ifnar2) and responded to IFN-⍺ by increasing expression of IFN-stimulated genes and decreasing expression of genes associated with the TS stem state, including Mest IFN-⍺ also impaired the differentiation capacity of TS cells. These results suggest that an antiviral inflammatory response in the conceptus during early pregnancy impacts TS cell developmental potential and causes latent placental development and reduced fetal growth.


Assuntos
Inflamação/imunologia , Exposição Materna/efeitos adversos , Placenta/fisiologia , Gravidez/imunologia , Trofoblastos/fisiologia , Viroses/imunologia , Animais , Diferenciação Celular , Feminino , Desenvolvimento Fetal , Peptídeos e Proteínas de Sinalização Intercelular/genética , Interferons/genética , Interferons/metabolismo , Interleucina-6/metabolismo , Proteínas de Membrana/genética , Placentação , Poli I-C/imunologia , Ratos , Ratos Sprague-Dawley
20.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35886985

RESUMO

Recently, it was demonstrated that the expression of BMAL1 was decreased in the endometrium of women suffering from recurrent spontaneous abortion. To investigate the pathological roles of uterine clock genes during pregnancy, we produced conditional deletion of uterine Bmal1 (cKO) mice and found that cKO mice could receive embryo implantation but not sustain pregnancy. Gene ontology analysis of microarray suggested that uterine NK (uNK) cell function was suppressed in cKO mice. Histological examination revealed the poor formation of maternal vascular spaces in the placenta. In contrast to WT mice, uNK cells in the spongiotrophoblast layer, where maternal uNK cells are directly in contact with fetal trophoblast, hardly expressed an immunosuppressive NK marker, CD161, in cKO mice. By progesterone supplementation, pregnancy could be sustained until the end of pregnancy in some cKO mice. Although this treatment did not improve the structural abnormalities of the placenta, it recruited CD161-positive NK cells into the spongiotrophoblast layer in cKO mice. These findings indicate that the uterine clock system may be critical for pregnancy maintenance after embryo implantation.


Assuntos
Fatores de Transcrição ARNTL , Morte Fetal , Neovascularização Patológica , Placenta , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/imunologia , Animais , Implantação do Embrião/genética , Feminino , Morte Fetal/etiologia , Células Matadoras Naturais/imunologia , Glicoproteínas de Membrana/imunologia , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Placenta/irrigação sanguínea , Placenta/imunologia , Gravidez/genética , Gravidez/imunologia , Complicações na Gravidez/genética , Complicações na Gravidez/imunologia , Natimorto/genética , Útero/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA