Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
Anal Chem ; 96(22): 9244-9253, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38773697

RESUMO

Sensitive identification and effective inactivation of the virus are paramount for the early diagnosis and treatment of viral infections to prevent the risk of secondary transmission of viruses in the environment. Herein, we developed a novel two-step fluorescence immunoassay using antibody/streptavidin dual-labeled polystyrene nanobeads and biotin-labeled G-quadruplex/hemin DNAzymes with peroxidase-mimicking activity for sensitive quantitation and efficient inactivation of living Zika virus (ZIKV). The dual-labeled nanobeads can specifically bind ZIKV through E protein targeting and simultaneously accumulate DNAzymes, leading to the catalytic oxidation of Amplex Red indicators and generation of intensified aggregation-induced emission fluorescence signals, with a detection limit down to 66.3 PFU/mL and 100% accuracy. Furthermore, robust reactive oxygen species generated in situ by oxidized Amplex Red upon irradiation can completely kill the virus. This sensitive and efficient detection-inactivation integrated system will expand the viral diagnostic tools and reduce the risk of virus transmission in the environment.


Assuntos
DNA Catalítico , Zika virus , DNA Catalítico/química , DNA Catalítico/metabolismo , Imunoensaio/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Limite de Detecção , Quadruplex G , Inativação de Vírus/efeitos da radiação , Humanos
2.
J Infect Dis ; 225(4): 587-592, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34904659

RESUMO

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since 2019 has made mask-wearing, physical distancing, hygiene, and disinfection complementary measures to control virus transmission. Especially for health facilities, we evaluated the efficacy of an UV-C autonomous robot to inactivate SARS-CoV-2 desiccated on potentially contaminated surfaces. ASSUM (autonomous sanitary sterilization ultraviolet machine) robot was used in an experimental box simulating a hospital intensive care unit room. Desiccated SARS-CoV-2 samples were exposed to UV-C in 2 independent runs of 5, 12, and 20 minutes. Residual virus was eluted from surfaces and viral titration was carried out in Vero E6 cells. ASSUM inactivated SARS-CoV-2 by ≥ 99.91% to ≥ 99.99% titer reduction with 12 minutes or longer of UV-C exposure and onwards and a minimum distance of 100cm between the device and the SARS-CoV-2 desiccated samples. This study demonstrates that ASSUM UV-C device is able to inactivate SARS-CoV-2 within a few minutes.


Assuntos
COVID-19 , Robótica , SARS-CoV-2/efeitos da radiação , Esterilização/métodos , Raios Ultravioleta , Inativação de Vírus/efeitos da radiação , COVID-19/prevenção & controle , Hospitais , Humanos
3.
BMC Microbiol ; 22(1): 300, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510144

RESUMO

BACKGROUND: Although conventional polymerase chain reaction (PCR) methods are widely used in diagnosis, the titer of the pathogenic virus is difficult to determine based on the PCR. In our prior report, a long-range reverse-transcription quantitative PCR (LR-RT-qPCR) assay was developed to assess the titer of UV-irradiated influenza A virus (IAV) rapidly. In this research, we focused on whether the LR-RT-qPCR assay could evaluate the titer of IAV inactivated by other methods. METHODS: IAV was inactivated by: heating at 100 °C for periods ranging from 1 to 15 min, treating with 0.12% sodium hypochlorite for periods ranging from 3 to 30 min, or treating with 70% ethanol for periods ranging from 10 to 30 min. Fifty percent tissue culture infectious dose (TCID50) assay was performed to confirm the efficacy of the inactivation methods, followed by LR-RT-qPCR to investigate the correlation between infectivity and copy number. RESULTS: One minute heating, 3 min sodium hypochlorite treatment, or 10 min ethanol treatment was sufficient to deactivate IAV. Changes before and after the inactivations in the copy numbers on LR-RT-qPCR were significantly different among the inactivation methods. Heat-inactivation drastically decreased the copy number to below the cutoff value around 5 copies/µL after 5 min treatment. The inactivation time of heating estimated using LR-RT-qPCR was marginally higher than that determined using TCID50. However, the treatments with sodium hypochlorite or ethanol moderately and minimally affected the copy numbers obtained using LR-RT-qPCR (~ 1 digit or no copy number decrease), respectively. CONCLUSIONS: In addition to good applicability in UV-irradiation previously reported, the LR-RT-qPCR method is suitable for evaluating the effect of heat-inactivation on IAV infectivity. However, minor modifications may be made and investigated in the future to reduce the time intervals with TCID50. Although this method is not applicable for the ethanol inactivation, rapid evaluation of the effects of chlorination on IAV can be determined by comparing copy numbers before and after treatment using the LR-RT-qPCR method.


Assuntos
Vírus da Influenza A , Inativação de Vírus , Inativação de Vírus/efeitos da radiação , Hipoclorito de Sódio , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Reação em Cadeia da Polimerase , Vírus da Influenza A/genética , Etanol/farmacologia , Reação em Cadeia da Polimerase em Tempo Real/métodos
4.
Virol J ; 19(1): 29, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35144624

RESUMO

Ultraviolet (UV) light has previously been established as useful method of disinfection, with demonstrated efficacy to inactivate a broad range of microorganisms. The advent of ultraviolet light-emitting diodes provides advantages in ease of disinfection, in that there can be delivery of germicidal UV with the same light unit that delivers standard white light to illuminate a room. Herein we demonstrate the efficacy and feasibility of ultraviolet light-emitting diodes as a means of decontamination by inactivating two distinct virus models, human coronavirus 229E and human immunodeficiency virus. Importantly, the same dose of ultraviolet light that inactivated human viruses also elicited complete inactivation of ultraviolet-resistant bacterial spores (Bacillus pumilus), a gold standard for demonstrating ultraviolet-mediated disinfection. This work demonstrates that seconds of ultraviolet light-emitting diodes (UV-LED) exposure can inactivate viruses and bacteria, highlighting that UV-LED could be a useful and practical tool for broad sanitization of public spaces.


Assuntos
Coronavirus Humano 229E , Desinfecção , HIV-1 , Raios Ultravioleta , Inativação de Vírus/efeitos da radiação , Coronavirus Humano 229E/efeitos da radiação , Desinfecção/métodos , HIV-1/efeitos da radiação , Humanos
5.
Compr Rev Food Sci Food Saf ; 21(2): 904-941, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35156303

RESUMO

Food- and waterborne viruses, such as human norovirus, hepatitis A virus, hepatitis E virus, rotaviruses, astroviruses, adenoviruses, and enteroviruses, are major contributors to all foodborne illnesses. Their small size, structure, and ability to clump and attach to inanimate surfaces make viruses challenging to reduce or eliminate, especially in the presence of inorganic or organic soils. Besides traditional wet and dry methods of disinfection using chemicals and heat, emerging physical nonthermal decontamination techniques (irradiation, ultraviolet, pulsed light, high hydrostatic pressure, cold atmospheric plasma, and pulsed electric field), novel virucidal surfaces, and bioactive compounds are examined for their potential to inactivate viruses on the surfaces of foods or food contact surfaces (tools, equipment, hands, etc.). Every disinfection technique is discussed based on its efficiency against viruses, specific advantages and disadvantages, and limitations. Structure, genomic organization, and molecular biology of different virus strains are reviewed, as they are key in determining these techniques effectiveness in controlling all or specific foodborne viruses. Selecting suitable viral decontamination techniques requires that their antiviral mechanism of action and ability to reduce virus infectivity must be taken into consideration. Furthermore, details about critical treatments parameters essential to control foodborne viruses in a food production environment are discussed, as they are also determinative in defining best disinfection and hygiene practices preventing viral infection after consuming a food product.


Assuntos
Inocuidade dos Alimentos , Inativação de Vírus , Humanos , Inativação de Vírus/efeitos da radiação
6.
Anal Chem ; 93(5): 2767-2775, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33474935

RESUMO

Clinical tissue specimens are often unscreened, and preparation of tissue sections for analysis by mass spectrometry imaging (MSI) can cause aerosolization of particles potentially carrying an infectious load. We here present a decontamination approach based on ultraviolet-C (UV-C) light to inactivate clinically relevant pathogens such as herpesviridae, papovaviridae human immunodeficiency virus, or SARS-CoV-2, which may be present in human tissue samples while preserving the biodistributions of analytes within the tissue. High doses of UV-C required for high-level disinfection were found to cause oxidation and photodegradation of endogenous species. Lower UV-C doses maintaining inactivation of clinically relevant pathogens to a level of increased operator safety were found to be less destructive to the tissue metabolome and xenobiotics. These doses caused less alterations of the tissue metabolome and allowed elucidation of the biodistribution of the endogenous metabolites. Additionally, we were able to determine the spatially integrated abundances of the ATR inhibitor ceralasertib from decontaminated human biopsies using desorption electrospray ionization-MSI (DESI-MSI).


Assuntos
Descontaminação/métodos , Raios Ultravioleta , Animais , Azetidinas/análise , Azetidinas/uso terapêutico , COVID-19/patologia , COVID-19/virologia , Neoplasias de Cabeça e Pescoço/química , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Metaboloma , Naftalenos/análise , Naftalenos/uso terapêutico , Fotólise/efeitos da radiação , Ratos , Ratos Wistar , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/efeitos da radiação , Espectrometria de Massas por Ionização por Electrospray/métodos , Terfenadina/química , Inativação de Vírus/efeitos da radiação
7.
Appl Environ Microbiol ; 87(22): e0153221, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34495736

RESUMO

Effective disinfection technology to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can help reduce viral transmission during the ongoing COVID-19 global pandemic and in the future. UV devices emitting UVC irradiation (200 to 280 nm) have proven to be effective for virus disinfection, but limited information is available for SARS-CoV-2 due to the safety requirements of testing, which is limited to biosafety level 3 (BSL3) laboratories. In this study, inactivation of SARS-CoV-2 in thin-film buffered aqueous solution (pH 7.4) was determined across UVC irradiation wavelengths of 222 to 282 nm from krypton chloride (KrCl*) excimers, a low-pressure mercury-vapor lamp, and two UVC light-emitting diodes. Our results show that all tested UVC devices can effectively inactivate SARS-CoV-2, among which the KrCl* excimer had the best disinfection performance (i.e., highest inactivation rate). The inactivation rate constants of SARS-CoV-2 across wavelengths are similar to those for murine hepatitis virus (MHV) from our previous investigation, suggesting that MHV can serve as a reliable surrogate of SARS-CoV-2 with a lower BSL requirement (BSL2) during UV disinfection tests. This study provides fundamental information on UVC's action on SARS-CoV-2 and guidance for achieving reliable disinfection performance with UVC devices. IMPORTANCE UV light is an effective tool to help stem the spread of respiratory viruses and protect public health in commercial, public, transportation, and health care settings. For effective use of UV, there is a need to determine the efficiency of different UV wavelengths in killing pathogens, specifically SARS-CoV-2, to support efforts to control the ongoing COVID-19 global pandemic and future coronavirus-caused respiratory virus pandemics. We found that SARS-CoV-2 can be inactivated effectively using a broad range of UVC wavelengths, and 222 nm provided the best disinfection performance. Interestingly, 222-nm irradiation has been found to be safe for human exposure up to thresholds that are beyond those effective for inactivating viruses. Therefore, applying UV light from KrCl* excimers in public spaces can effectively help reduce viral aerosol or surface-based transmissions.


Assuntos
Desinfecção/métodos , SARS-CoV-2/efeitos da radiação , Inativação de Vírus/efeitos da radiação , Animais , Bacteriófago phi 6/efeitos da radiação , COVID-19/prevenção & controle , COVID-19/transmissão , Coronavirus Humano 229E/efeitos da radiação , Desinfecção/instrumentação , Humanos , Camundongos , Vírus da Hepatite Murina/efeitos da radiação , Raios Ultravioleta
8.
BMC Infect Dis ; 21(1): 594, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157967

RESUMO

BACKGROUND: UltraViolet-C (UV-C) lamps may be used to supplement current hospital cleaning and disinfection of surfaces contaminated by SARS-CoV-2. Our aim is to provide some practical indications for the correct use of UV-C lamps. METHODS: We studied three UV-C lamps, measuring their spatial irradiance and emission over time. We quantify the error that is committed by calculating the irradiation time based exclusively on the technical data of the lamps or by making direct irradiance measurements. Finally, we tested specific dosimeters for UV-C. RESULTS: Our results show that the spatial emission of UV-C lamps is strongly dependent on the power of the lamps and on the design of their reflectors. Only by optimizing the positioning and calculating the exposure time correctly, is it possible to dispense the dose necessary to obtain SARS-CoV-2 inactivation. In the absence of suitable equipment for measuring irradiance, the calculated irradiation time can be underestimated. We therefore consider it precautionary to increase the calculated times by at least 20%. CONCLUSION: To use UV-C lamps effectively, it is necessary to follow a few simple precepts when choosing, positioning and verifying the lamps. In the absence of instruments dedicated to direct verification of irradiance, photochromic UV-C dosimeters may represent a useful tool for easily verifying that a proper UV-C dose has been delivered.


Assuntos
COVID-19/prevenção & controle , Desinfecção/métodos , SARS-CoV-2/efeitos dos fármacos , Raios Ultravioleta , Hospitais , Humanos , Inativação de Vírus/efeitos da radiação
9.
J Immunol ; 202(3): 653-663, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30598513

RESUMO

CD4+ T cell responses are crucial for the control of many intracellular pathogens, yet the requirements for their induction are not fully understood. To better understand the role that various dendritic cell (DC) subtypes play in CD4+ T cell priming, we compared in vivo T cell responses to skin inoculation of mice with infectious or UV-inactivated HSV type 1. Localized infection elicited a Th1 response that was primed in skin-draining lymph nodes involving Ag presentation by migratory dermal and lymph node-resident DC. However, expansion and Th1 differentiation was impaired in response to UV-inactivated virus (UV-HSV), and this defect correlated with a restriction of Ag presentation to migratory CD103- dermal DC. A similar differentiation defect was seen in infected mice lacking CD8α+ and CD103+ classical type 1 DC (cDC1). Finally, Th1 differentiation after UV-HSV inoculation was rescued by targeted Ag delivery to CD8α+ and CD103+ cDC1 using an anti-Clec9A Ab construct. This suggests that Ag presentation by cDC1 is crucial for optimal Th1 immunity to HSV type 1 infection and potentially other pathogens of the skin.


Assuntos
Apresentação de Antígeno , Células Dendríticas/imunologia , Herpes Simples/imunologia , Células de Langerhans/imunologia , Dermatopatias Virais/imunologia , Células Th1/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Feminino , Herpesvirus Humano 1/efeitos da radiação , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Raios Ultravioleta , Inativação de Vírus/efeitos da radiação
10.
Cell Tissue Bank ; 22(1): 1-10, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33033963

RESUMO

The safety of the tissue transplant recipient is a top priority for tissue banks, and the emergence of the new coronavirus SARS-CoV-2 has raised significant concerns about the risks of releasing tissue for clinical use. In the present study, we conducted a literature review about the potential infectivity of SARS-CoV-2 in different biological tissues and the influence of various tissue processing and sterilization procedures on viral inactivation. The search revealed that SARS-CoV-2 binds to the human angiotensin-converting enzyme receptor to penetrate human cells. These receptors are present in skin cells, musculoskeletal tissue, amniotic membranes, cardiovascular tissue and ocular tissues, including the cornea. In general, we found that coronaviruses are stable at low temperatures, and inactivated upon exposure to extreme heat and pH. Notably, gamma irradiation, which has already been employed to inactivate SARS and MERS, could be useful for sterilizing skin, amnion and musculoskeletal tissues against SARS-CoV-2. We conclude that due to the limited information about the effects of physical and chemical tissue processing methods on viral neutralization, rigorous donor screening is still essential for tissue transplant recipient safety.


Assuntos
COVID-19/prevenção & controle , SARS-CoV-2/fisiologia , Esterilização/métodos , Transplantes/virologia , Inativação de Vírus , COVID-19/transmissão , Criopreservação/métodos , Temperatura Alta , Humanos , Radiação Ionizante , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/efeitos da radiação , Doadores de Tecidos , Preservação de Tecido/métodos , Inativação de Vírus/efeitos dos fármacos , Inativação de Vírus/efeitos da radiação
11.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445543

RESUMO

The current SARS-CoV-2 pandemic causes serious public health, social, and economic issues all over the globe. Surface transmission has been claimed as a possible SARS-CoV-2 infection route, especially in heavy contaminated environmental surfaces, including hospitals and crowded public places. Herein, we studied the deactivation of SARS-CoV-2 on photoactive AgNPs@TiO2 coated on industrial ceramic tiles under dark, UVA, and LED light irradiations. SARS-CoV-2 inactivation is effective under any light/dark conditions. The presence of AgNPs has an important key to limit the survival of SARS-CoV-2 in the dark; moreover, there is a synergistic action when TiO2 is decorated with Ag to enhance the virus photocatalytic inactivation even under LED. The radical oxidation was confirmed as the the central mechanism behind SARS-CoV-2 damage/inactivation by ESR analysis under LED light. Therefore, photoactive AgNPs@TiO2 ceramic tiles could be exploited to fight surface infections, especially during viral severe pandemics.


Assuntos
Cerâmica/química , Nanopartículas Metálicas/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/efeitos da radiação , Titânio/química , Antivirais/farmacologia , COVID-19/virologia , Humanos , Luz , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Pandemias , Tamanho da Partícula , SARS-CoV-2/metabolismo , Propriedades de Superfície , Inativação de Vírus/efeitos dos fármacos , Inativação de Vírus/efeitos da radiação
12.
J Clin Microbiol ; 58(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32467359

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) has spread across the world and was characterized as a pandemic. To protect medical laboratory personnel from infection, most laboratories inactivate the virus causing COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in clinical samples before testing. However, the effect of inactivation on the detection results remains unknown. Here, we used a digital PCR assay to determine the absolute SARS-CoV-2 RNA copy number in 63 nasopharyngeal swab samples and assess the effect of inactivation methods on viral RNA copy number. Viral inactivation was performed by three different methods: (i) incubation with the TRIzol LS reagent for 10 min at room temperature, (ii) heating in a water bath at 56°C for 30 min, and (iii) high-temperature treatment, including autoclaving at 121°C for 20 min, boiling at 100°C for 20 min, and heating at 80°C for 20 min. Compared to the amount of RNA in the original sample, TRIzol treatment destroyed 47.54% of the nucleocapsid protein (N) gene and 39.85% of open reading frame (ORF) 1ab. For samples treated at 56°C for 30 min, the copy number of the N gene and ORF 1ab was reduced by 48.55% and 56.40%, respectively. The viral RNA copy number dropped by 50 to 66% after heating at 80°C for 20 min. Nearly no viral RNA was detected after autoclaving at 121°C or boiling at 100°C for 20 min. These results indicate that inactivation reduced the quantity of detectable viral RNA and may cause false-negative results, especially in weakly positive cases. Thus, use of the TRIzol reagent rather than heat inactivation is recommended for sample inactivation, as the TRIzol reagent had the least effect on the RNA copy number among the tested methods.


Assuntos
Betacoronavirus/efeitos dos fármacos , Betacoronavirus/efeitos da radiação , Desinfecção/métodos , RNA Viral/análise , Manejo de Espécimes/métodos , Inativação de Vírus/efeitos dos fármacos , Inativação de Vírus/efeitos da radiação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Desinfetantes , Feminino , Dosagem de Genes , Temperatura Alta , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , RNA Viral/genética , SARS-CoV-2 , Adulto Jovem
13.
Electrophoresis ; 41(13-14): 1137-1151, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32469436

RESUMO

The material properties of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its proteins are discussed. We review the viral structure, size, rigidity, lipophilicity, isoelectric point, buoyant density and centrifugation conditions, stability against pH, temperature, UV light, gamma radiation, and susceptibility to various chemical agents including solvents and detergents. Possible inactivation, downstream, and formulation conditions are given including suitable buffers and some first ideas for quality-control methods. This information supports vaccine development and discussion with competent authorities during vaccine approval and is certainly related to drug-targeting strategies and hygienics. Several instructive tables are given, including the pI and grand average of hydropathicity (GRAVY) of SARS-CoV-1 and -2 proteins in comparison. SARS-CoV-1 and SARS-CoV-2 are similar in many regards, so information can often be derived. Both are unusually stable, but sensitive at their lipophilic membranes. However, since seemingly small differences can have strong effects, for example, on immunologically relevant epitope settings, unevaluated knowledge transfer from SARS-CoV-1 to SARS-CoV-2 cannot be advised. Published knowledge regarding downstream processes, formulations and quality assuring methods is, as yet, limited. However, standard approaches employed for other viruses and vaccines seem to be feasible including virus inactivation, centrifugation conditions, and the use of adjuvants.


Assuntos
Betacoronavirus/química , Proteínas Virais/química , Vacinas Virais/farmacologia , Animais , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/efeitos da radiação , Desinfetantes/farmacologia , Eletroforese , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , SARS-CoV-2 , Raios Ultravioleta , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/farmacologia , Vacinas Virais/imunologia , Inativação de Vírus/efeitos da radiação
14.
Transfusion ; 60(11): 2655-2660, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32830340

RESUMO

Japanese encephalitis virus (JEV) is endemic to tropical areas in Asia and the Western Pacific. It can cause fatal encephalitis, although most infected individuals are asymptomatic. JEV is mainly transmitted to humans through the bite of an infected mosquito, but can also be transmitted through blood transfusion. To manage the potential risk of transfusion transmission, pathogen inactivation (PI) technologies, such as THERAFLEX MB-Plasma and THERAFLEX UV-Platelets systems, have been developed. We examined the efficacy of these two PI systems to inactivate JEV. STUDY DESIGN AND METHODS: Japanese encephalitis virus-spiked plasma units were treated using the THERAFLEX MB-Plasma system (visible light doses, 20, 40, 60, and 120 [standard] J/cm2) in the presence of methylene blue at approximately 0.8 µmol/L and spiked platelet concentrates (PCs) were treated using the THERAFLEX UV-Platelets system (UVC doses, 0.05, 0.10, 0.15, and 0.20 [standard] J/cm2). Samples were taken before the first and after each illumination dose and tested for infectivity using an immunoplaque assay. RESULTS: Treatment of plasma with the THERAFLEX MB-Plasma system resulted in an average of 6.59 log reduction in JEV infectivity at one-sixth of the standard visible light dose (20 J/cm2). For PCs, treatment with the THERAFLEX UV-Platelet system resulted in an average of 7.02 log reduction in JEV infectivity at the standard UVC dose (0.20 J/cm2). CONCLUSIONS: The THERAFLEX MB-Plasma and THERAFLEX UV-Platelets systems effectively inactivated JEV in plasma or PCs, and thus these PI technologies could be an effective option to reduce the risk of JEV transfusion transmission.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/crescimento & desenvolvimento , Luz , Azul de Metileno/farmacologia , Plasma/virologia , Inativação de Vírus , Humanos , Inativação de Vírus/efeitos dos fármacos , Inativação de Vírus/efeitos da radiação
15.
Transfusion ; 60(6): 1319-1331, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32333396

RESUMO

BACKGROUND: The INTERCEPT Blood System pathogen reduction technology (PRT), which uses amotosalen and ultraviolet A light treatment (amotosalen/UV-PRT), inactivates pathogens in plasma and platelet components (PCs). This review summarizes data describing the inactivation efficacy of amotosalen/UVA-PRT for a broad spectrum of viruses and parasites. METHODS: Twenty-five enveloped viruses, six nonenveloped viruses (NEVs), and four parasites species were evaluated for sensitivity to amotosalen/UVA-PRT. Pathogens were spiked into plasma and PC at high titers. Samples were collected before and after PRT and assessed for infectivity with cell cultures or animal models. Log reduction factors (LRFs) were defined as the difference in infectious titers before and after amotosalen/UV-PRT. RESULTS: LRFs of ≥4.0 log were reported for 19 pathogens in plasma (range, ≥4.0 to ≥7.6), 28 pathogens in PC in platelet additive solution (PC-PAS; ≥4.1-≥7.8), and 14 pathogens in PC in 100% plasma (PC-100%; (≥4.3->8.4). Twenty-five enveloped viruses and two NEVs were sensitive to amotosalen/UV-PRT; LRF ranged from >2.9 to ≥7.6 in plasma, 2.4 or greater to greater than 6.9 in PC-PAS and >3.5 to >6.5 in PC-100%. Infectious titers for four parasites were reduced by >4.0 log in all PC and plasma (≥4.9 to >8.4). CONCLUSION: Amotosalen/UVA-PRT demonstrated effective infectious titer reduction for a broad spectrum of viruses and parasites. This confirms the capacity of this system to reduce the risk of viral and parasitic transfusion-transmitted infections by plasma and PCs in various geographies.


Assuntos
Plaquetas , Segurança do Sangue , Desinfecção , Furocumarinas/farmacologia , Parasitos , Plasma , Raios Ultravioleta , Inativação de Vírus , Animais , Plaquetas/parasitologia , Plaquetas/virologia , Humanos , Plasma/parasitologia , Plasma/virologia , Inativação de Vírus/efeitos dos fármacos , Inativação de Vírus/efeitos da radiação
16.
Virol J ; 17(1): 151, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33036623

RESUMO

BACKGROUND: Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes severe encephalitis and respiratory disease with a high mortality rate in humans. During large outbreaks of the viral disease, serological testing of serum samples could be a useful diagnostic tool, which could provide information on not only the diagnosis of NiV disease but also the history of an individual with previous exposure to the virus, thereby supporting disease control. Therefore, an efficient method for the inactivation of NiV in serum samples is required for serological diagnosis. METHODS: We determined the optimal conditions for the inactivation of NiV infectivity in human serum using heating and UV treatment. The inactivation method comprised UV irradiation with a cover of aluminum foil for 30 min and heating at 56 °C for 30 min. RESULTS: With an optimized protocol for virus inactivation, NiV infectivity in serum samples (containing 6.0 × 105 TCID50) was completely inactivated. CONCLUSIONS: We developed a recommended protocol for the effective inactivation of NiV. This protocol would enable a regional or local laboratory to safely transport or process samples, including NiV, for serological testing in its biosafety level-2 facility.


Assuntos
Temperatura Alta , Viabilidade Microbiana/efeitos da radiação , Vírus Nipah/efeitos da radiação , Raios Ultravioleta , Virologia/métodos , Inativação de Vírus/efeitos da radiação , Animais , Chlorocebus aethiops , Infecções por Henipavirus/sangue , Infecções por Henipavirus/virologia , Humanos , Vírus Nipah/fisiologia , Pesquisa , Células Vero
17.
BMC Infect Dis ; 20(1): 585, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762666

RESUMO

BACKGROUND: The polymerase chain reaction (PCR) is commonly used to detect viral pathogens because of its high sensitivity and specificity. However, conventional PCR methods cannot determine virus infectivity. Virus infectivity is conventionally examined with methods such as the plaque assay, even though such assays require several days. Long-range reverse-transcription quantitative PCR (RT-qPCR) has previously been suggested for the rapid assessment of RNA virus infectivity where the loss of infectivity is attributable to genomic fragmentation. METHODS: IAV was irradiated with 253.7 nm ultraviolet (UV) rays to induce genomic strand breaks that were confirmed by a full-length RT-PCR assay. The IAV was then subjected to plaque assay, conventional RT-qPCR and long-range RT-qPCR to examine the relationship between infectious titer and copy number. A simple linear regression analysis was performed to examine the correlation between the results of these assays. RESULTS: A long-range RT-qPCR assay was developed and validated for influenza A virus (IAV). Although only a few minutes of UV irradiation was required to completely inactivate IAV, genomic RNA remained detectable by the conventional RT-qPCR and the full-length RT-PCR for NS of viral genome following inactivation. A long-range RT-qPCR assay was then designed using RT-priming at the 3' termini of each genomic segment and subsequent qPCR of the 5' regions. UV-mediated IAV inactivation was successfully analyzed by the long-range RT-qPCR assay especially when targeting PA of the viral genome. This was also supported by the regression analysis that the long-range RT-qPCR is highly correlated with plaque assay (Adjusted R2 = 0.931, P = 0.000066). CONCLUSIONS: This study suggests that IAV infectivity can be predicted without the infectivity assays. The rapid detection of pathogenic IAV has, therefore, been achieved with this sensing technology.


Assuntos
Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Infecções por Orthomyxoviridae/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Virulência/genética , Animais , Cães , Genoma Viral/genética , Genoma Viral/efeitos da radiação , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/efeitos da radiação , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/virologia , Estabilidade de RNA/efeitos da radiação , RNA Viral/genética , RNA Viral/efeitos da radiação , Raios Ultravioleta , Inativação de Vírus/efeitos da radiação
18.
BMC Vet Res ; 16(1): 358, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32977821

RESUMO

BACKGROUND: Pseudorabies (PR) is latent and can persist in infected sows for a long time, and thus, convalescent sows can carry the virus throughout life, causing severe economic losses to farmers and posing a tremendous challenge to PR prevention and control. Here, to investigate the biological characteristics of pseudorabies virus (PRV), a variety of physical and chemical factors were analyzed under controlled conditions. RESULTS: The results showed that a high ambient temperature and dry environment led to faster virus inactivation. PRV had a certain resistance to weakly acidic or alkaline environments and was rapidly inactivated in strongly acidic or alkaline environments. The effect of ultraviolet (UV) radiation on PRV activity primarily depended on the frequency, intensity, and irradiation time of the UV exposure. Exposure to sunlight inactivated PRV via multiple factors, including temperature, sunlight intensity, UV intensity, and environmental humidity, and any shielding from sunlight strongly lowered the killing effect. Conventional disinfectants had a good disinfection effect on PRV. CONCLUSIONS: The biological characteristics of different PRV strains are variable. Generally, the activity of PRV is affected by multiple factors, which can show both synergy and antagonism. Real-world conditions should be taken into consideration to guide pork production.


Assuntos
Herpesvirus Suídeo 1/fisiologia , Herpesvirus Suídeo 1/efeitos da radiação , Inativação de Vírus/efeitos dos fármacos , Inativação de Vírus/efeitos da radiação , Animais , Linhagem Celular , Desinfetantes , Umidade , Concentração de Íons de Hidrogênio , Luz Solar , Suínos , Temperatura , Raios Ultravioleta
19.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30089696

RESUMO

Viruses are nanoscale infectious agents which may be inactivated by heat treatment. The global molecular mechanisms of virus inactivation and the thermally induced structural changes in viruses are not fully understood. In this study, we measured the heat-induced changes in the properties of T7 bacteriophage particles exposed to a two-stage (65°C and 80°C) thermal effect, by using atomic force microscopy (AFM)-based nanomechanical and topographical measurements. We found that exposure to 65°C led to the release of genomic DNA and to the loss of the capsid tail; hence, the T7 particles became destabilized. Further heating to 80°C surprisingly led to an increase in mechanical stability, due likely to partial denaturation of the capsomeric proteins kept within the global capsid arrangement.IMPORTANCE Even though the loss of DNA, caused by heat treatment, destabilizes the T7 phage, its capsid is remarkably able to withstand high temperatures with a more or less intact global topographical structure. Thus, partial denaturation within the global structural constraints of the viral capsid may have a stabilizing effect. Understanding the structural design of viruses may help in constructing artificial nanocapsules for the packaging and delivery of materials under harsh environmental conditions.


Assuntos
Bacteriófago T7/efeitos da radiação , Temperatura Alta , Inativação de Vírus/efeitos da radiação , Bacteriófago T7/ultraestrutura , Microscopia de Força Atômica , Desnaturação Proteica
20.
Transfusion ; 59(3): 1069-1079, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30793328

RESUMO

BACKGROUND: Human platelet lysate (hPL) represents a powerful medium supplement for human mesenchymal stromal cell (hMSC) expansion. The recently published general chapters of the Pharmacopeia require the addition of a step of viral inactivation during the production process of such raw biological material used for cell-based medicinal products. STUDY DESIGN AND METHODS: The ability of gamma irradiation to inactivate viruses from a panel representative of the virus diversity was evaluated. The impact of gamma irradiation on hPL composition and efficiency as a supplement for hMSC culture was evaluated. RESULTS: An efficient inactivation of all the viruses tested was demonstrated, with the minimum reduction factors obtained being superior to 4.5 log10 for human immunodeficiency virus (HIV) and hepatitis A virus (HAV) and superior to 5 log10 for bovine viral diarrhea virus (BVDV), pseudorabies virus (PRV) and porcine parvovirus (PPV). The gamma irradiation did not affect the content in interesting biochemical factors for cell culture or in growth factors (GF), except to basic fibroblast GF (bFGF) whereas it highly impacted the contents in the factors involved in the coagulation cascade. Finally, gamma irradiated hPL remained as efficient as non-irradiated hPL for the proliferation, clonogenic potential, differentiation potential, and immunosuppressive properties of hMSCs. CONCLUSION: The feasibility of using gamma irradiation to efficiently inactivate viruses in hPL while maintaining its optimal efficacy as a supplement for hMSC expansion was demonstrated. Such an inactivated hPL represents a very attractive raw material for the efficient production of safe cellular therapy products.


Assuntos
Raios gama , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos da radiação , Inativação de Vírus/efeitos da radiação , Adipogenia/efeitos da radiação , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos da radiação , Técnicas de Cultura de Células , Proliferação de Células/fisiologia , Humanos , Osteogênese/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA