Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 742
Filtrar
1.
Proc Biol Sci ; 291(2018): 20232705, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38444334

RESUMO

The correct identification of variables affecting parasite diversity and assemblage composition at different spatial scales is crucial for understanding how pathogen distribution responds to anthropogenic disturbance and climate change. Here, we used a database of avian haemosporidian parasites to test how the taxonomic and phylogenetic diversity and phylogenetic structure of the genera Plasmodium, Haemoproteus and Leucocytozoon from three zoogeographic regions are related to surrogate variables of Earth's energy input, habitat heterogeneity (climatic diversity, landscape heterogeneity, host richness and human disturbance) and ecological interactions (resource use), which was measured by a novel assemblage-level metric related to parasite niche overlap (degree of generalism). We found that different components of energy input explained variation in richness for each genus. We found that human disturbance influences the phylogenetic structure of Haemoproteus while the degree of generalism explained richness and phylogenetic structure of Plasmodium and Leucocytozoon genera. Furthermore, landscape attributes related to human disturbance (human footprint) can filter Haemoproteus assemblages by their phylogenetic relatedness. Finally, assembly processes related to resource use within parasite assemblages modify species richness and phylogenetic structure of Plasmodium and Leucocytozoon assemblages. Overall, our study highlighted the genus-specific patterns with the different components of Earth's energy budget, human disturbances and degree of generalism.


Assuntos
Haemosporida , Especificidade de Hospedeiro , Humanos , Animais , Filogenia , Efeitos Antropogênicos , Aves
2.
Proc Biol Sci ; 291(2028): 20241013, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39106952

RESUMO

Males and females often differ in ecology, behaviour and lifestyle, and these differences are expected to lead to sex differences in parasite susceptibility. However, neither the sex differences in parasite prevalence, nor their ecological and evolutionary drivers have been investigated across a broad range of taxa using phylogenetically corrected analyses. Using the most extensive dataset yet that includes 755 prevalence estimates from 151 wild bird species in a meta-analytic framework, here we compare sex differences in blood and gastrointestinal parasites. We show that despite sex differences in parasite infection being frequently reported in the literature, only Haemoproteus infections were more prevalent in females than in males. Notably, only seasonality was strongly associated with the sex-specific parasite prevalence of both Leucocytozoon and Haemoproteus, where birds showed greater female bias in prevalence during breeding periods compared to the non-breeding period. No other ecological or sexual selection variables were associated with sex-specific prevalence of parasite prevalence. We suggest that much of the variation in sex-biased prevalence could be idiosyncratic, and driven by local ecology and behavioural differences of the parasite and the host. Therefore, breeding ecology and sexual selection may only have a modest influence on sex-different parasite prevalence across wild birds.


Assuntos
Evolução Biológica , Doenças das Aves , Aves , Animais , Aves/parasitologia , Feminino , Doenças das Aves/parasitologia , Doenças das Aves/epidemiologia , Masculino , Prevalência , Haemosporida/fisiologia , Fatores Sexuais , Caracteres Sexuais , Animais Selvagens/parasitologia , Estações do Ano , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
3.
Malar J ; 23(1): 134, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704592

RESUMO

BACKGROUND: Studies on haemosporidian diversity, including origin of human malaria parasites, malaria's zoonotic dynamic, and regional biodiversity patterns, have used target gene approaches. However, current methods have a trade-off between scalability and data quality. Here, a long-read Next-Generation Sequencing protocol using PacBio HiFi is presented. The data processing is supported by a pipeline that uses machine-learning for analysing the reads. METHODS: A set of primers was designed to target approximately 6 kb, almost the entire length of the haemosporidian mitochondrial genome. Amplicons from different samples were multiplexed in an SMRTbell® library preparation. A pipeline (HmtG-PacBio Pipeline) to process the reads is also provided; it integrates multiple sequence alignments, a machine-learning algorithm that uses modified variational autoencoders, and a clustering method to identify the mitochondrial haplotypes/species in a sample. Although 192 specimens could be studied simultaneously, a pilot experiment with 15 specimens is presented, including in silico experiments where multiple data combinations were tested. RESULTS: The primers amplified various haemosporidian parasite genomes and yielded high-quality mt genome sequences. This new protocol allowed the detection and characterization of mixed infections and co-infections in the samples. The machine-learning approach converged into reproducible haplotypes with a low error rate, averaging 0.2% per read (minimum of 0.03% and maximum of 0.46%). The minimum recommended coverage per haplotype is 30X based on the detected error rates. The pipeline facilitates inspecting the data, including a local blast against a file of provided mitochondrial sequences that the researcher can customize. CONCLUSIONS: This is not a diagnostic approach but a high-throughput method to study haemosporidian sequence assemblages and perform genotyping by targeting the mitochondrial genome. Accordingly, the methodology allowed for examining specimens with multiple infections and co-infections of different haemosporidian parasites. The pipeline enables data quality assessment and comparison of the haplotypes obtained to those from previous studies. Although a single locus approach, whole mitochondrial data provide high-quality information to characterize species pools of haemosporidian parasites.


Assuntos
Genoma Mitocondrial , Haemosporida , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Haemosporida/genética , Haemosporida/classificação , Biodiversidade , Aprendizado de Máquina
4.
Oecologia ; 204(1): 107-118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141067

RESUMO

Stable isotope analysis provides valuable insights into the ecology of long-distance migratory birds during periods spent away from a specific study site. In a previous study, Swedish great reed warblers (Acrocephalus arundinaceus) infected with haemosporidian parasites differed in feather isotope ratios compared to non-infected birds, suggesting that infected and non-infected birds spent the non-breeding season in different locations or habitats. Here, we use a novel dataset comprising geolocator data, isotopes, and haemosporidian infection status of 92 individuals from four Eurasian populations to investigate whether parasite transmission varies with geography or habitats. We found that the probability of harbouring Plasmodium and Leucocytozoon parasites was higher in birds moulting in the eastern region of the non-breeding grounds. However, no geographic pattern occurred for Haemoproteus infections or overall infection status. In contrast to the previous study, we did not find any relationship between feather isotope ratios and overall haemosporidian infection for the entire current dataset. Plasmodium-infected birds had lower feather δ15N values indicating that they occupied more mesic habitats. Leucocytozoon-infected birds had higher feather δ34S values suggesting more coastal sites or wetlands with anoxic sulphate reduction. As the composition and prevalence of haemosporidian parasites differed between the old and the current dataset, we suggest that the differences might be a consequence of temporal dynamics of haemosporidian parasites. Our results emphasize the importance of replicating studies conducted on a single population over a restricted time period, as the patterns can become more complex for data from wider geographical areas and different time periods.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Aves Canoras , Humanos , Animais , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Plumas , Muda , Isótopos , Aves Canoras/parasitologia , Prevalência , Filogenia
5.
Parasitology ; 151(5): 478-484, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634315

RESUMO

Biodiversity varies worldwide and is influenced by multiple factors, such as environmental stability and past historical events (e.g. Panama Isthmus). At the same time, organisms with unique life histories (e.g. parasites) are subject to unique selective pressures that structure their diversity patterns. Parasites represent one of the most successful life strategies, impacting, directly and indirectly, ecosystems by cascading effects on host fitness and survival. Here, I focused on a highly diverse, prevalent and cosmopolitan group of parasites (avian haemosporidians) to investigate the main drivers (e.g. host and environmental features) of regional parasite diversity on a global scale. To do so, I compiled data from 4 global datasets on (i) avian haemosporidian (malaria and malaria-like) parasites, (ii) bird species diversity, (iii) avian functional traits and (iv) climate data. Then, using generalized least square models, I evaluated the effect of host and environmental features on haemosporidian diversity. I found that haemosporidian diversity mirrors host regional diversity and that higher host body mass increases haemosporidian diversity. On the other hand, climatic conditions had no effect on haemosporidian diversity in any model. When evaluating Leucocytozoon parasites separately, I found parasite diversity was boosted by a higher proportion of migratory hosts. In conclusion, I demonstrated that haemosporidian parasite diversity is intrinsically associated with their hosts' diversity and body mass.


Assuntos
Biodiversidade , Doenças das Aves , Aves , Haemosporida , Animais , Haemosporida/classificação , Haemosporida/genética , Haemosporida/fisiologia , Haemosporida/isolamento & purificação , Aves/parasitologia , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/parasitologia , Infecções Protozoárias em Animais/epidemiologia , Interações Hospedeiro-Parasita , Peso Corporal , Clima
6.
Parasitol Res ; 123(5): 206, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713306

RESUMO

The Australian skink Egernia stokesii had been recognised as a host of two species of Plasmodium, Plasmodium mackerrasae and P. circularis; nevertheless, molecular data are available for only a single haemosporidian species of this host. Its sequences are labelled as "Plasmodium sp." or "Plasmodium mackerrasae", but morphological characteristics of this isolate are unavailable. Phylogenetic analyses of these sequences placed them into the clade of the genus Haemocystidium. In this study, blood samples of six E. stokesii were analysed by both, molecular and microscopic methods to clarify the haemosporidia of this lizard. Application of these approaches offered discordant results. Whereas sequence analysis clustered our isolates with lizard species of Haemocystidium, morphology of blood stages is more akin to Plasmodium than Haemocystidium. However, limited sampling, indistinguishable nuclei/merozoites and risk of possible hidden presence of mixed infection prevent reliable species identification of detected parasites or their description as new species of Haemocystidium.


Assuntos
Haemosporida , Lagartos , Filogenia , Animais , Lagartos/parasitologia , Austrália , Haemosporida/genética , Haemosporida/classificação , Haemosporida/isolamento & purificação , DNA de Protozoário/genética , Análise de Sequência de DNA , Dados de Sequência Molecular , Análise por Conglomerados , DNA Ribossômico/genética , Microscopia , Sangue/parasitologia , RNA Ribossômico 18S/genética , Infecções Protozoárias em Animais/parasitologia
7.
Parasitol Res ; 123(6): 252, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922536

RESUMO

Avian haemosporidians of the genera Plasmodium and Haemoproteus are a group of widely distributed blood parasites that can negatively affect the fitness of their hosts. Colombia contains the greatest diversity of birds on the planet, but knowledge about the associations between haemosporidian and its avifauna is scarce and fragmented. We collected blood samples from 255 birds (203 residents and 52 neotropical migrants) belonging to 27 families and 108 species. The study was conducted in six localities in the inter-Andean valleys of the Cauca and Magdalena rivers. Parasites of the genera Plasmodium and Haemoproteus were identified in the samples by morphological and molecular analysis of a fragment of the mitochondrial gene cyt b. Among the samples, 9.3% (n = 24) were positive for Plasmodium or Haemoproteus. Co-infection with Plasmodium and Haemoproteus was found in Red-eyed Vireo. Seventeen haemosporidian lineages were identified, five of which were reported for the first time in resident birds (Common Ground Dove, Checker-throated Stipplethroat, Tropical Kingbird, Pale-breasted Thrush, and Ruddy-breasted Seedeater) and one in the Summer Tanager (neotropical migrant). The research results confirm the wide diversity of haemosporidian present in tropical lowlands and the possible role of neotropical migratory birds in dissemination on haemosporidian along their migratory routes.


Assuntos
Doenças das Aves , Aves , Haemosporida , Plasmodium , Infecções Protozoárias em Animais , Animais , Colômbia/epidemiologia , Haemosporida/classificação , Haemosporida/isolamento & purificação , Haemosporida/genética , Aves/parasitologia , Doenças das Aves/parasitologia , Doenças das Aves/epidemiologia , Plasmodium/classificação , Plasmodium/isolamento & purificação , Plasmodium/genética , Infecções Protozoárias em Animais/parasitologia , Infecções Protozoárias em Animais/epidemiologia , Citocromos b/genética , Migração Animal , Filogenia , Coinfecção/parasitologia , Coinfecção/veterinária , Coinfecção/epidemiologia
8.
Parasitol Res ; 123(4): 182, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622257

RESUMO

Avian haemosporidians are vector-borne parasites, infecting a great variety of birds. The order Passeriformes has the highest average infection probability; nevertheless, some common species of Passeriformes have been rather poorly studied. We investigated haemosporidians in one such species, the Eurasian jay Garrulus glandarius (Corvidae), from a forest population in Hesse, Central Germany. All individuals were infected with at least one haemosporidian genus (overall prevalence: 100%). The most common infection pattern was a mixed Haemoproteus and Leucocytozoon infection, whereas no Plasmodium infection was detected. Results on lineage diversity indicate a rather pronounced host-specificity of Haemoproteus and Leucocytozoon lineages infecting birds of the family Corvidae.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Passeriformes , Infecções Protozoárias em Animais , Aves Canoras , Humanos , Animais , Prevalência , DNA de Protozoário , Filogenia , Haemosporida/genética , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
9.
PLoS Pathog ; 17(6): e1009637, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34161394

RESUMO

The Dilution Effect Hypothesis (DEH) argues that greater biodiversity lowers the risk of disease and reduces the rates of pathogen transmission since more diverse communities harbour fewer competent hosts for any given pathogen, thereby reducing host exposure to the pathogen. DEH is expected to operate most intensely in vector-borne pathogens and when species-rich communities are not associated with increased host density. Overall, dilution will occur if greater species diversity leads to a lower contact rate between infected vectors and susceptible hosts, and between infected hosts and susceptible vectors. Field-based tests simultaneously analysing the prevalence of several multi-host pathogens in relation to host and vector diversity are required to validate DEH. We tested the relationship between the prevalence in house sparrows (Passer domesticus) of four vector-borne pathogens-three avian haemosporidians (including the avian malaria parasite Plasmodium and the malaria-like parasites Haemoproteus and Leucocytozoon) and West Nile virus (WNV)-and vertebrate diversity. Birds were sampled at 45 localities in SW Spain for which extensive data on vector (mosquitoes) and vertebrate communities exist. Vertebrate censuses were conducted to quantify avian and mammal density, species richness and evenness. Contrary to the predictions of DEH, WNV seroprevalence and haemosporidian prevalence were not negatively associated with either vertebrate species richness or evenness. Indeed, the opposite pattern was found, with positive relationships between avian species richness and WNV seroprevalence, and Leucocytozoon prevalence being detected. When vector (mosquito) richness and evenness were incorporated into the models, all the previous associations between WNV prevalence and the vertebrate community variables remained unchanged. No significant association was found for Plasmodium prevalence and vertebrate community variables in any of the models tested. Despite the studied system having several characteristics that should favour the dilution effect (i.e., vector-borne pathogens, an area where vector and host densities are unrelated, and where host richness is not associated with an increase in host density), none of the relationships between host species diversity and species richness, and pathogen prevalence supported DEH and, in fact, amplification was found for three of the four pathogens tested. Consequently, the range of pathogens and communities studied needs to be broadened if we are to understand the ecological factors that favour dilution and how often these conditions occur in nature.


Assuntos
Biodiversidade , Doenças das Aves/epidemiologia , Infecções Protozoárias em Animais/epidemiologia , Pardais/microbiologia , Febre do Nilo Ocidental/veterinária , Animais , Haemosporida , Prevalência , Espanha , Febre do Nilo Ocidental/epidemiologia
10.
Mol Phylogenet Evol ; 186: 107828, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37247702

RESUMO

Amazonia is the primary source of haemosporidian diversity for South American biomes. Yet, our understanding of the contribution of each area of endemism and the biogeographical processes that generated such diversity in this group of vector transmitted parasites remains incomplete. For example, a recently formed fluvial island in the Amazon delta - Marajó Island, is composed of avian lineages from adjacent Amazonian areas of endemism, but also from open habitats, such as Cerrado. This raises the question: Is the parasite assemblage found in avian hosts on this island formed by parasite lineages from adjacent Amazonian areas of endemism or Cerrado? Here, we assessed the spatiotemporal evolution of Plasmodium and Parahaemoproteus parasites. Our biogeographic analysis showed that dispersal dominated Plasmodium diversification, whereas duplication was more frequent for the genus Parahaemoproteus. We show that the Inambari area of endemism was the primary source for Plasmodium diversity on Marajó Island, but that this island received more Parahaemoproteus lineages from Cerrado than any Amazonian area of endemism. The unique patterns of dispersal for each parasite genus coupled with their propensity to shift hosts locally may have facilitated their diversification across Amazonia, suggesting that differences in deep evolutionary history may have constrained their colonization of Marajó Island.


Assuntos
Haemosporida , Parasitos , Plasmodium , Animais , Filogenia , Plasmodium/genética , Haemosporida/genética , Aves
11.
Malar J ; 22(1): 232, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563610

RESUMO

BACKGROUND: The nuclear ribosomal RNA genes of Plasmodium parasites are assumed to evolve according to a birth-and-death model with new variants originating by duplication and others becoming deleted. For some Plasmodium species, it has been shown that distinct variants of the 18S rRNA genes are expressed differentially in vertebrate hosts and mosquito vectors. The central aim was to evaluate whether avian haemosporidian parasites of the genus Haemoproteus also have substantially distinct 18S variants, focusing on lineages belonging to the Haemoproteus majoris and Haemoproteus belopolskyi species groups. METHODS: The almost complete 18S rRNA genes of 19 Haemoproteus lineages of the subgenus Parahaemoproteus, which are common in passeriform birds from the Palaearctic, were sequenced. The PCR products of 20 blood and tissue samples containing 19 parasite lineages were subjected to molecular cloning, and ten clones in mean were sequenced each. The sequence features were analysed and phylogenetic trees were calculated, including sequence data published previously from eight additional Parahaemoproteus lineages. The geographic and host distribution of all 27 lineages was visualised as CytB haplotype networks and pie charts. Based on the 18S sequence data, species-specific oligonucleotide probes were designed to target the parasites in host tissue by in situ hybridization assays. RESULTS: Most Haemoproteus lineages had two or more variants of the 18S gene like many Plasmodium species, but the maximum distances between variants were generally lower. Moreover, unlike in most mammalian and avian Plasmodium species, the 18S sequences of all but one parasite lineage clustered into reciprocally monophyletic clades. Considerably distinct 18S clusters were only found in Haemoproteus tartakovskyi hSISKIN1 and Haemoproteus sp. hROFI1. The presence of chimeric 18S variants in some Haemoproteus lineages indicates that their ribosomal units rather evolve in a semi-concerted fashion than according to a strict model of birth-and-death evolution. CONCLUSIONS: Parasites of the subgenus Parahaemoproteus contain distinct 18S variants, but the intraspecific variability is lower than in most mammalian and avian Plasmodium species. The new 18S data provides a basis for more thorough investigations on the development of Haemoproteus parasites in host tissue using in situ hybridization techniques targeting specific parasite lineages.


Assuntos
Apicomplexa , Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Aves Canoras , Animais , Filogenia , RNA Ribossômico 18S/genética , Genes de RNAr , Doenças das Aves/parasitologia , Apicomplexa/genética , Plasmodium/genética , Mamíferos/genética , Infecções Protozoárias em Animais/parasitologia
12.
Biol Lett ; 19(3): 20220459, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36918035

RESUMO

Parasite dispersal and host-switching may be better understood by knowing when they occurred. We estimated when the ancestor of a parasite of great reed warblers (Acrocephalus arundinaceus) dispersed to the Seychelles and began infecting the endemic Seychelles warbler (A. sechellensis). We used mitochondrial genomes and published molecular divergence rates to estimate the date of divergence between mitochondrial haplotypes of the parasite Haemoproteus nucleocondensis (lineage GRW01) in the great reed warbler and the Seychelles warbler. We also constructed a time-calibrated phylogeny of the hosts and their relatives to determine when the ancestor of the Seychelles warbler dispersed to the Seychelles. The two GRW01 lineages diverged ca 20-451 kya, long after the ancestor of the Seychelles warbler colonized the Seychelles ca 1.76-4.36 Mya. GRW01 rarely infects other species despite apparent opportunity. Humans were likely not involved in the dispersal of this parasite because humans settled the Seychelles long after the parasite diverged from its mainland relative. Furthermore, introduced birds are unlikely hosts of GRW01. Instead, the ancestor of GRW01 may have dispersed to the Seychelles with an errant migrating great reed warbler. Our results indicate that even specialized parasites can naturally disperse long distances to become emerging infectious diseases.


Assuntos
Haemosporida , Parasitos , Passeriformes , Aves Canoras , Animais , Humanos , Aves Canoras/genética , Haemosporida/genética , Seicheles , Filogenia
13.
Microb Ecol ; 86(4): 2838-2846, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37608162

RESUMO

Establishing how environmental gradients and host ecology drive spatial variation in infection rates and diversity of pathogenic organisms is one of the central goals in disease ecology. Here, we identified the predictors of concomitant infection and lineage richness of blood parasites in New Word bird communities. Our multi-level Bayesian models revealed that higher latitudes and elevations played a determinant role in increasing the probability of a bird being co-infected with Leucocytozoon and other haemosporidian parasites. The heterogeneity in both single and co-infection rates was similarly driven by host attributes and temperature, with higher probabilities of infection in heavier migratory host species and at cooler localities. Latitude, elevation, host body mass, migratory behavior, and climate were also predictors of Leucocytozoon lineage richness across the New World avian communities, with decreasing parasite richness at higher elevations, rainy and warmer localities, and in heavier and resident host species. Increased parasite richness was found farther from the equator, confirming a reverse Latitudinal Diversity Gradient pattern for this parasite group. The increased rates of Leucocytozoon co-infection and lineage richness with increased latitude are in opposition with the pervasive assumption that pathogen infection rates and diversity are higher in tropical host communities.


Assuntos
Doenças das Aves , Coinfecção , Haemosporida , Parasitos , Animais , Coinfecção/veterinária , Teorema de Bayes , Altitude , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Aves , Prevalência
14.
Parasitology ; 150(3): 221-229, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36268594

RESUMO

Morphological traits from blood stages have been the gold standard for determining haemosporidian parasite species. However, the status of some taxa and the value of such traits in parasites from reptiles remain contentious. The scarce sampling of these species worsens the situation, and several taxa lack molecular data. A survey was performed in the Magdalena Department in Colombia, where 16 species of reptiles were captured. A peculiar haemosporidian parasite was found in the Turnip-tailed gecko Thecadactylus rapicauda. This haemosporidian does not show malarial pigment in blood stages under light microscopy; thus, it fits the Garnia genus's characters belonging to the Garniidae. However, the phylogenetic analyses using a partial sequence of cytochrome b and the mitochondrial DNA placed it within the Plasmodium clade. Our findings suggest that many putative Garnia species belong to the genus Plasmodium, like the one reported here. This study either shows that visible malarial pigment in blood stages is not a diagnostic trait of the genus Plasmodium or malarial pigment might be present in an undetectable form under a light microscope. In any case, the current taxonomy of haemosporidian parasites in reptiles requires revision. This study highlights the importance of using molecular and morphological traits to address taxonomic questions at the species and genus levels in haemosporidian parasites from reptiles.


Assuntos
Brassica napus , Haemosporida , Lagartos , Parasitos , Plasmodium , Animais , Filogenia , Plasmodium/genética , Serpentes , Haemosporida/genética
15.
Parasitology ; 150(14): 1307-1315, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37395052

RESUMO

Host­parasite associations provide a benchmark for investigating evolutionary arms races and antagonistic coevolution. However, potential ecological mechanisms underlying such associations are difficult to unravel. In particular, local adaptations of hosts and/or parasites may hamper reliable inferences of host­parasite relationships and the specialist­generalist definitions of parasite lineages, making it problematic to understand such relationships on a global scale. Phylogenetic methods were used to investigate co-phylogenetic patterns between vector-borne parasites of the genus Haemoproteus and their passeriform hosts, to infer the ecological interactions of parasites and hosts that may have driven the evolution of both groups in a local geographic domain. As several Haemoproteus lineages were only detected once, and given the occurrence of a single extreme generalist, the effect of removing individual lineages on the co-phylogeny pattern was tested. When all lineages were included, and when all singly detected lineages were removed, there was no convincing evidence for host­parasite co-phylogeny. However, when only the generalist lineage was removed, strong support for co-phylogeny was indicated, and ecological interactions could be successfully inferred. This study exemplifies the importance of identifying locally abundant lineages when sampling host­parasite systems, to provide reliable insights into the precise mechanisms underlying host­parasite interactions.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Passeriformes , Animais , Filogenia , Haemosporida/genética , Interações Hospedeiro-Parasita , Doenças das Aves/parasitologia
16.
Parasitology ; 150(14): 1266-1276, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072659

RESUMO

Avian haemosporidians are protozoan parasites transmitted by insect vectors that infect birds worldwide, negatively impacting avian fitness and survival. However, the majority of haemosporidian diversity remains undescribed. Quantifying this diversity is critical to determining parasite­host relationships and host-switching potentials of parasite lineages as climate change induces both host and vector range shifts. In this study, we conducted a community survey of avian haemosporidians found in breeding birds on the Davis Mountains sky islands in west Texas, USA. We determined parasite abundance and host associations and compared our results to data from nearby regions. A total of 265 birds were screened and infections were detected in 108 birds (40.8%). Most positive infections were identified as Haemoproteus (36.2%), followed by Plasmodium (6.8%) and Leucocytozoon (0.8%). A total of 71 haemosporidian lineages were detected of which 39 were previously undescribed. We found that regional similarity influenced shared lineages, as a higher number of lineages were shared with avian communities in the sky islands of New Mexico compared to south Texas, the Texas Gulf Coast and central Mexico. We found that migratory status of avian host did not influence parasite prevalence, but that host phylogeny is likely an important driver.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Animais , Texas/epidemiologia , Haemosporida/genética , Aves/parasitologia , Filogenia , Prevalência , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/epidemiologia
17.
Parasitology ; 150(14): 1296-1306, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37655743

RESUMO

The distribution of avian haemosporidians of the genus Leucocytozoon in the Neotropics remains poorly understood. Recent studies confirmed their presence in the region using molecular techniques alone, but evidence for gametocytes and data on putative competent hosts for Leucocytozoon are still lacking outside highland areas. We combined morphological and molecular data to characterize a new Leucocytozoon species infecting a non-migratory red-legged seriema (Cariama cristata), the first report of a competent host for Leucocytozoon in Brazil. Leucocytozoon cariamae n. sp. is distinguished from the Leucocytozoon fringillinarum group by its microgametocytes that are not strongly appressed to the host cell nucleus. The bird studied was coinfected with Haemoproteus pulcher, and we present a Bayesian phylogenetic analysis based on nearly complete mitochondrial genomes of these 2 parasites. Leucocytozoon cariamae n. sp. morphology is consistent with our phylogenetic analysis indicating that it does not share a recent common ancestor with the L. fringillinarum group. Haemoproteus pulcher and Haemoproteus catharti form a monophyletic group with Haemocystidium parasites of Reptilia, supporting the polyphyly of the genus Haemoproteus. We also discussed the hypothesis that H. pulcher and H. catharti may be avian Haemocystidium, highlighting the need to study non-passerine parasites to untangle the systematics of Haemosporida.


Assuntos
Doenças das Aves , Coinfecção , Genoma Mitocondrial , Haemosporida , Parasitos , Infecções Protozoárias em Animais , Animais , Filogenia , Brasil/epidemiologia , Teorema de Bayes , Infecções Protozoárias em Animais/parasitologia , Doenças das Aves/parasitologia , Haemosporida/genética , Parasitos/genética , Aves
18.
Parasitology ; 150(14): 1263-1265, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38200697

RESUMO

Avian malaria parasites or haemosporidia are found in bird species worldwide. This special issue focuses on 3 most commonly studied genera: Haemoproteus, Plasmodium and Leucocytozoon. Seven research articles and reviews are provided to illustrate the breadth of knowledge of the diversity of avian malaria parasites in different regional habitats and across bird species, and the use of avian haemosporidian systems to examine host­parasite eco-evolutionary questions.


Assuntos
Doenças das Aves , Haemosporida , Malária Aviária , Parasitos , Plasmodium , Animais , Malária Aviária/epidemiologia , Malária Aviária/parasitologia , Prevalência , Plasmodium/genética , Haemosporida/genética , Aves/parasitologia , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Filogenia
19.
Parasitology ; 150(6): 498-504, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36892015

RESUMO

Haemosporidia (Apicomplexa, Haemosporida) are protozoa that infect vertebrate blood cells and are transmitted by vectors. Among vertebrates, birds possess the greatest diversity of haemosporidia, historically placed in 3 genera: Haemoproteus, Leucocytozoon and Plasmodium, the causative agent of avian malaria. In South America, existing data on haemosporidia are spatially and temporally dispersed, so increased surveillance is needed to improve the determination and diagnosis of these parasites. During the non-breeding season in 2020 and 2021, 60 common terns (Sterna hirundo) were captured and bled as part of ongoing research on the population health of migratory birds on the Argentinian Atlantic coast. Blood samples and blood smears were obtained. Fifty-eight samples were screened for Plasmodium, Haemoproteus and Leucocytozoon, as well as for Babesia parasites by nested polymerase chain reaction and by microscopic examination of smears. Two positive samples for Plasmodium were found. The cytochrome b lineages detected in the present study are found for the first time, and are close to Plasmodium lineages found in other bird orders. The low prevalence (3.6%) of haemoparasites found in this research was similar to those reported for previous studies on seabirds, including Charadriiformes. Our findings provide new information about the distribution and prevalence of haemosporidian parasites from charadriiforms in the southernmost part of South America, which remains understudied.


Assuntos
Doenças das Aves , Charadriiformes , Haemosporida , Malária Aviária , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Animais , Malária Aviária/epidemiologia , Malária Aviária/parasitologia , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Plasmodium/genética , Haemosporida/genética , Aves/parasitologia , América do Sul/epidemiologia , Prevalência , Filogenia , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
20.
Parasitology ; 150(14): 1286-1295, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36951108

RESUMO

Haemoproteus spp. are dipteran-borne protozoa that infect erythrocytes and reticulo-endothelial cells of birds. These parasites are not usually transmitted between birds belonging to different orders. The suborder Lari (order Charadriiformes) comprises ~170 avian species, the majority of which are aquatic, including gulls, terns, auklets, murres and skuas, among others. In spite of the diversity of this avian group, there is limited known diversity of haemosporidian parasites, with only 4 recorded Haemoproteus morphospecies thus far. We examined the blood smears of 21 kelp gulls (Larus dominicanus) captured at a breeding colony in South Africa, as well as Haemoproteus-positive archival blood smears of 15 kelp gulls and 1 Hartlaub's gull (Larus hartlaubii) sampled while under care at seabird rehabilitation facilities in South Africa. Haemoproteus sp. infection was detected in 19% of wild-caught kelp gulls. All parasites from the gulls were morphologically identified as Haemoproteus jenniae, a species previously recorded in Lari birds at the Galapagos Islands (Ecuador), Rocas Atoll (Brazil) and Poland. Gene sequencing uncovered a new cytochrome b lineage, LARDOM01, which was closely related to the previously reported H. jenniae lineage CREFUR01. Additionally, we evaluated a hapantotype blood smear of Haemoproteus skuae, which had been described infecting a brown skua (Catharacta antarctica) in South Africa. We provide a redescription of H. skuae and discuss the morphological characters distinguishing it from H. jenniae. Further research is necessary to improve our knowledge about the host and geographic distribution, health effects and phylogeny of H. jenniae and H. skuae.


Assuntos
Doenças das Aves , Charadriiformes , Haemosporida , Parasitos , Infecções Protozoárias em Animais , Animais , Charadriiformes/parasitologia , Haemosporida/genética , África do Sul/epidemiologia , Células Endoteliais , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Aves/parasitologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA