Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.541
Filtrar
1.
Eur Respir J ; 64(1)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38609096

RESUMO

INTRODUCTION: The use of pressurised metered-dose inhalers (pMDIs) and asthma exacerbations necessitating healthcare reviews contribute substantially to the global carbon footprint of healthcare. It is possible that a reduction in carbon footprint could be achieved by switching patients with mild asthma from salbutamol pMDI reliever-based therapy to inhaled corticosteroid-formoterol dry powder inhaler (DPI) reliever therapy, as recommended by the Global Initiative for Asthma. METHODS: This post hoc analysis included all 668 adult participants in the Novel START trial, who were randomised 1:1:1 to treatment with as-needed budesonide/formoterol DPI, as-needed salbutamol pMDI or maintenance budesonide DPI plus as-needed salbutamol pMDI. The primary outcome was carbon footprint of asthma management, expressed as kilograms of carbon dioxide equivalent emissions (kgCO2e) per person-year. Secondary outcomes explored the effect of baseline symptom control and adherence (maintenance budesonide DPI arm only) on carbon footprint. RESULTS: As-needed budesonide/formoterol DPI was associated with 95.8% and 93.6% lower carbon footprint compared with as-needed salbutamol pMDI (least-squares mean 1.1 versus 26.2 kgCO2e; difference -25.0, 95% CI -29.7 to -20.4; p<0.001) and maintenance budesonide DPI plus as-needed salbutamol pMDI (least-squares mean 1.1 versus 17.3 kgCO2e; difference -16.2, 95% CI -20.9 to -11.6; p<0.001), respectively. There was no statistically significant evidence that treatment differences in carbon footprint depended on baseline symptom control or adherence in the maintenance budesonide DPI arm. CONCLUSIONS: The as-needed budesonide/formoterol DPI treatment option was associated with a markedly lower carbon footprint than as-needed salbutamol pMDI and maintenance budesonide DPI plus as-needed salbutamol pMDI.


Assuntos
Asma , Broncodilatadores , Budesonida , Pegada de Carbono , Inaladores de Pó Seco , Fumarato de Formoterol , Humanos , Asma/tratamento farmacológico , Feminino , Adulto , Masculino , Pessoa de Meia-Idade , Budesonida/administração & dosagem , Administração por Inalação , Fumarato de Formoterol/administração & dosagem , Broncodilatadores/administração & dosagem , Broncodilatadores/uso terapêutico , Albuterol/administração & dosagem , Albuterol/uso terapêutico , Inaladores Dosimetrados , Resultado do Tratamento , Combinação Budesonida e Fumarato de Formoterol/administração & dosagem , Combinação Budesonida e Fumarato de Formoterol/uso terapêutico , Método Duplo-Cego , Idoso
2.
Respir Res ; 25(1): 339, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267035

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) and asthma can be treated with inhaled corticosteroids (ICS) delivered by low climate impact inhalers (dry powder inhalers) or high climate impact inhalers (pressurized metered-dose inhalers containing potent greenhouse gasses). ICS delivered with greenhouse gasses is prescribed ubiquitously and frequent despite limited evidence of superior effect. Our aim was to examine the beneficial and harmful events of ICS delivered by low and high climate impact inhalers in patients with asthma and COPD. METHODS: Nationwide retrospective cohort study of Danish outpatients with asthma and COPD treated with ICS delivered by low and high climate impact inhalers. Patients were propensity score matched by the following variables; age, gender, tobacco exposure, exacerbations, dyspnoea, body mass index, pulmonary function, ICS dose and entry year. The primary outcome was a composite of hospitalisation with exacerbations and all-cause mortality analysed by Cox proportional hazards regression. RESULTS: Of the 10,947 patients with asthma and COPD who collected ICS by low or high climate impact inhalers, 2,535 + 2,535 patients were propensity score matched to form the population for the primary analysis. We found no association between high climate impact inhalers and risk of exacerbations requiring hospitalization and all-cause mortality (HR 1.02, CI 0.92-1.12, p = 0.77), nor on pneumonia, exacerbations requiring hospitalization, all-cause mortality, or all-cause admissions. Delivery with high climate impact inhalers was associated with a slightly increased risk of exacerbations not requiring hospitalization (HR 1.10, CI 1.01-1.21, p = 0.03). Even with low lung function there was no sign of a superior effect of high climate impact inhalers. CONCLUSION: Low climate impact inhalers were not inferior to high climate impact inhalers for any risk analysed in patients with asthma and COPD.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Asma/tratamento farmacológico , Asma/epidemiologia , Asma/diagnóstico , Idoso , Estudos Retrospectivos , Dinamarca/epidemiologia , Estudos de Coortes , Administração por Inalação , Adulto , Inaladores de Pó Seco , Clima , Inaladores Dosimetrados , Corticosteroides/administração & dosagem , Corticosteroides/efeitos adversos , Resultado do Tratamento
3.
Mol Pharm ; 21(2): 564-580, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38215042

RESUMO

Asthma is a common chronic disease affecting the airways in the lungs. The receptors of allergic cytokines, including interleukin (IL)-4, IL-5, and IL-13, trigger the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which involves the pathogenesis of asthma. GDC-0214 is a JAK inhibitor that was developed as a potent and selective target for the treatment of asthma, specifically targeting the lungs. While inhaled GDC-0214 is a promising novel treatment option against asthma, improvement is still needed to achieve increased potency of the powder formulation and a reduced number of capsules containing powder to be inhaled. In this study, high-potency amorphous powder formulations containing GDC-0214 nanoaggregates for dry powder inhalation were developed using particle engineering technology, thin film freezing (TFF). A high dose per capsule was successfully achieved by enhancing the solubility of GDC-0214 and powder conditioning. Lactose and/or leucine as excipients exhibited optimum stability and aerosolization of GDC-0214 nanoaggregates, and aerosolization of the dose was independent of air flow through the device between 2 and 6 kPa pressure drops. In the rat PK study, formulation F20, which contains 80% GDC-0214 and 20% lactose, resulted in the highest AUC0-24h in the lungs with the lowest AUC0-24h in the plasma that corresponds to a 4.8-fold higher ratio of the lung-to-plasma exposures compared to micronized crystalline GDC-0214 powder administered by dry powder inhalation. Therefore, GDC-0214 nanoaggregates produced by TFF provided an improved dry powder for inhalation that can lead to enhanced therapeutic efficacy with a lower risk of systemic toxicity.


Assuntos
Asma , Inibidores de Janus Quinases , Ratos , Animais , Pós/química , Congelamento , Lactose , Administração por Inalação , Asma/tratamento farmacológico , Inaladores de Pó Seco , Tamanho da Partícula , Aerossóis e Gotículas Respiratórios
4.
Curr Opin Pulm Med ; 30(2): 174-178, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38164804

RESUMO

PURPOSE OF REVIEW: Every type of dry powder inhaler (DPI) device has its own intrinsic resistance. A patient's inspiratory effort produces a pressure drop that determines the inspiratory flow, depending on the inhaler's specific internal resistance. Optimal peak inspiratory flow (PIF) is needed for effective release of dry powder, disaggregation of drug-carrier agglomerates, and optimal deposition of respirable drug particles, particularly generation of a high fine-particle fraction to reach the small airways of the lungs. However, standardized recommendations for PIF measurements are lacking and instructions appeared vague in many instances. RECENT FINDINGS: Suboptimal PIFs are common in outpatient chronic obstructive pulmonary disease (COPD) patients and during acute exacerbations of COPD, and are associated with increased healthcare resource utilization. There is significant variation in the results of studies which is in part related to different definitions of optimal flow rates, and considerable variation in how PIF is measured in clinical and real-life studies. SUMMARY: Standardization of technique will facilitate comparisons among studies. Specific recommendations for PIF measurement have been proposed to standardize the process and better ensure accurate and reliable PIF values in clinical trials and clinical practice. Clinicians can then select and personalize the most appropriate inhaler for their patients and help them achieve the optimal PIF needed for effective drug dispersion.


Assuntos
Inaladores de Pó Seco , Doença Pulmonar Obstrutiva Crônica , Humanos , Pulmão , Administração por Inalação
5.
Pulm Pharmacol Ther ; 84: 102272, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38036258

RESUMO

INTRODUCTION: Extrafine formulation of beclomethasone/formoterol fixed combination (BDP/F pMDI HFA) is approved for both fixed maintenance and maintenance and reliever therapy (MART) of asthma, and recent data has proven that BDP/F pMDI HFA maintenance and reliever therapy is an effective alternative to other regimens. OBJECTIVE: This study aimed to assess the level of asthma control in a real-life setting in adult patients using extrafine BDP/F pMDI HFA fixed combination in a pressurized metered-dose inhaler (pMDI) as fixed maintenance dosing as well as maintenance and maintenance and reliever therapy. Additionally, we examined patients' satisfaction with the inhaler device and compliance with therapy as essential factors determining asthma control. METHODS: This multicenter prospective non-interventional observational study lasted 4 months with 3 patient visits. We used the Asthma Control Questionnaire 7 (ACQ-7) to evaluate the degree of asthma control and Morisky Medication Adherence Scale (MMAS-4) to assess compliance. A self-developed questionnaire was used to assess satisfaction with the inhaler device. RESULTS: 2179 patients using BDP/F pMDI HFA fixed combination as maintenance and reliever therapy or BDP/F pMDI HFA as maintenance therapy and SABA (short-acting beta2-agonist) as a reliever for at least 2 months were included. During the prospective follow-up, we observed an upward trend in the FEV1% (forced expiratory volume in 1 s) predicted values, improvement in the control of symptoms as indicated by a decline in the mean ACQ-7 score was noted (1.62 at Visit 1 vs. 1.21 at Visit 2 vs. 0.94 at Visit 3, p < 0.001) and increase in patients' compliance (the number of patients that reported forgetting at times to take their medication was reduced from 49.7 % to 27.1 %, p < 0.001). At the same time, we noted a reduction in the number of as-needed doses used for symptom relief (p < 0.001). Most patients were satisfied with the pMDI, considered it easy and convenient to use, and preferred it to a dry powder inhaler (p < 0.001). CONCLUSIONS: The use of extrafine BDP/F pMDI HFA as maintenance as well as reliever therapy seems to be associated with increased asthma control and better compliance to therapy.


Assuntos
Antiasmáticos , Asma , Adulto , Humanos , Beclometasona , Fumarato de Formoterol , Estudos Prospectivos , Resultado do Tratamento , Asma/tratamento farmacológico , Administração por Inalação , Inaladores Dosimetrados , Inaladores de Pó Seco , Combinação de Medicamentos
6.
Pulm Pharmacol Ther ; 85: 102298, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604404

RESUMO

BACKGROUND: A suboptimal peak inspiratory flow rate (PIFR) in dry-powder inhaler (DPI) users can lead to insufficient therapeutic effects in the treatment of chronic obstructive pulmonary disease (COPD). However, few data on the prevalence of and factors associated with suboptimal PIFR in Korean patients with COPD are available. METHODS: We conducted a cross-sectional study of patients with COPD who had been using DPIs for more than three months. PIFR was measured using an In-Check DIAL G16 device. Suboptimal PIFR was defined as below the resistance-matched threshold. Multivariable logistic regression analysis was used to determine factors associated with suboptimal PIFR. RESULTS: Of 444 DPI users with COPD, the rate of suboptimal PIFR was 22.0 % (98/444). In a multivariable analysis, significant factors associated with suboptimal PIFR were age (adjusted odds ratio [aOR] = 1.06 by 1-year increase; 95 % confidence interval [CI] = 1.02-1.09), male sex (aOR = 0.28; 95 % CI = 0.11-0.73), body mass index (BMI) (aOR = 0.91 by 1 kg/m2 increase; 95 % CI = 0.85-0.99), post-bronchodilator forced vital capacity (FVC) %pred (aOR = 0.97 by 1%pred increase; 95 % CI = 0.95-0.99), and In-Check DIAL R2-type inhaler [medium-low resistance] use (aOR = 3.70 compared with R1-type inhalers [low resistance]; 95 % CI = 2.03-7.03). CONCLUSIONS: In Korea, more than one-fifth of DPI users with COPD had a suboptimal PIFR. The factors associated with suboptimal PIFR were age, female gender, low BMI, low FVC, and R2-type inhaler use. Therefore, clinicians should carefully evaluate the possibility of suboptimal PIFR when prescribing DPIs.


Assuntos
Inaladores de Pó Seco , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Masculino , Feminino , Estudos Transversais , República da Coreia , Pessoa de Meia-Idade , Idoso , Administração por Inalação , Broncodilatadores/administração & dosagem , Broncodilatadores/uso terapêutico , Índice de Massa Corporal , Fatores Sexuais , Fatores Etários
7.
Pharm Res ; 41(9): 1827-1842, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39237797

RESUMO

PURPOSE: Surfactant therapy incorporates liquid bolus instillation via endotracheal tube catheter and a mechanical ventilator in preterm neonates with respiratory distress syndrome (RDS). Aerosolized surfactants have generated interest and conflicting data on the efficacy of phospholipid (PL) dose requirements. We developed and characterized a synthetic lung surfactant excipient enhanced growth (SLS-EEG) dry powder aerosol product. In this study, we compare the in vivo performance of the new aerosol product with standard-of-care liquid instillation. METHODS: Juvenile rabbits were sedated, anesthetized, intubated, and ventilated. Endogenous surfactant was depleted via whole lung lavage. Animals received either a standard dose of liquid Curosurf (200 mg PL/kg) instilled via a tracheal catheter, SLS-EEG powder aerosol (60 mg device loaded dose; equivalent to 24 mg PL/kg), or sham control. Gas exchange, lung compliance, and indices of disease severity were recorded every 30 min for 3.5 h and macro- and microscopy images were acquired at necropsy. RESULTS: While aerosol was administered at an approximately tenfold lower PL dose, both liquid-instilled and aerosol groups had similar, nearly complete recoveries of arterial oxygenation (PaO2; 96-100% recovery) and oxygenation index, and the aerosol group had superior recovery of compliance (P < 0.05). The SLS-EEG aerosol group showed less lung tissue injury, greater uniformity in lung aeration, and more homogenous surfactant distribution at the alveolar surfaces compared with liquid Curosurf. CONCLUSIONS: The new dry powder aerosol SLS product (which includes the delivery strategy, formulation, and delivery system) has the potential to be a safe, effective, and economical alternative to the current clinical standard of liquid bolus surfactant instillation.


Assuntos
Aerossóis , Pós , Surfactantes Pulmonares , Síndrome do Desconforto Respiratório do Recém-Nascido , Animais , Surfactantes Pulmonares/administração & dosagem , Coelhos , Síndrome do Desconforto Respiratório do Recém-Nascido/tratamento farmacológico , Fosfolipídeos/química , Fosfolipídeos/administração & dosagem , Administração por Inalação , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Modelos Animais de Doenças , Inaladores de Pó Seco/métodos , Recém-Nascido
8.
Pharm Res ; 41(8): 1703-1723, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112775

RESUMO

PURPOSE: Improving the deep lung delivery of aerosol surfactant therapy (AST) with a dry powder formulation may enable significant reductions in dose while providing improved efficacy. The objective of Part I of this two-part study was to present the development of a new dry powder aerosol synthetic lung surfactant (SLS) product and to characterize performance based on aerosol formation and realistic in vitro airway testing leading to aerosol delivery recommendations for subsequent in vivo animal model experiments. METHODS: A new micrometer-sized SLS excipient enhanced growth (EEG) dry powder formulation was produced via spray drying and aerosolized using a positive-pressure air-jet dry powder inhaler (DPI) intended for aerosol delivery directly to intubated infants with respiratory distress syndrome (RDS) or infant-size test animals. RESULTS: The best-case design (D2) of the air-jet DPI was capable of high emitted dose (> 80% of loaded) and formed a < 2 µm mass median aerodynamic diameter (MMAD) aerosol, but was limited to ≤ 20 mg mass loadings. Testing with a realistic in vitro rabbit model indicated that over half of the loaded dose could penetrate into the lower lung regions. Using the characterization data, a dose delivery protocol was designed in which a 60 mg total loaded dose would be administered and deliver an approximate lung dose of 14.7-17.7 mg phospholipids/kg with a total aerosol delivery period < 5 min. CONCLUSIONS: A high-efficiency aerosol SLS product was designed and tested that may enable an order of magnitude reduction in administered phospholipid dose, and provide rapid aerosol administration to infants with RDS.


Assuntos
Aerossóis , Inaladores de Pó Seco , Pulmão , Tamanho da Partícula , Pós , Surfactantes Pulmonares , Síndrome do Desconforto Respiratório do Recém-Nascido , Animais , Surfactantes Pulmonares/administração & dosagem , Síndrome do Desconforto Respiratório do Recém-Nascido/tratamento farmacológico , Administração por Inalação , Coelhos , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Humanos , Recém-Nascido , Excipientes/química
9.
Ann Fam Med ; 22(5): 417-420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39313335

RESUMO

The aim of this work is to test whether the use of a transparent capsule affects the residual capsule weight after inhalation as a surrogate of the inhaled delivered dose for patients with non-reversible chronic airway disease. Researchers conducted an observational cross-sectional study with patients using a single-dose dry powder inhaler. The weight of the capsule was measured with a precision microbalance before and after inhalation. Ninety-one patients were included, of whom 63 (69.2%) used a transparent capsule. Inhalation with a transparent capsule achieved a weight decrease of 30.1% vs 8.6% for devices with an opaque capsule (P <0.001). These data reinforce the need to provide patients with mechanisms that verify the correct inhalation technique.


Assuntos
Cápsulas , Inaladores de Pó Seco , Humanos , Estudos Transversais , Masculino , Feminino , Pessoa de Meia-Idade , Administração por Inalação , Adulto , Idoso , Desenho de Equipamento
10.
Headache ; 64(6): 643-651, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38717120

RESUMO

BACKGROUND: Intravenous dihydroergotamine (DHE) has well-established efficacy for the acute treatment of migraine, but its use is limited by the need for in-hospital administration and the nausea/vomiting associated with a high maximum plasma concentration (Cmax). Inhalation is an alternative to intravenous dosing. The surface area of the lung allows for rapid absorption of a self-administered dose. OBJECTIVE: This study evaluated the safety, tolerability, and systemic pharmacokinetics (PK) of a dry powder formulation (PUR3100) DHE when delivered via inhalation compared to intravenous delivery. METHODS: In this double-blind, double-dummy Phase 1 study, healthy volunteers (N = 26) were randomized (1:1:1:1) to one of four groups: orally inhaled placebo plus intravenous DHE 1.0 mg or orally inhaled PUR3100 (0.5, 1.0, or 1.5 mg) plus intravenous placebo. Blood samples were drawn pre-dose and at time points post-dose over 48 h. Standard PK and safety parameters were assessed and values for Cmax and area under plasma concentration time curve (AUC) were used to assess comparative exposures of PUR3100 versus intravenous DHE. RESULTS: All doses of PUR3100 were associated with a lower incidence of nausea (21% vs. 86%), vomiting (0% vs. 29%), and headache (16% vs. 57%) compared to intravenous DHE. The PK profile of PUR3100 versus intravenous DHE was characterized by a similar mean time to Cmax (5 vs. 5.5 min), with reduced AUC0-2h (1120-4320 vs. 6340), and a lower Cmax (3620-14,400 vs. 45,000). Compared to intravenous DHE 1.0 mg, the highest nominal PUR3100 dose (1.5 mg), which delivers a fine-particle dose of approximately 0.9 mg to the lungs, had a geometric mean ratio percentage (90% confidence interval [CI]) for Cmax of 32% [17.2, 59.6] and AUC0-inf of 93% (62.9, 138.5), the latter of which was not significantly different. CONCLUSIONS: Inhaled PUR3100 is associated with rapid systemic PK within the therapeutic window and an improved safety profile relative to intravenous DHE.


Assuntos
Administração Intravenosa , Di-Hidroergotamina , Humanos , Di-Hidroergotamina/administração & dosagem , Di-Hidroergotamina/farmacocinética , Di-Hidroergotamina/efeitos adversos , Método Duplo-Cego , Masculino , Adulto , Feminino , Administração por Inalação , Adulto Jovem , Voluntários Saudáveis , Pessoa de Meia-Idade , Inaladores de Pó Seco , Adolescente
11.
J Asthma ; 61(4): 360-367, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37878325

RESUMO

OBJECTIVE: When selecting inhaled therapies, it is important to consider both the active molecules and the device. Extrafine formulation beclomethasone dipropionate plus formoterol fumarate (BDP/FF) has been available for some years delivered via pressurized metered-dose inhaler (pMDI). More recently, a breath-activated, multi-dose dry-powder inhaler (DPI), the NEXThaler, has been approved. The current study aimed to demonstrate the non-inferiority of BDP/FF delivered via the DPI vs. via the pMDI, in Chinese adults with asthma. METHODS: After a four-week run-in period, when all patients received BDP/FF pMDI 100/6 µg, two inhalations twice daily (BID), patients were randomized equally to BDP/FF pMDI or DPI, both 100/6 µg, two inhalations BID for 12 weeks. The primary objective was to demonstrate non-inferiority of BDP/FF DPI vs. BDP/FF pMDI in terms of average pre-dose morning peak expiratory flow (PEF) over the entire treatment period. RESULTS: Of 252 and 242 patients in the DPI and pMDI groups, respectively, 88.5% and 88.8% completed the study. The primary objective was met, with no statistically significant difference between the treatments in average pre-dose morning PEF, and with the lower limit of the 95% CI above the -15 L/min non-inferiority margin (adjusted mean difference: 5.25 L/min [95% CI: -0.56, 11.06]). Adverse events were reported by 48.4% and 49.6% patients in the DPI and pMDI groups, respectively, most mild or moderate. CONCLUSIONS: The NEXThaler DPI is a similarly effective device to the pMDI for the administration of BDP/FF in adults, so extending the options available for the management of asthma.


Assuntos
Antiasmáticos , Asma , Adulto , Humanos , Administração por Inalação , Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Beclometasona/uso terapêutico , China , Método Duplo-Cego , Combinação de Medicamentos , Inaladores de Pó Seco , Fumarato de Formoterol/uso terapêutico , Inaladores Dosimetrados , Resultado do Tratamento
12.
BMC Pulm Med ; 24(1): 380, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095773

RESUMO

BACKGROUND: Dry powder inhalers (DPIs) rely on both internal resistance and patients' inspiratory capacity for effective operation. Optimal inspiratory technique is crucial for DPI users. This study assessed the accuracy and repeatability of two available devices, PF810® and In-Check DIAL®, and analyzed their measurement errors and consistency in detecting inspiratory capacity. METHODS: The accuracy and repeatability of peak inspiratory flow (PIF) and forced inspiratory vital capacity (FIVC) against various internal resistances of the two devices were assessed using standard waveforms generated by a breathing simulator. The agreement of PIF measurements between the two devices in healthy volunteers and chronic obstructive pulmonary disease (COPD) patients was analyzed with the intraclass correlation coefficient and Bland-Altman graphical analysis. RESULTS: PF810® showed great accuracy and repeatability in measuring PIF, except for square waveforms at the lowest flow rate (20 L/min). In-Check DIAL® exhibited poor accuracy against high resistance levels. In scenarios with no resistance, In-Check DIAL® had significantly smaller measurement errors than PF810®, but larger errors against high resistance levels. The two devices showed excellent agreement (ICC > 0.80, P < 0.05), except for healthy volunteers against medium to high resistance (R3-R5) where the ICC was insignificant. Bland-Altman plots indicated small disagreements between the two devices for both healthy volunteers and COPD patients. CONCLUSIONS: In-Check DIAL® exhibited poor accuracy and larger measurement errors than PF810® when detecting PIFs against higher internal resistances. However, its good performance against lower internal resistances, along with its cost-effectiveness and convenience made it appropriate for primary care. PF810® showed good accuracy and repeatability and could detect additional parameters of inspiratory capacity beyond PIF, though required further studies to confirm its clinical benefits.


Assuntos
Inaladores de Pó Seco , Capacidade Inspiratória , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Reprodutibilidade dos Testes , Desenho de Equipamento , Adulto Jovem , Administração por Inalação , Capacidade Vital , Voluntários Saudáveis
13.
AAPS PharmSciTech ; 25(5): 109, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730125

RESUMO

Although inhalation therapy represents a promising drug delivery route for the treatment of respiratory diseases, the real-time evaluation of lung drug deposition remains an area yet to be fully explored. To evaluate the utility of the photo reflection method (PRM) as a real-time non-invasive monitoring of pulmonary drug delivery, the relationship between particle emission signals measured by the PRM and in vitro inhalation performance was evaluated in this study. Symbicort® Turbuhaler® was used as a model dry powder inhaler. In vitro aerodynamic particle deposition was evaluated using a twin-stage liquid impinger (TSLI). Four different inhalation patterns were defined based on the slope of increased flow rate (4.9-9.8 L/s2) and peak flow rate (30 L/min and 60 L/min). The inhalation flow rate and particle emission profile were measured using an inhalation flow meter and a PRM drug release detector, respectively. The inhalation performance was characterized by output efficiency (OE, %) and stage 2 deposition of TSLI (an index of the deagglomerating efficiency, St2, %). The OE × St2 is defined as the amount delivered to the lungs. The particle emissions generated by four different inhalation patterns were completed within 0.4 s after the start of inhalation, and were observed as a sharper and larger peak under conditions of a higher flow increase rate. These were significantly correlated between the OE or OE × St2 and the photo reflection signal (p < 0.001). The particle emission signal by PRM could be a useful non-invasive real-time monitoring tool for dry powder inhalers.


Assuntos
Inaladores de Pó Seco , Pulmão , Tamanho da Partícula , Inaladores de Pó Seco/métodos , Pulmão/metabolismo , Administração por Inalação , Sistemas de Liberação de Medicamentos/métodos , Aerossóis , Pós , Liberação Controlada de Fármacos
14.
AAPS PharmSciTech ; 25(3): 45, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396188

RESUMO

In this study, dry dispersion laser diffraction was used to study the dispersibility of spheronized agglomerate formulations and identify geometric particle size metrics that correlated well with aerodynamic particle size distribution (APSD). Eleven unique batches of agglomerates were prepared for both laser diffraction and cascade impaction testing. Correlations between the particle size distribution (PSD) and aerodynamic particle size distribution (APSD) metrics for the eleven agglomerate batches were determined in a semi-empirical manner. The strongest correlation between APSD and PSD was observed between the impactor-sized mass (%ISM) and the cumulative PSD fraction <14.5 µm. The strongest correlation with fine particle fraction (FPF) was observed with the cumulative PSD fraction <0.99 micron (R-squared = 0.974). In contrast to the other APSD metrics, good correlations were not found between the mass median aerodynamic diameter (MMAD) and the cumulative PSD fractions. Overall, the implementation of laser diffraction as a surrogate for cascade impaction has the potential to streamline product development. Laser diffraction measurements offer savings in labor and turnaround time compared to cascade impaction.


Assuntos
Inaladores de Pó Seco , Lasers , Aerossóis , Composição de Medicamentos , Tamanho da Partícula , Administração por Inalação , Pós
15.
AAPS PharmSciTech ; 25(6): 178, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095623

RESUMO

Dry powder inhalers (DPIs) are state-of-the-art pulmonary drug delivery systems. This article explores the transformative impact of nanotechnology on DPIs, emphasizing the Quality Target Product Profile (QTPP) with a focus on aerodynamic performance and particle characteristics. It navigates global regulatory frameworks, underscoring the need for safety and efficacy standards. Additionally, it highlights the emerging field of nanoparticulate dry powder inhalers, showcasing their potential to enhance targeted drug delivery in respiratory medicine. This concise overview is a valuable resource for researchers, physicians, and pharmaceutical developers, providing insights into the development and commercialization of advanced inhalation systems.


Assuntos
Sistemas de Liberação de Medicamentos , Inaladores de Pó Seco , Inaladores de Pó Seco/métodos , Humanos , Administração por Inalação , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Nanomedicina/métodos , Tamanho da Partícula , Nanotecnologia/métodos
16.
AAPS PharmSciTech ; 25(3): 42, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366056

RESUMO

Lung cancer is the leading cause of cancer-related deaths worldwide, resulting in the highest mortality rates among both men and women with respect to all other types of cancer. Difficulties in treating lung cancer arise from late-stage diagnoses and tumor heterogeneity and current treatment involves a combination of chemotherapeutics, surgery, and radiation. Chemotherapeutics administered systemically can lead to undesirable side effects and severe off-site toxicity. For example, chronic administration of the chemotherapeutic doxorubicin (DOX) leads to cardiotoxicity, thereby limiting its long-term use. Systemic administration of the highly lipophilic molecule paclitaxel (PTX) is hindered by its water solubility, necessitating the use of solubilizing agents, which can induce side effects. Thus, in this investigation, formulations consisting of spray-dried microparticles (MP) containing DOX and PTX were produced to be administered as dry powder aerosols directly to the lungs. Acetalated dextran (Ac-Dex) was used as the polymer in these formulations, as it is a biocompatible and biodegradable polymer that exhibits pH-responsive degradation. Solid-state characterization revealed that DOX and PTX remained in solubility favoring amorphous states in the MP formulations and that both drugs remained thermally stable throughout the spray drying process. In vitro release studies demonstrated the pH sensitivity of the formulations due to the use of Ac-Dex, as well as the release of both therapeutics over the course of at least 48 h. In vitro aerosol dispersion studies demonstrated that both formulations exhibited suitable aerosol dispersion properties for deep lung delivery.


Assuntos
Neoplasias Pulmonares , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Pós , Aerossóis e Gotículas Respiratórios , Administração por Inalação , Pulmão/metabolismo , Paclitaxel/química , Doxorrubicina/uso terapêutico , Polímeros/metabolismo , Tamanho da Partícula , Inaladores de Pó Seco
17.
Respir Res ; 24(1): 226, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37742015

RESUMO

BACKGROUND: Small airways disease plays a key role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and is a major cause of obstruction; therefore, it is a critical pharmacotherapy target. This study evaluated lung deposition of two inhaled corticosteroid (ICS)/long-acting ß2-agonist/long-acting muscarinic antagonist single-inhaler triple therapies using in silico functional respiratory imaging (FRI). Deposition was assessed using real-world inhalation profiles simulating everyday use where optimal inhalation may be compromised. METHODS: Three-dimensional airway models were produced from 20 patients with moderate-to-very severe COPD. Total, central, and regional small airways deposition as a percentage of delivered dose of budesonide/glycopyrronium/formoterol fumarate dihydrate (BGF) 160/7.2/5 µg per actuation and fluticasone furoate/umeclidinium/vilanterol (FF/UM/VI) 100/62.5/25 µg were evaluated using in silico FRI based on in vitro aerodynamic particle size distributions of each device. Simulations were performed using multiple inhalation profiles of varying durations and flow rates representing patterns suited for a pressurized metered-dose inhaler or dry-powder inhaler (four for BGF, two for FF/UM/VI, with one common profile). For the common profile, deposition for BGF versus FF/UM/VI was compared post-hoc using paired t-tests. RESULTS: Across inhalation profiles, mean total lung deposition was consistently higher with BGF (47.0-54.1%) versus FF/UM/VI (20.8-22.7%) and for each treatment component, with greater deposition for BGF also seen in the central large airways. Mean regional small airways deposition was also greater across inhalation profiles with BGF (16.9-23.6%) versus FF/UM/VI (6.8-8.7%) and for each treatment component. For the common profile, total, central, and regional small airways deposition were significantly greater for BGF versus FF/UM/VI (nominal p < 0.001), overall and for treatment components; notably, regional small airways deposition of the ICS components was approximately five-fold greater with budesonide versus fluticasone furoate (16.1% vs. 3.3%). CONCLUSIONS: BGF was associated with greater total, central, and small airways deposition for all components versus FF/UM/VI. Importantly, using an identical inhalation profile, there was an approximately five-fold difference in small airways deposition for the ICS components, with only a small percentage of the ICS from FF/UM/VI reaching the small airways. Further research is needed to understand if the enhanced delivery of BGF translates to clinical benefits.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Fluticasona , Budesonida , Inaladores de Pó Seco , Pulmão/diagnóstico por imagem
18.
Mol Pharm ; 20(4): 2207-2216, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36938947

RESUMO

Pulmonary deposition of lung-targeted therapeutic aerosols can achieve direct drug delivery to the site of action, thereby enhancing the efficacy and reducing systemic exposure. In this study, we investigated the in vitro and in vivo aerosol performance of the novel small animal air-jet dry powder insufflator (Rat AJ DPI) using spray-dried albuterol excipient-enhanced-growth (EEG) powder as a model formulation. The in vitro aerosolization performance of the optimized albuterol EEG powder was first assessed using the Rat AJ DPI. The performance of Rat AJ DPI to deliver albuterol EEG aerosol to rat lungs was then compared to that of the Penn-Century Insufflator. Albuterol EEG powders dispersed using the Rat AJ DPI demonstrated narrow unimodal aerosol size distribution profiles, which were independent of the loaded powder dose (1, 2, and 5 mg). In addition, the span value for Rat AJ DPI (5 mg powder mass) was 1.32, which was 4.2-fold lower than that for Penn-Century insufflator (5 mg powder mass). At a higher loaded mass of 5 mg, the Rat AJ DPI delivered significantly larger doses to rat lungs compared with the Penn-Century DPI. The Rat AJ DPI with hand actuation delivered approximately 85% of the total emitted dose (2 and 5 mg loadings), which was comparatively higher than that for Penn-Century DPI (approximately 75%). In addition, percentage deposition in each of the lung lobes for the Rat AJ DPI was observed to be independent of the administration dose (2 and 5 mg loadings) with coefficients of variation below 12%, except in the right middle lobe. Automatic actuation of a 5 mg powder mass using the Rat AJ DPI demonstrated a similar delivered dose compared to manual actuation of the same dose, with 82% of the total emitted dose reaching the lung lobes. High-efficiency delivery of the aerosol to the lobar lung region and low sensitivity of the interlobar delivery efficiency to the loaded dose highlight the suitability of the new air-jet DPI for administering therapeutic pharmaceutical aerosols to small test animals.


Assuntos
Albuterol , Inaladores de Pó Seco , Animais , Ratos , Pós , Aerossóis , Administração por Inalação , Excipientes , Tamanho da Partícula , Pulmão
19.
Mol Pharm ; 20(11): 5332-5344, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37783568

RESUMO

Dry powder inhaler (DPI) products are commonly formulated as a mixture of micronized drug particles and large carrier particles, with or without additional fine particle excipients, followed by final powder filling into dose containment systems such as capsules, blisters, or reservoirs. DPI product manufacturing consists of a series of unit operations, including particle size reduction, blending, and filling. This review provides an overview of the relevant critical process parameters used for jet milling, high-shear blending, and dosator/drum capsule filling operations across commonly utilized instruments. Further, this review describes the recent achievements regarding the application of empirical and mechanistic models, especially discrete element method (DEM) simulation, in DPI process development. Although to date only limited modeling/simulation work has been accomplished, in the authors' perspective, process design and development are destined to be more modeling/simulation driven with the emphasis on evaluating the impact of material attributes/process parameters on process performance. The advancement of computational power is expected to enable modeling/simulation approaches to tackle more complex problems with better accuracy when dealing with real-world DPI process operations.


Assuntos
Portadores de Fármacos , Inaladores de Pó Seco , Pós , Composição de Medicamentos/métodos , Administração por Inalação , Simulação por Computador , Tamanho da Partícula , Aerossóis
20.
Mol Pharm ; 20(9): 4640-4653, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37606919

RESUMO

Tigecycline (TIG) is a broad-spectrum antibiotic that has been approved for the treatment of a number of complicated infections, including community-acquired bacterial pneumonia. Currently it is available only as an intravenous injection that undergoes rapid chemical degradation and limits the use to in-patient scenarios. The use of TIG as an inhaled dry powder inhaler may offer a promising treatment option for patients with multidrug-resistant respiratory tract infections, such as Stenotrophomonas maltophilia (S. maltophilia). This study explores the feasibility of engineering an inhaled powder formulation of TIG that could administer relevant doses at a wide range of inhalation flow rates while maintaining stability of this labile drug. Using air-jet milling, micronized TIG had excellent aerosolization efficiency, with over 80% of the device emitted dose being within the respirable range. TIG was also readily dispersed using different inhaler devices even when tested at different pressure drops and flow rates. Additionally, micronized TIG was stable for 6 months at 25 °C/60% RH and 40 °C/75% RH. Micronized TIG maintained a low minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) of 0.8 µM and >0.5 µM, respectively in S. maltophilia cultures in vitro. These results strongly suggest that the micronization of TIG results in a stable and respirable formulation that can be delivered via the pulmonary route for the treatment of lung infections.


Assuntos
Pneumonia , Humanos , Tigeciclina , Pós , Pneumonia/tratamento farmacológico , Antibacterianos/farmacologia , Inaladores de Pó Seco , Excipientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA