Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.588
Filtrar
1.
PLoS Biol ; 22(6): e3002652, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38870319

RESUMO

Difficulties in reasoning about others' mental states (i.e., mentalising/Theory of Mind) are highly prevalent among disorders featuring dopamine dysfunctions (e.g., Parkinson's disease) and significantly affect individuals' quality of life. However, due to multiple confounding factors inherent to existing patient studies, currently little is known about whether these sociocognitive symptoms originate from aberrant dopamine signalling or from psychosocial changes unrelated to dopamine. The present study, therefore, investigated the role of dopamine in modulating mentalising in a sample of healthy volunteers. We used a double-blind, placebo-controlled procedure to test the effect of the D2/D3 antagonist haloperidol on mental state attribution, using an adaptation of the Heider and Simmel (1944) animations task. On 2 separate days, once after receiving 2.5 mg haloperidol and once after receiving placebo, 33 healthy adult participants viewed and labelled short videos of 2 triangles depicting mental state (involving mentalistic interaction wherein 1 triangle intends to cause or act upon a particular mental state in the other, e.g., surprising) and non-mental state (involving reciprocal interaction without the intention to cause/act upon the other triangle's mental state, e.g., following) interactions. Using Bayesian mixed effects models, we observed that haloperidol decreased accuracy in labelling both mental and non-mental state animations. Our secondary analyses suggest that dopamine modulates inference from mental and non-mental state animations via independent mechanisms, pointing towards 2 putative pathways underlying the dopaminergic modulation of mental state attribution: action representation and a shared mechanism supporting mentalising and emotion recognition. We conclude that dopaminergic pathways impact Theory of Mind, at least indirectly. Our results have implications for the neurochemical basis of sociocognitive difficulties in patients with dopamine dysfunctions and generate new hypotheses about the specific dopamine-mediated mechanisms underlying social cognition.


Assuntos
Haloperidol , Receptores de Dopamina D2 , Receptores de Dopamina D3 , Humanos , Receptores de Dopamina D2/metabolismo , Masculino , Adulto , Haloperidol/farmacologia , Feminino , Receptores de Dopamina D3/metabolismo , Método Duplo-Cego , Adulto Jovem , Teoria da Mente , Dopamina/metabolismo , Antagonistas de Dopamina/farmacologia , Mentalização
2.
PLoS Biol ; 22(7): e3002714, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38995982

RESUMO

In everyday life, we encounter situations that require tradeoffs between potential rewards and associated costs, such as time and (physical) effort. The literature indicates a prominent role for dopamine in discounting of both delay and effort, with mixed findings for delay discounting in humans. Moreover, the reciprocal antagonistic interaction between dopaminergic and cholinergic transmission in the striatum suggests a potential opponent role of acetylcholine in these processes. We found opposing effects of dopamine D2 (haloperidol) and acetylcholine M1 receptor (biperiden) antagonism on specific components of effort-based decision-making in healthy humans: haloperidol decreased, whereas biperiden increased the willingness to exert physical effort. In contrast, delay discounting was reduced under haloperidol, but not affected by biperiden. Together, our data suggest that dopamine, acting at D2 receptors, modulates both effort and delay discounting, while acetylcholine, acting at M1 receptors, appears to exert a more specific influence on effort discounting only.


Assuntos
Acetilcolina , Tomada de Decisões , Desvalorização pelo Atraso , Dopamina , Haloperidol , Receptores de Dopamina D2 , Humanos , Acetilcolina/metabolismo , Dopamina/metabolismo , Masculino , Tomada de Decisões/fisiologia , Tomada de Decisões/efeitos dos fármacos , Feminino , Haloperidol/farmacologia , Adulto , Receptores de Dopamina D2/metabolismo , Desvalorização pelo Atraso/efeitos dos fármacos , Desvalorização pelo Atraso/fisiologia , Adulto Jovem , Recompensa , Receptor Muscarínico M1/metabolismo
3.
J Neurosci ; 44(11)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38286627

RESUMO

Dopamine neurons play crucial roles in pleasure, reward, memory, learning, and fine motor skills and their dysfunction is associated with various neuropsychiatric diseases. Dopamine receptors are the main target of treatment for neurologic and psychiatric disorders. Antipsychotics that antagonize the dopamine D2 receptor (DRD2) are used to alleviate the symptoms of these disorders but may also sometimes cause disabling side effects such as parkinsonism (catalepsy in rodents). Here we show that GPR143, a G-protein-coupled receptor for L-3,4-dihydroxyphenylalanine (L-DOPA), expressed in striatal cholinergic interneurons enhances the DRD2-mediated side effects of haloperidol, an antipsychotic agent. Haloperidol-induced catalepsy was attenuated in male Gpr143 gene-deficient (Gpr143-/y ) mice compared with wild-type (Wt) mice. Reducing the endogenous release of L-DOPA and preventing interactions between GPR143 and DRD2 suppressed the haloperidol-induced catalepsy in Wt mice but not Gpr143-/y mice. The phenotypic defect in Gpr143-/y mice was mimicked in cholinergic interneuron-specific Gpr143-/y (Chat-cre;Gpr143flox/y ) mice. Administration of haloperidol increased the phosphorylation of ribosomal protein S6 at Ser240/244 in the dorsolateral striatum of Wt mice but not Chat-cre;Gpr143flox/y mice. In Chinese hamster ovary cells stably expressing DRD2, co-expression of GPR143 increased cell surface expression level of DRD2, and L-DOPA application further enhanced the DRD2 surface expression. Shorter pauses in cholinergic interneuron firing activity were observed after intrastriatal stimulation in striatal slice preparations from Chat-cre;Gpr143flox/y mice compared with those from Wt mice. Together, these findings provide evidence that GPR143 regulates DRD2 function in cholinergic interneurons and may be involved in parkinsonism induced by antipsychotic drugs.


Assuntos
Antipsicóticos , Transtornos Parkinsonianos , Receptores de Neurotransmissores , Humanos , Camundongos , Masculino , Animais , Cricetinae , Haloperidol/farmacologia , Levodopa/efeitos adversos , Catalepsia/induzido quimicamente , Células CHO , Cricetulus , Antipsicóticos/efeitos adversos , Interneurônios/metabolismo , Colinérgicos/farmacologia , Proteínas do Olho/metabolismo , Glicoproteínas de Membrana/metabolismo
4.
Mol Psychiatry ; 29(9): 2753-2764, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38561467

RESUMO

The intricate involvement of the serotonin 5-HT2A receptor (5-HT2AR) both in schizophrenia and in the activity of antipsychotic drugs is widely acknowledged. The currently marketed antipsychotic drugs, although effective in managing the symptoms of schizophrenia to a certain extent, are not without their repertoire of serious side effects. There is a need for better therapeutics to treat schizophrenia for which understanding the mechanism of action of the current antipsychotic drugs is imperative. With bioluminescence resonance energy transfer (BRET) assays, we trace the signaling signature of six antipsychotic drugs belonging to three generations at the 5-HT2AR for the entire spectrum of signaling pathways activated by serotonin (5-HT). The antipsychotic drugs display previously unidentified pathway preference at the level of the individual Gα subunits and ß-arrestins. In particular, risperidone, clozapine, olanzapine and haloperidol showed G protein-selective inverse agonist activity. In addition, G protein-selective partial agonism was found for aripiprazole and cariprazine. Pathway-specific apparent dissociation constants determined from functional analyses revealed distinct coupling-modulating capacities of the tested antipsychotics at the different 5-HT-activated pathways. Computational analyses of the pharmacological and structural fingerprints support a mechanistically based clustering that recapitulate the clinical classification (typical/first generation, atypical/second generation, third generation) of the antipsychotic drugs. The study provides a new framework to functionally classify antipsychotics that should represent a useful tool for the identification of better and safer neuropsychiatric drugs and allows formulating hypotheses on the links between specific signaling cascades and in the clinical outcomes of the existing drugs.


Assuntos
Antipsicóticos , Receptor 5-HT2A de Serotonina , Esquizofrenia , Transdução de Sinais , Antipsicóticos/farmacologia , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos , Células HEK293 , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Clozapina/farmacologia , Aripiprazol/farmacologia , Risperidona/farmacologia , Serotonina/metabolismo , Olanzapina/farmacologia , Haloperidol/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia
5.
J Cell Mol Med ; 28(2): e18049, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37987145

RESUMO

Derangement of redox condition largely contributes to cardiac ischemia/reperfusion (I/R) injury. FoxO1 is a transcription factor which transcripts a series of antioxidants to antagonize I/R-induced oxidative myocardial damage. N-n-butyl haloperidol iodide (F2 ) is a derivative derived from haloperidol structural modification with potent capacity of inhibiting oxidative stress. This investigation intends to validate whether cardio-protection of F2 is dependent on FoxO1 using an in vivo mouse I/R model and if so, to further elucidate the molecular regulating mechanism. This study initially revealed that F2 preconditioning led to a profound reduction in I/R injury, which was accompanied by attenuated oxidative stress and upregulation of antioxidants (SOD2 and catalase), nuclear FoxO1 and phosphorylation of AMPK. Furthermore, inactivation of FoxO1 with AS1842856 abolished the cardio-protective effect of F2 . Importantly, we identified F2 -mediated nuclear accumulation of FoxO1 is dependent on AMPK, as blockage of AMPK with compound C induced nuclear exit of FoxO1. Collectively, our data uncover that F2 pretreatment exerts significant protection against post ischemic myocardial injury by its regulation of AMPK/FoxO1 pathway, which may provide a new avenue for treating ischemic disease.


Assuntos
Proteínas Quinases Ativadas por AMP , Traumatismo por Reperfusão , Camundongos , Animais , Haloperidol/farmacologia , Miocárdio , Transdução de Sinais , Antioxidantes/farmacologia
6.
J Neurochem ; 168(3): 238-250, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38332572

RESUMO

Deciphering the molecular pathways associated with N-methyl-D-aspartate receptor (NMDAr) hypofunction and its interaction with antipsychotics is necessary to advance our understanding of the basis of schizophrenia, as well as our capacity to treat this disease. In this regard, the development of human brain-derived models that are amenable to studying the neurobiology of schizophrenia may contribute to filling the gaps left by the widely employed animal models. Here, we assessed the proteomic changes induced by the NMDA glutamate receptor antagonist MK-801 on human brain slice cultures obtained from adult donors submitted to respective neurosurgery. Initially, we demonstrated that MK-801 diminishes NMDA glutamate receptor signaling in human brain slices in culture. Next, using mass-spectrometry-based proteomics and systems biology in silico analyses, we found that MK-801 led to alterations in proteins related to several pathways previously associated with schizophrenia pathophysiology, including ephrin, opioid, melatonin, sirtuin signaling, interleukin 8, endocannabinoid, and synaptic vesicle cycle. We also evaluated the impact of both typical and atypical antipsychotics on MK-801-induced proteome changes. Interestingly, the atypical antipsychotic clozapine showed a more significant capacity to counteract the protein alterations induced by NMDAr hypofunction than haloperidol. Finally, using our dataset, we identified potential modulators of the MK-801-induced proteome changes, which may be considered promising targets to treat NMDAr hypofunction in schizophrenia. This dataset is publicly available and may be helpful in further studies aimed at evaluating the effects of MK-801 and antipsychotics in the human brain.


Assuntos
Antipsicóticos , Clozapina , Animais , Humanos , Clozapina/farmacologia , Haloperidol/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Maleato de Dizocilpina/farmacologia , Proteoma/metabolismo , N-Metilaspartato , Ácido Glutâmico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteômica , Antipsicóticos/farmacologia , Encéfalo/metabolismo
7.
J Pharmacol Exp Ther ; 390(1): 125-145, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38816228

RESUMO

Haloperidol decanoate (HD) has been implicated in cognitive impairment. Agomelatine (AGO) has been claimed to improve cognition. We aimed at investigating the effects of HD + low- or high-dose AGO on cognition, verifying the melatonergic/dopaminergic to the cholinergic hypothesis of cognition and exploring relevant cardiovascular issues in adult male Wistar albino rats. HD + high-dose AGO prolonged the step-through latency by +61.47% (P < 0.0001), increased the time spent in bright light by +439.49% (P < 0.0001), reduced the time spent in dim light by -66.25% (P < 0.0001), and increased the percent of alternations by +71.25% (P < 0.0001), despite the reductions in brain acetylcholine level by -10.67% (P < 0.0001). Neurodegeneration was minimal, while the mean power frequency of the source wave was reduced by -23.39% (P < 0.05). Concurrently, the relative expression of brain melatonin type 2 receptors was reduced by -18.75% (P < 0.05), against increased expressions of dopamine type 5 receptors by +22.22% (P < 0.0001) and angiopoietin-like 4 by +119.18% (P < 0.0001). Meanwhile, electrocardiogram (ECG) demonstrated inverted P wave, reduced P wave duration by -36.15% (P < 0.0001) and PR interval by -19.91% (P < 0.0001), prolonged RR interval by +27.97% (P < 0.05), increased R wave amplitude by +523.15% (P < 0.0001), and a depressed ST segment and inverted T wave. In rats administered AGO, HD, or HD+ low-dose AGO, Alzheimer's disease (AD)-like neuropathologic features were more evident, accompanied by extensive ECG and neurochemical alterations. HD + high-dose AGO enhances cognition but alters cardiac electrophysiology. SIGNIFICANCE STATEMENT: Given the issue of cognitive impairment associated with HD and the claimed cognitive-enhancing activity of AGO, combined high-dose AGO with HD improved cognition of adult male rats, who exhibited minimal neurodegenerative changes. HD+ high-dose AGO was relatively safe regarding triggering epileptogenesis, while it altered cardiac electrophysiology. In the presence of low acetylcholine, the melatonergic/dopaminergic hypothesis, added to angiopoietin-like 4 and Krüppel-like factor 9, could offer some clue, thus offering novel targets for pharmacologic manipulation of cognition.


Assuntos
Acetamidas , Cognição , Haloperidol , Ratos Wistar , Receptor MT2 de Melatonina , Animais , Masculino , Haloperidol/farmacologia , Ratos , Cognição/efeitos dos fármacos , Acetamidas/farmacologia , Acetamidas/administração & dosagem , Receptor MT2 de Melatonina/metabolismo , Receptor MT2 de Melatonina/agonistas , Regulação para Baixo/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Coração/efeitos dos fármacos , Relação Dose-Resposta a Droga , Naftalenos
8.
Mol Pharm ; 21(10): 5053-5070, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39302161

RESUMO

Aggressive glioma exhibits a poor survival rate. Increased tumor aggression is linked to both tumor cells and tumor-associated macrophages (TAMs), which induce pro-aggression, invasion, and metastasis. Imperatively, for effective treatment, it is important to target both glioma cells and TAMs. Haloperidol, a neuropsychotic drug, avidly targets the sigma receptor (SR), which is expressed in higher levels in both the cell types. Herein, we present the development of a novel cationic lipid-conjugated reduced haloperidol (±RHPC8), which aims to mediate the SR-targeted antiglioma effect. Hypothetically, ±RHPC8 would act simultaneously as an SR-targeting ligand and anticancer agent. As the blood-brain barrier (BBB) obstructs direct targeting of in situ glioma, we used BBB-crossing glucose-based carbon nanospheres (CSPs) to deliver ±RHPC8 within the glioma tumor-bearing mouse brain. The resultant ±RHPC8-CSP nanoconjugate targeted SR-expressing glioma cells. In both orthotopic and subcutaneous mouse tumor models, ±RHPC8-CSP prolonged survival and regressed tumors compared to other treated groups. Notably, ±RHPC8-CSP was significantly taken up by SR-expressing TAMs thus resulting in macrophage polarization from M2 to M1, as exhibited by markedly reduced expression of immunosuppressive cytokines released by TAMs, including TGF-ß, IL-10, and VEGF. In conclusion, the designed ±RHPC8-CSP nanoconjugate presented an effective nanodrug delivery system for brain cancer treatment.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Glioma , Glucose , Haloperidol , Lipídeos , Nanosferas , Animais , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Camundongos , Haloperidol/farmacologia , Haloperidol/administração & dosagem , Glucose/metabolismo , Nanosferas/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Lipídeos/química , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Humanos , Masculino
9.
Purinergic Signal ; 20(1): 29-34, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36918462

RESUMO

Fatigue is a non-motor symptom of Parkinson's disease (PD). Adenosine 2A receptor (A2AR) and compromised dopamine neurotransmission are linked to fatigue. Studies demonstrate that A2AR antagonism potentiates dopamine transmission via dopamine receptor D2 (D2R). However, the heterodimer form of A2AR-D2R in the striatum prompted questions about the therapeutic targets for PD patients. This study investigates the effects of caffeine (A2AR non-selective antagonist) plus haloperidol (D2R selective antagonist) treatment in the fatigue induced by the reserpine model of PD. Reserpinized mice showed impaired motor control in the open field test (p < 0.05) and fatigue in the grip strength meter test (p < 0.05). L-DOPA and caffeine plus haloperidol similarly increased motor control (p < 0.05) and mitigated fatigue (p < 0.05). Our results support the A2AR-D2R heterodimer participation in the central fatigue of PD, and highlight the potential of A2AR-D2R antagonism in the management of PD.


Assuntos
Dopamina , Doença de Parkinson , Humanos , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Cafeína/farmacologia , Haloperidol/farmacologia , Receptores de Dopamina D2 , Estudos Prospectivos , Modelos Teóricos , Receptor A2A de Adenosina
10.
J Cardiovasc Pharmacol ; 83(6): 602-611, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579307

RESUMO

ABSTRACT: N -n-butyl haloperidol iodide (F 2 ), a derivative of haloperidol developed by our group, exhibits potent antioxidative properties and confers protection against cardiac ischemia/reperfusion (I/R) injury. The protective mechanisms by which F 2 ameliorates I/R injury remain obscure. The activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor transactivating many antioxidative genes, also attenuates I/R-induced myocardial damage. The present study investigated whether the cardioprotective effect of F 2 depends on Nrf2 using a mouse heart I/R model. F 2 (0.1, 0.2 or 0.4 mg/kg) or vehicle was intravenously injected to mice 5 minutes before reperfusion. Systemic administration of 0.4 mg/kg F 2 led to a significant reduction in I/R injury, which was accompanied by enhanced activation of Nrf2 signaling. The cardioprotection conferred by F 2 was largely abrogated in Nrf2-deficient mice. Importantly, we found F 2 -induced activation of Nrf2 is silent information regulator of transcription 1 (SIRT1)-dependent, as pharmacologically inhibiting SIRT1 by the specific inhibitor EX527 blocked Nrf2 activation. Moreover, F 2 -upregulated expression of SIRT1 was also Nrf2-dependent, as Nrf2 deficiency inhibited SIRT1 upregulation. These results indicate that SIRT1-Nrf2 signaling loop activation is indispensable for the protective effect of F 2 against myocardial I/R injury and may provide new insights for the treatment of ischemic heart disease.


Assuntos
Haloperidol , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Sirtuína 1 , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Sirtuína 1/metabolismo , Sirtuína 1/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/genética , Transdução de Sinais/efeitos dos fármacos , Haloperidol/farmacologia , Haloperidol/análogos & derivados , Masculino , Camundongos Knockout , Modelos Animais de Doenças , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/enzimologia , Antioxidantes/farmacologia , Miocárdio/metabolismo , Miocárdio/patologia
11.
J Pharmacol Sci ; 156(2): 77-81, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39179337

RESUMO

Dopamine (DA) D2 receptors (D2Rs) have 2 isoforms, a long form (D2L) and a short form (D2S). D2L is predominantly postsynaptic in the striatal medium spiny neurons and cholinergic interneurons. D2S is principally presynaptic autoreceptors in the nigrostriatal DA neurons. Recently, we demonstrated that L-3,4-dihydroxyphenylalanine (L-DOPA) augments D2L function through the coupling between D2L and GPR143, a receptor of L-DOPA that was originally identified as the gene product of ocular albinism 1. Here we show that GPR143 modifies the functions of D2L and D2S in an opposite manner. Haloperidol-induced catalepsy was attenuated in DA neuron-specific Gpr143 gene-deficient (Dat-cre;Gpr143flox/y) mice, compared with wild-type (Wt) mice. Haloperidol increased in vivo DA release from the dorsolateral striatum, and this increase was augmented in Gpr143-/y mice compared with Wt mice. A D2R agonist quinpirole-induced increase in the phosphorylation of GSK3ß(pGSK3ß(S9)) was enhanced in Chinese hamster ovary (CHO) cells coexpressing D2L and GPR143 compared with cells expressing D2L alone, while it was suppressed in cells coexpressing D2S and GPR143 compared with D2S alone, suggesting that GPR143 differentially modifies D2R functions depending on its isoforms of D2L and D2S.


Assuntos
Cricetulus , Dopamina , Haloperidol , Receptores de Dopamina D2 , Animais , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Haloperidol/farmacologia , Células CHO , Dopamina/metabolismo , Corpo Estriado/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Camundongos , Levodopa/farmacologia , Catalepsia/induzido quimicamente , Catalepsia/genética , Catalepsia/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Quimpirol/farmacologia , Neurônios Dopaminérgicos/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo
12.
Cereb Cortex ; 33(13): 8179-8193, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-36967112

RESUMO

Motor disturbances are observed in schizophrenia patients, but the neuroanatomical background is unknown. Our aim was to investigate the pyramidal cells of the primary motor cortex (BA 4) in both hemispheres of postmortem control and schizophrenia subjects-8 subjects in each group-with 2.5-5.5 h postmortem interval. The density and size of the Sternberger monoclonal incorporated antibody 32 (SMI32)-immunostained pyramidal cells in layer 3 and 5 showed no change; however, the proportion of larger pyramidal cells is decreased in layer 5. Giant pyramidal neurons (Betz cells) were investigated distinctively with SMI32- and parvalbumin (PV) immunostainings. In the right hemisphere of schizophrenia subjects, the density of Betz cells was decreased and their PV-immunopositive perisomatic input showed impairment. Part of the Betz cells contained PV in both groups, but the proportion of PV-positive cells has declined with age. The rat model of antipsychotic treatment with haloperidol and olanzapine showed no differences in size and density of SMI32-immunopositive pyramidal cells. Our results suggest that motor impairment of schizophrenia patients may have a morphological basis involving the Betz cells in the right hemisphere. These alterations can have neurodevelopmental and neurodegenerative explanations, but antipsychotic treatment does not explain them.


Assuntos
Lateralidade Funcional , Córtex Motor , Células Piramidais , Esquizofrenia , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Envelhecimento , Antipsicóticos/uso terapêutico , Autopsia , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Lateralidade Funcional/efeitos dos fármacos , Haloperidol/farmacologia , Haloperidol/uso terapêutico , Imuno-Histoquímica , Filamentos Intermediários/metabolismo , Córtex Motor/efeitos dos fármacos , Córtex Motor/patologia , Olanzapina/farmacologia , Olanzapina/uso terapêutico , Parvalbuminas/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/patologia , Ratos Sprague-Dawley , Análise de Regressão , Esquizofrenia/tratamento farmacológico , Esquizofrenia/patologia
13.
Anesth Analg ; 139(5): 1064-1074, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377038

RESUMO

BACKGROUND: Ketamine is an intravenous anesthetic that acts as a channel blocker on the N-methyl- d -aspartate (NMDA) receptor, a glutamate receptor subtype. MK-801 is the most potent compound among noncompetitive NMDA receptor antagonists. Ketamine induces loss of the righting reflex (LORR) in rodents, which is one of the indicators of unconsciousness, whereas high doses of MK-801 produce ataxia, but not LORR. In contrast, we previously reported that MK-801 combined with a low dose of the dopamine receptor antagonist haloperidol-induced LORR in mice. To assess a neurophysiologically distinct brain state and demonstrate unconsciousness, electroencephalograms (EEG) need to be examined together with LORR. Therefore, we herein investigated EEG changes after the systemic administration of MK-801 alone or in combination with haloperidol, and compared them with those induced by ketamine, the glutamate release inhibitor riluzole, and the γ-aminobutyric acid type A receptor agonist propofol. METHODS: All drugs were intraperitoneally administered to adult male ddY mice (n = 168). General anesthesia was evaluated based on the righting reflex test. Animals who exhibited no righting for more than 30 seconds were considered to have LORR. In a separate group of mice, EEG of the primary visual cortex was recorded before and after the administration of MK-801 (3.0 mg/kg) alone or in combination with haloperidol (0.2 mg/kg), ketamine (150 mg/kg), riluzole (30 mg/kg), or propofol (240 mg/kg). The waveforms recorded were analyzed using EEG power spectra and spectrograms. RESULTS: The high dose of MK-801 alone did not induce LORR, whereas MK-801 combined with haloperidol produced LORR in a dose-dependent manner. Ketamine, riluzole, and propofol also dose-dependently induced LORR. In the EEG study, MK-801 alone induced a significant increase in δ power, while MK-801 plus haloperidol exerted similar effects on not only δ, but also θ and α power during LORR, suggesting that increases in δ, θ, and α power were necessary for LORR. The results obtained on MK-801 plus haloperidol were similar to those on ketamine in the behavioral and EEG studies, except for an increase in γ power by ketamine during LORR. Propofol significantly increased δ, θ, α, and ß power during LORR. However, the EEG results obtained using riluzole, which produced a unique pattern of lower amplitude activity spanning most frequencies, markedly differed from those with the other drugs. CONCLUSIONS: This study revealed differences in EEG changes induced by various sedatives. The results obtained on MK-801 alone and MK-801 plus haloperidol suggest the importance of dopamine transmission in maintaining the righting reflex.


Assuntos
Comportamento Animal , Maleato de Dizocilpina , Eletroencefalografia , Haloperidol , Ketamina , Reflexo de Endireitamento , Riluzol , Animais , Maleato de Dizocilpina/farmacologia , Ketamina/farmacologia , Ketamina/administração & dosagem , Haloperidol/farmacologia , Masculino , Eletroencefalografia/efeitos dos fármacos , Camundongos , Riluzol/farmacologia , Reflexo de Endireitamento/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Propofol/farmacologia , Propofol/administração & dosagem
14.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34099564

RESUMO

Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease characterized by myelin damage followed by axonal and ultimately neuronal loss. The etiology and physiopathology of MS are still elusive, and no fully effective therapy is yet available. We investigated the role in MS of autophagy (physiologically, a controlled intracellular pathway regulating the degradation of cellular components) and of mitophagy (a specific form of autophagy that removes dysfunctional mitochondria). We found that the levels of autophagy and mitophagy markers are significantly increased in the biofluids of MS patients during the active phase of the disease, indicating activation of these processes. In keeping with this idea, in vitro and in vivo MS models (induced by proinflammatory cytokines, lysolecithin, and cuprizone) are associated with strongly impaired mitochondrial activity, inducing a lactic acid metabolism and prompting an increase in the autophagic flux and in mitophagy. Multiple structurally and mechanistically unrelated inhibitors of autophagy improved myelin production and normalized axonal myelination, and two such inhibitors, the widely used antipsychotic drugs haloperidol and clozapine, also significantly improved cuprizone-induced motor impairment. These data suggest that autophagy has a causal role in MS; its inhibition strongly attenuates behavioral signs in an experimental model of the disease. Therefore, haloperidol and clozapine may represent additional therapeutic tools against MS.


Assuntos
Antipsicóticos/uso terapêutico , Autofagia , Mitofagia , Esclerose Múltipla/tratamento farmacológico , Animais , Antipsicóticos/farmacologia , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/sangue , Proteínas Relacionadas à Autofagia/líquido cefalorraquidiano , Axônios/efeitos dos fármacos , Axônios/metabolismo , Biomarcadores/metabolismo , Clozapina/farmacologia , Citocinas/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Glucose/metabolismo , Haloperidol/farmacologia , Inflamação/patologia , Interleucina-1beta/metabolismo , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Modelos Biológicos , Atividade Motora/efeitos dos fármacos , Esclerose Múltipla/sangue , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/fisiopatologia , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
15.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791229

RESUMO

Parkinson's disease (PD) is a progressive disorder characterized by the apoptosis of dopaminergic neurons in the basal ganglia. This study explored the potential effects of aminophylline, a non-selective adenosine A1 and A2A receptor antagonist, on catalepsy and gait in a haloperidol-induced PD model. Sixty adult male Swiss mice were surgically implanted with guide cannulas that targeted the basal ganglia. After seven days, the mice received intraperitoneal injections of either haloperidol (experimental group, PD-induced model) or saline solution (control group, non-PD-induced model), followed by intracerebral infusions of aminophylline. The assessments included catalepsy testing on the bar and gait analysis using the Open Field Maze. A two-way repeated-measures analysis of variance (ANOVA), followed by Tukey's post hoc tests, was employed to evaluate the impact of groups (experimental × control), aminophylline (60 nM × 120 nM × saline/placebo), and interactions. Significance was set at 5%. The results revealed that the systemic administration of haloperidol in the experimental group increased catalepsy and dysfunction of gait that paralleled the observations in PD. Co-treatment with aminophylline at 60 nM and 120 nM reversed catalepsy in the experimental group but did not restore the normal gait pattern of the animals. In the non-PD induced group, which did not present any signs of catalepsy or motor dysfunctions, the intracerebral dose of aminophylline did not exert any interference on reaction time for catalepsy but increased walking distance in the Open Field Maze. Considering the results, this study highlights important adenosine interactions in the basal ganglia of animals with and without signs comparable to those of PD. These findings offer valuable insights into the neurobiology of PD and emphasize the importance of exploring novel therapeutic strategies to improve patient's catalepsy and gait.


Assuntos
Aminofilina , Catalepsia , Modelos Animais de Doenças , Marcha , Haloperidol , Doença de Parkinson , Animais , Catalepsia/tratamento farmacológico , Catalepsia/induzido quimicamente , Camundongos , Masculino , Aminofilina/administração & dosagem , Aminofilina/farmacologia , Aminofilina/uso terapêutico , Marcha/efeitos dos fármacos , Haloperidol/administração & dosagem , Haloperidol/farmacologia , Doença de Parkinson/tratamento farmacológico
16.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396865

RESUMO

Antipsychotic drug (APD) medication can lead to metabolic dysfunctions and weight gain, which together increase morbidity and mortality. Metabolically active visceral adipose tissue (VAT) in particular plays a crucial role in the etiopathology of these metabolic dysregulations. Here, we studied the effect of 12 weeks of drug medication by daily oral feeding of clozapine and haloperidol on the perirenal fat tissue as part of VAT of male and female Sprague Dawley rats in the context of complex former investigations on brain, liver, and blood. Adipocyte area values were determined, as well as triglycerides, non-esterified fatty acids (NEFAs), glucose, glycogen, lactate, malondialdehyde equivalents, ferric iron and protein levels of Perilipin-A, hormone-sensitive-lipase (HSL), hepcidin, glucose transporter-4 (Glut-4) and insulin receptor-ß (IR-ß). We found increased adipocyte mass in males, with slightly higher adipocyte area values in both males and females under clozapine treatment. Triglycerides, NEFAs, glucose and oxidative stress in the medicated groups were unchanged or slightly decreased. In contrast to controls and haloperidol-medicated rats, perirenal adipocyte mass and serum leptin levels were not correlated under clozapine. Protein expressions of perilipin-A, Glut-4 and HSL were decreased under clozapine treatment. IR-ß expression changed sex-specifically in the clozapine-medicated groups associated with higher hepcidin levels in the perirenal adipose tissue of clozapine-treated females. Taken together, clozapine and haloperidol had a smaller effect than expected on perirenal adipose tissue. The perirenal adipose tissue shows only weak changes in lipid and glucose metabolism. The main changes can be seen in the proteins examined, and probably in their effect on liver metabolism.


Assuntos
Antipsicóticos , Clozapina , Ratos , Masculino , Feminino , Animais , Antipsicóticos/farmacologia , Antipsicóticos/metabolismo , Clozapina/farmacologia , Haloperidol/farmacologia , Hepcidinas/metabolismo , Ratos Sprague-Dawley , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo , Glucose/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Encéfalo/metabolismo , Perilipinas/metabolismo
17.
Int J Mol Sci ; 25(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39337691

RESUMO

Vitexin (VTX), a C-glycosylated flavone found in various medicinal herbs, is known for its antioxidant, anti-inflammatory, and neuroprotective properties. This study investigated the protective effects of VTX against orofacial dyskinesia (OD) in rats, induced by haloperidol (HPD), along with the neuroprotective mechanisms underlying these effects. OD was induced by administering HPD (1 mg/kg i.p.) to rats for 21 days, which led to an increase in the frequency of vacuous chewing movements (VCMs) and tongue protrusion (TP). VTX (10 and 30 mg/kg) was given intraperitoneally 60 min after each HPD injection during the same period. On the 21st day, following assessments of OD, the rats were sacrificed, and nitrosative and oxidative stress, antioxidant capacity, mitochondrial function, neuroinflammation, and apoptosis markers in the striatum were measured. HPD effectively induced OD, while VTX significantly reduced HPD-induced OD, decreased oxidative stress, enhanced antioxidant capacity, prevented mitochondrial dysfunction, and reduced neuroinflammatory and apoptotic markers in the striatum, and the protective effects of VTX on both behavioral and biochemical aspects of HPD-induced OD were significantly reduced when trigonelline (TGN), an inhibitor of the nuclear factor erythroid-2-related factor 2 (Nrf2)-mediated pathway, was administered. These findings suggest that VTX provides neuroprotection against HPD-induced OD, potentially through the Nrf2 pathway, indicating its potential as a therapeutic candidate for the prevention or treatment of tardive dyskinesia (TD) in clinical settings. However, further detailed research is required to confirm these preclinical findings and fully elucidate VTX's therapeutic potential in human studies.


Assuntos
Apigenina , Haloperidol , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Haloperidol/farmacologia , Haloperidol/efeitos adversos , Ratos , Apigenina/farmacologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Apoptose/efeitos dos fármacos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos
18.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791173

RESUMO

Astrocytes actively participate in neurotransmitter homeostasis by bidirectional communication with neuronal cells, a concept named the tripartite synapse, yet their role in dopamine (DA) homeostasis remains understudied. In the present study, we investigated the kinetic and molecular mechanisms of DA transport in cultured striatal astrocytes of adult rats. Kinetic uptake experiments were performed using radiolabeled [3H]-DA, whereas mRNA expression of the dopamine, norepinephrine, organic cation and plasma membrane monoamine transporters (DAT, NET, OCTs and PMAT) and DA receptors D1 and D2 was determined by qPCR. Additionally, astrocyte cultures were subjected to a 24 h treatment with the DA receptor agonist apomorphine, the DA receptor antagonist haloperidol and the DA precursor L-DOPA. [3H]-DA uptake exhibited temperature, concentration and sodium dependence, with potent inhibition by desipramine, nortriptyline and decynium-22, suggesting the involvement of multiple transporters. qPCR revealed prominent mRNA expression of the NET, the PMAT and OCT1, alongside lower levels of mRNA for OCT2, OCT3 and the DAT. Notably, apomorphine significantly altered NET, PMAT and D1 mRNA expression, while haloperidol and L-DOPA had a modest impact. Our findings demonstrate that striatal astrocytes aid in DA clearance by multiple transporters, which are influenced by dopaminergic drugs. Our study enhances the understanding of regional DA uptake, paving the way for targeted therapeutic interventions in dopaminergic disorders.


Assuntos
Astrócitos , Corpo Estriado , Dopamina , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Dopamina/metabolismo , Ratos , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Haloperidol/farmacologia , Cinética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Apomorfina/farmacologia , Células Cultivadas , Masculino , Receptores de Dopamina D1/metabolismo , Transporte Biológico/efeitos dos fármacos , Levodopa/farmacologia
19.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893570

RESUMO

Sigma receptors (SRs), including SR1 and SR2 subtypes, have attracted increasing interest in recent years due to their involvement in a wide range of activities, including the modulation of opioid analgesia, neuroprotection, and potential anticancer activity. In this context, haloperidol (HAL), a commonly used antipsychotic drug, also possesses SR activity and cytotoxic effects. Herein, we describe the identification of novel SR ligands, obtained by a chemical hybridization approach. There wereendowed with pan-affinity for both SR subtypes and evaluated their potential anticancer activity against SH-SY5Y and HUH-7 cancer cell lines. Through a chemical hybridization approach, we identified novel compounds (4d, 4e, 4g, and 4j) with dual affinity for SR1 and SR2 receptors. These compounds were subjected to cytotoxicity testing using a resazurin assay. The results revealed potent cytotoxic effects against both cancer cell lines, with IC50 values comparable to HAL. Interestingly, the cytotoxic potency of the novel compounds resembled that of the SR1 antagonist HAL rather than the SR2 agonist siramesine (SRM), indicating the potential role of SR1 antagonism in their mechanism of action. The further exploration of their structure-activity relationships and their evaluation in additional cancer cell lines will elucidate their therapeutic potential and may pave the way for the development of novel anticancer agents that target SRs.


Assuntos
Antineoplásicos , Desenho de Fármacos , Haloperidol , Receptores sigma , Receptores sigma/metabolismo , Receptores sigma/antagonistas & inibidores , Haloperidol/farmacologia , Haloperidol/análogos & derivados , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Estrutura Molecular , Sobrevivência Celular/efeitos dos fármacos , Ligantes , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais
20.
J Neurosci ; 42(21): 4394-4400, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35501156

RESUMO

Emotion recognition abilities are fundamental to our everyday social interaction. A large number of clinical populations show impairments in this domain, with emotion recognition atypicalities being particularly prevalent among disorders exhibiting a dopamine system disruption (e.g., Parkinson's disease). Although this suggests a role for dopamine in emotion recognition, studies employing dopamine manipulation in healthy volunteers have exhibited mixed neural findings and no behavioral modulation. Interestingly, while a dependence of dopaminergic drug effects on individual baseline dopamine function has been well established in other cognitive domains, the emotion recognition literature so far has failed to account for these possible interindividual differences. The present within-subjects study therefore tested the effects of the dopamine D2 antagonist haloperidol on emotion recognition from dynamic, whole-body stimuli while accounting for interindividual differences in baseline dopamine. A total of 33 healthy male and female adults rated emotional point-light walkers (PLWs) once after ingestion of 2.5 mg haloperidol and once after placebo. To evaluate potential mechanistic pathways of the dopaminergic modulation of emotion recognition, participants also performed motoric and counting-based indices of temporal processing. Confirming our hypotheses, effects of haloperidol on emotion recognition depended on baseline dopamine function, where individuals with low baseline dopamine showed enhanced, and those with high baseline dopamine decreased emotion recognition. Drug effects on emotion recognition were related to drug effects on movement-based and explicit timing mechanisms, indicating possible mediating effects of temporal processing. Results highlight the need for future studies to account for baseline dopamine and suggest putative mechanisms underlying the dopaminergic modulation of emotion recognition.SIGNIFICANCE STATEMENT A high prevalence of emotion recognition difficulties among clinical conditions where the dopamine system is affected suggests an involvement of dopamine in emotion recognition processes. However, previous psychopharmacological studies seeking to confirm this role in healthy volunteers thus far have failed to establish whether dopamine affects emotion recognition and lack mechanistic insights. The present study uncovered effects of dopamine on emotion recognition in healthy individuals by controlling for interindividual differences in baseline dopamine function and investigated potential mechanistic pathways via which dopamine may modulate emotion recognition. Our findings suggest that dopamine may influence emotion recognition via its effects on temporal processing, providing new directions for future research on typical and atypical emotion recognition.


Assuntos
Dopamina , Haloperidol , Adulto , Dopamina/metabolismo , Antagonistas dos Receptores de Dopamina D2/farmacologia , Emoções , Feminino , Haloperidol/farmacologia , Humanos , Masculino , Percepção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA