Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
1.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30523147

RESUMO

Proper temporal and spatial activation of stem cells relies on highly coordinated cell signaling. The primary cilium is the sensory organelle that is responsible for transmitting extracellular signals into a cell. Primary cilium size, architecture, and assembly-disassembly dynamics are under rigid cell cycle-dependent control. Using mouse incisor tooth epithelia as a model, we show that ciliary dynamics in stem cells require the proper functions of a cholesterol-binding membrane glycoprotein, Prominin-1 (Prom1/CD133), which controls sequential recruitment of ciliary membrane components, histone deacetylase, and transcription factors. Nuclear translocation of Prom1 and these molecules is particularly evident in transit amplifying cells, the immediate derivatives of stem cells. The absence of Prom1 impairs ciliary dynamics and abolishes the growth stimulation effects of sonic hedgehog (SHH) treatment, resulting in the disruption of stem cell quiescence maintenance and activation. We propose that Prom1 is a key regulator ensuring appropriate response of stem cells to extracellular signals, with important implications for development, regeneration, and diseases.


Assuntos
Antígeno AC133/metabolismo , Cílios/metabolismo , Incisivo/citologia , Antígeno AC133/genética , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Humanos , Incisivo/metabolismo , Camundongos , Modelos Biológicos , Mutagênese Sítio-Dirigida , Transporte Proteico , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo
2.
Development ; 145(1)2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29180573

RESUMO

In mice, the incisors grow throughout the animal's life, and this continuous renewal is driven by dental epithelial and mesenchymal stem cells. Sox2 is a principal marker of the epithelial stem cells that reside in the mouse incisor stem cell niche, called the labial cervical loop, but relatively little is known about the role of the Sox2+ stem cell population. In this study, we show that conditional deletion of Sox2 in the embryonic incisor epithelium leads to growth defects and impairment of ameloblast lineage commitment. Deletion of Sox2 specifically in Sox2+ cells during incisor renewal revealed cellular plasticity that leads to the relatively rapid restoration of a Sox2-expressing cell population. Furthermore, we show that Lgr5-expressing cells are a subpopulation of dental Sox2+ cells that also arise from Sox2+ cells during tooth formation. Finally, we show that the embryonic and adult Sox2+ populations are regulated by distinct signalling pathways, which is reflected in their distinct transcriptomic signatures. Together, our findings demonstrate that a Sox2+ stem cell population can be regenerated from Sox2- cells, reinforcing its importance for incisor homeostasis.


Assuntos
Ameloblastos/metabolismo , Antígenos de Diferenciação/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Incisivo/embriologia , Fatores de Transcrição SOXB1/biossíntese , Células-Tronco/metabolismo , Ameloblastos/citologia , Animais , Antígenos de Diferenciação/genética , Incisivo/citologia , Camundongos , Camundongos Transgênicos , Fatores de Transcrição SOXB1/genética , Células-Tronco/citologia
3.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924361

RESUMO

TRPM7 plays an important role in cellular Ca2+, Zn2+ and Mg2+ homeostasis. TRPM7 channels are abundantly expressed in ameloblasts and, in the absence of TRPM7, dental enamel is hypomineralized. The potential role of TRPM7 channels in Ca2+ transport during amelogenesis was investigated in the HAT-7 rat ameloblast cell line. The cells showed strong TRPM7 mRNA and protein expression. Characteristic TRPM7 transmembrane currents were observed, which increased in the absence of intracellular Mg2+ ([Mg2+]i), were reduced by elevated [Mg2+]i, and were inhibited by the TRPM7 inhibitors NS8593 and FTY720. Mibefradil evoked similar currents, which were suppressed by elevated [Mg2+]i, reducing extracellular pH stimulated transmembrane currents, which were inhibited by FTY720. Naltriben and mibefradil both evoked Ca2+ influx, which was further enhanced by the acidic intracellular conditions. The SOCE inhibitor BTP2 blocked Ca2+ entry induced by naltriben but not by mibefradil. Thus, in HAT-7 cells, TRPM7 may serves both as a potential modulator of Orai-dependent Ca2+ uptake and as an independent Ca2+ entry pathway sensitive to pH. Therefore, TRPM7 may contribute directly to transepithelial Ca2+ transport in amelogenesis.


Assuntos
Ameloblastos/metabolismo , Cálcio/metabolismo , Canais de Cátion TRPM/metabolismo , Ameloblastos/citologia , Ameloblastos/efeitos dos fármacos , Anilidas/farmacologia , Animais , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , Incisivo/citologia , Ativação do Canal Iônico/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Mibefradil/farmacologia , Camundongos , Modelos Biológicos , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Ratos , Tiadiazóis/farmacologia
4.
Dev Dyn ; 249(9): 1098-1116, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32243674

RESUMO

BACKGROUND: The structure of the mouse incisor is characterized by its asymmetric accumulation of enamel matrix proteins on the labial side. The asymmetric structure originates from the patterning of the epithelial incisor placode through the interaction with dental mesenchymal cells. However, the molecular basis for the asymmetric patterning of the incisor germ is largely unknown. RESULTS: A homeobox transcription factor SIX1 was shown to be produced in the mandibular mesenchyme, and its localization patterns changed dynamically during lower incisor development. Six1-/- mice exhibited smaller lower incisor primordia than wild-type mice. Furthermore, Six1-/- mice showed enamel matrix production on both the lingual and labial sides and disturbed odontoblast maturation. In the earlier stages of development, the formation of signaling centers, the initiation knot and the enamel knot, which are essential for the morphogenesis of tooth germs, were impaired in Six1-/- embryos. Notably, Wnt signaling activity, which shows an anterior-posterior gradient, and the expression patterns of genes involved in incisor formation were altered in the mesenchyme in Six1-/- embryos. CONCLUSION: Our results indicate that Six1 is required for signaling center formation in lower incisor germs and the labial-lingual asymmetry of the lower incisors by regulating the anterior-posterior patterning of the mandibular mesenchyme.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Incisivo/embriologia , Odontoblastos/metabolismo , Odontogênese , Transdução de Sinais , Animais , Proteínas de Homeodomínio/genética , Incisivo/citologia , Camundongos , Camundongos Knockout , Odontoblastos/citologia , Germe de Dente/embriologia
5.
Nat Mater ; 18(6): 627-637, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31114073

RESUMO

Cells are transplanted to regenerate an organs' parenchyma, but how transplanted parenchymal cells induce stromal regeneration is elusive. Despite the common use of a decellularized matrix, little is known as to the pivotal signals that must be restored for tissue or organ regeneration. We report that Alx3, a developmentally important gene, orchestrated adult parenchymal and stromal regeneration by directly transactivating Wnt3a and vascular endothelial growth factor. In contrast to the modest parenchyma formed by native adult progenitors, Alx3-restored cells in decellularized scaffolds not only produced vascularized stroma that involved vascular endothelial growth factor signalling, but also parenchymal dentin via the Wnt/ß-catenin pathway. In an orthotopic large-animal model following parenchyma and stroma ablation, Wnt3a-recruited endogenous cells regenerated neurovascular stroma and differentiated into parenchymal odontoblast-like cells that extended the processes into newly formed dentin with a structure-mechanical equivalency to native dentin. Thus, the Alx3-Wnt3a axis enables postnatal progenitors with a modest innate regenerative capacity to regenerate adult tissues. Depleted signals in the decellularized matrix may be reinstated by a developmentally pivotal gene or corresponding protein.


Assuntos
Proteínas de Homeodomínio/metabolismo , Tecido Parenquimatoso/fisiologia , Dente/citologia , Dente/embriologia , Adolescente , Animais , Feminino , Proteínas de Homeodomínio/genética , Humanos , Incisivo/citologia , Incisivo/embriologia , Camundongos Endogâmicos , Dente Serotino/citologia , Técnicas de Cultura de Órgãos , Tecido Parenquimatoso/citologia , Gravidez , Regiões Promotoras Genéticas , Regeneração , Células Estromais/fisiologia , Suínos , Fator A de Crescimento do Endotélio Vascular/genética , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
6.
Stem Cells ; 37(9): 1238-1248, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31145830

RESUMO

Continuous growth of the mouse incisor teeth is due to the life-long maintenance of epithelial stem cells (SCs) in their niche called cervical loop (CL). Several signaling factors regulate SC maintenance and/or their differentiation to achieve organ homeostasis. Previous studies indicated that Hedgehog signaling is crucial for both the maintenance of the SCs in the niche, as well as for their differentiation. How Hedgehog signaling regulates these two opposing cellular behaviors within the confinement of the CL remains elusive. In this study, we used in vitro organ and cell cultures to pharmacologically attenuate Hedgehog signaling. We analyzed expression of various genes expressed in the SC niche to determine the effect of altered Hedgehog signaling on the cellular hierarchy within the niche. These genes include markers of SCs (Sox2 and Lgr5) and transit-amplifying cells (P-cadherin, Sonic Hedgehog, and Yap). Our results show that Hedgehog signaling is a critical survival factor for SCs in the niche, and that the architecture and the diversity of the SC niche are regulated by multiple Hedgehog ligands. We demonstrated the presence of an additional Hedgehog ligand, nerve-derived Desert Hedgehog, secreted in the proximity of the CL. In addition, we provide evidence that Hedgehog receptors Ptch1 and Ptch2 elicit independent responses, which enable multimodal Hedgehog signaling to simultaneously regulate SC maintenance and differentiation. Our study indicates that the cellular hierarchy in the continuously growing incisor is a result of complex interplay of two Hedgehog ligands with functionally distinct Ptch receptors. Stem Cells 2019;37:1238-1248.


Assuntos
Células Epiteliais/metabolismo , Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Receptor Patched-2/metabolismo , Nicho de Células-Tronco , Células-Tronco/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Células Cultivadas , Células Epiteliais/citologia , Proteínas Hedgehog/genética , Incisivo/citologia , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Receptor Patched-1/genética , Receptor Patched-2/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais/genética , Células-Tronco/citologia
7.
Nature ; 513(7519): 551-4, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25079316

RESUMO

Mesenchymal stem cells occupy niches in stromal tissues where they provide sources of cells for specialized mesenchymal derivatives during growth and repair. The origins of mesenchymal stem cells have been the subject of considerable discussion, and current consensus holds that perivascular cells form mesenchymal stem cells in most tissues. The continuously growing mouse incisor tooth offers an excellent model to address the origin of mesenchymal stem cells. These stem cells dwell in a niche at the tooth apex where they produce a variety of differentiated derivatives. Cells constituting the tooth are mostly derived from two embryonic sources: neural crest ectomesenchyme and ectodermal epithelium. It has been thought for decades that the dental mesenchymal stem cells giving rise to pulp cells and odontoblasts derive from neural crest cells after their migration in the early head and formation of ectomesenchymal tissue. Here we show that a significant population of mesenchymal stem cells during development, self-renewal and repair of a tooth are derived from peripheral nerve-associated glia. Glial cells generate multipotent mesenchymal stem cells that produce pulp cells and odontoblasts. By combining a clonal colour-coding technique with tracing of peripheral glia, we provide new insights into the dynamics of tooth organogenesis and growth.


Assuntos
Diferenciação Celular , Linhagem da Célula , Incisivo/citologia , Células-Tronco Mesenquimais/citologia , Neuroglia/citologia , Animais , Rastreamento de Células , Células Clonais/citologia , Polpa Dentária/citologia , Feminino , Incisivo/embriologia , Masculino , Camundongos , Modelos Biológicos , Crista Neural/citologia , Odontoblastos/citologia , Regeneração , Células de Schwann/citologia
8.
Bioessays ; 39(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28891248

RESUMO

How epithelial tissues are able to self-renew to maintain homeostasis and regenerate in response to injury remains a persistent question. The transcriptional effectors YAP and TAZ are increasingly being recognized as central mediators of epithelial stem cell biology, and a wealth of recent studies have been directed at understanding the control and activity of these factors. Recent work by Hu et al. has added to this knowledge, as they identify an Integrin-FAK-CDC42-PP1A signaling cascade that directs nuclear YAP/TAZ activity in stem cell populations of the mouse incisor, and define convergence on mTORC1 signaling as an important mediator of the proliferation of these cells. Here, we review recent studies on YAP/TAZ function and regulation in epithelial tissue-specific stem cells, merging the Hu et al. study together with our current knowledge of YAP/TAZ.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Incisivo/citologia , Integrinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Humanos , Camundongos , Transdução de Sinais
9.
J Cell Physiol ; 233(9): 7292-7304, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29663385

RESUMO

Odontoblastic differentiation of human dental pulp stem cells (hDPSCs) is essential for the formation of reparative dentin after dental caries or injury. Our previous studies have demonstrated that krüppel-like factor 4 (KLF4) is a critical transcription factor that promotes the odontoblastic differentiation of hDPSCs. Analysis of the microRNA binding sites within the 3'-UTR of KLF4 revealed that QKI, an RNA-binding protein, shared the most microRNAs with KLF4, presumably served as a "competent endogenous RNA (ceRNA)" with KLF4. Thus, we hypothesized QKI could also promote odontoblastic differentiation. In this study, we found QKI was up-regulated during mouse odontoblast differentiation in vivo and hDPSCs odontoblastic differentiation in vitro. Overexpression or knockdown of QKI in hDPSCs led to the increase or decrease of odontoblast marker genes' expressions, indicating its positive role in odontoblastic differentiation. We further validated that QKI served as a key ceRNA of KLF4 via interaction of the shared miRNAs in hDPSCs. Last, we found that, as an RNA binding protein, QKI protein could bind to, and stabilize dentin sialophosphoprotein (DSPP) mRNA, resulting in the augmented accumulation of DSP protein. Taken together, our study indicates that QKI promotes the odontoblastic differentiation of hDPSCs by acting as a ceRNA of KLF4 and as a binding protein of DSPP mRNA to stabilize its level. These two mechanisms of QKI will together positively regulate the downstream pathways and hence potentiate odontoblastic differentiation.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , Odontoblastos/citologia , Odontoblastos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Adolescente , Adulto , Animais , Biomarcadores/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Incisivo/citologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , MicroRNAs/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo , Regulação para Cima/genética , Adulto Jovem
10.
J Cell Biochem ; 118(6): 1590-1595, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922193

RESUMO

As a crucial step in ECM remodeling, collagen degradation occurs through different processes, including both extracellular and intracellular degradation. The extracellular pathways of collagen degradation require secretion of collagenolytic proteases, whereas intracellular collagen degradation occurs in the lysosomal compartment after uptake, involving either pre-cleaved or intact fibrillar collagen. The endocytic collagen receptor uPARAP/Endo180 plays an important role in internalization of large collagen degradation products, whereas its role in the phagocytosis of fibrillar collagen has been debated. In fact, the role of this receptor in regular collagen phagocytosis in vivo has not been established. In this study, we have studied the role of uPARAP in the phagocytosis of collagen fibrils in vivo by analyzing different connective tissues of mice lacking uPARAP. Using transmission electron microscopy (TEM), we found that fibroblasts in the periosteum of tibia and calvaria, as well as in the periodontal ligament of molar and incisor, phagocytosed collagen fibrils independently of uPARAP. Quantification of phagocytosed collagen in the periodontal ligament of uPARAP-deficient mice and controls revealed no difference in the amount of fibrillar collagen taken up by uPARAP-deficient mice. The findings show that under in vivo conditions uPARAP does not play a role in the phagocytic uptake of collagen fibrils by fibroblasts. Consequently, the cellular uptake of collagen fibrils and collagen cleavage products probably occurs through fundamentally different pathways. J. Cell. Biochem. 118: 1590-1595, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Colágenos Fibrilares/metabolismo , Fibroblastos/fisiologia , Glicoproteínas de Membrana/metabolismo , Ligamento Periodontal/citologia , Periósteo/citologia , Receptores de Superfície Celular/metabolismo , Animais , Matriz Extracelular/metabolismo , Fibroblastos/ultraestrutura , Incisivo/citologia , Glicoproteínas de Membrana/genética , Camundongos , Microscopia Eletrônica de Transmissão , Dente Molar/citologia , Fagocitose , Receptores de Superfície Celular/genética , Crânio/citologia , Tíbia/citologia
11.
Cell Tissue Res ; 367(2): 351-358, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27628095

RESUMO

Formation of dentin requires the maturation of procollagen I and the proteolytic processing of the dentin sialophosphoprotein (DSPP). These cleavage events can be facilitated by the metalloproteinases meprin α and meprin ß as well as by bone morphogenetic protein 1 (BMP-1). All three enzymes have been shown to play important roles during collagen I maturation in vivo and their potential in cleaving DSPP was demonstrated in vitro. Hence, it has been discussed whether meprin α, meprin ß, BMP-1 or all three are crucial factors in the onset and progression of dentin-related diseases and this issue is addressed here. In this study, we compare the incisors and molars of meprin α (Mep1a -/-)- and meprin ß (Mep1b -/-)-deficient mice with wild-type (WT) controls on the macroscopic and microscopic level. The dentin was evaluated towards the bone mineral density, dentin volume, calcification and collagen matrix integrity. Using immunohistochemistry, we could identify meprin ß, BMP-1 and DSPP/DSP in the pre-dentin of WT mice. Nevertheless, no significant dentin malformation was observed in Mep1b -/- or Mep1a -/- deficient mice.


Assuntos
Dentina/anormalidades , Proteínas da Matriz Extracelular/metabolismo , Metaloendopeptidases/metabolismo , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Animais , Proteínas da Matriz Extracelular/química , Células HEK293 , Humanos , Incisivo/citologia , Incisivo/metabolismo , Incisivo/ultraestrutura , Camundongos , Fosfoproteínas/química , Domínios Proteicos , Sialoglicoproteínas/química
12.
J Biol Chem ; 290(1): 284-95, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25406311

RESUMO

An improved understanding of the molecular pathways that drive tooth morphogenesis and enamel secretion is needed to generate teeth from organ cultures for therapeutic implantation or to determine the pathogenesis of primary disorders of dentition (Abdollah, S., Macias-Silva, M., Tsukazaki, T., Hayashi, H., Attisano, L., and Wrana, J. L. (1997) J. Biol. Chem. 272, 27678-27685). Here we present a novel ectodermal dysplasia phenotype associated with conditional deletion of p38α MAPK in ectodermal appendages using K14-cre mice (p38α(K14) mice). These mice display impaired patterning of dental cusps and a profound defect in the production and biomechanical strength of dental enamel because of defects in ameloblast differentiation and activity. In the absence of p38α, expression of amelogenin and ß4-integrin in ameloblasts and p21 in the enamel knot was significantly reduced. Mice lacking the MAP2K MKK6, but not mice lacking MAP2K MKK3, also show the enamel defects, implying that MKK6 functions as an upstream kinase of p38α in ectodermal appendages. Lastly, stimulation with BMP2/7 in both explant culture and an ameloblast cell line confirm that p38α functions downstream of BMPs in this context. Thus, BMP-induced activation of the p38α MAPK pathway is critical for the morphogenesis of tooth cusps and the secretion of dental enamel.


Assuntos
Ameloblastos/metabolismo , Esmalte Dentário/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Incisivo/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Odontogênese/genética , Ameloblastos/citologia , Amelogenina/genética , Amelogenina/metabolismo , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Diferenciação Celular , Proliferação de Células , Esmalte Dentário/citologia , Esmalte Dentário/crescimento & desenvolvimento , Incisivo/citologia , Incisivo/crescimento & desenvolvimento , Integrina beta4/genética , Integrina beta4/metabolismo , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 6/genética , MAP Quinase Quinase 6/metabolismo , Camundongos , Camundongos Transgênicos , Proteína Quinase 14 Ativada por Mitógeno/genética , Transdução de Sinais , Técnicas de Cultura de Tecidos , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
13.
J Biol Chem ; 290(34): 20661-20673, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26070558

RESUMO

Enamel is a bioceramic tissue composed of thousands of hydroxyapatite crystallites aligned in parallel within boundaries fabricated by a single ameloblast cell. Enamel is the hardest tissue in the vertebrate body; however, it starts development as a self-organizing assembly of matrix proteins that control crystallite habit. Here, we examine ameloblastin, a protein that is initially distributed uniformly across the cell boundary but redistributes to the lateral margins of the extracellular matrix following secretion thus producing cell-defined boundaries within the matrix and the mineral phase. The yeast two-hybrid assay identified that proteasome subunit α type 3 (Psma3) interacts with ameloblastin. Confocal microscopy confirmed Psma3 co-distribution with ameloblastin at the ameloblast secretory end piece. Co-immunoprecipitation assay of mouse ameloblast cell lysates with either ameloblastin or Psma3 antibody identified each reciprocal protein partner. Protein engineering demonstrated that only the ameloblastin C terminus interacts with Psma3. We show that 20S proteasome digestion of ameloblastin in vitro generates an N-terminal cleavage fragment consistent with the in vivo pattern of ameloblastin distribution. These findings suggest a novel pathway participating in control of protein distribution within the extracellular space that serves to regulate the protein-mineral interactions essential to biomineralization.


Assuntos
Ameloblastos/metabolismo , Proteínas do Esmalte Dentário/metabolismo , Esmalte Dentário/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Incisivo/metabolismo , Glicoproteínas de Membrana/metabolismo , Odontogênese/genética , Ameloblastos/citologia , Animais , Citoplasma/química , Citoplasma/metabolismo , Esmalte Dentário/citologia , Esmalte Dentário/crescimento & desenvolvimento , Proteínas do Esmalte Dentário/genética , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Glutamato Carboxipeptidase II/genética , Humanos , Incisivo/citologia , Incisivo/crescimento & desenvolvimento , Glicoproteínas de Membrana/genética , Camundongos , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
14.
Development ; 140(16): 3348-59, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23863486

RESUMO

The mouse incisor is a remarkable tooth that grows throughout the animal's lifetime. This continuous renewal is fueled by adult epithelial stem cells that give rise to ameloblasts, which generate enamel, and little is known about the function of microRNAs in this process. Here, we describe the role of a novel Pitx2:miR-200c/141:noggin regulatory pathway in dental epithelial cell differentiation. miR-200c repressed noggin, an antagonist of Bmp signaling. Pitx2 expression caused an upregulation of miR-200c and chromatin immunoprecipitation assays revealed endogenous Pitx2 binding to the miR-200c/141 promoter. A positive-feedback loop was discovered between miR-200c and Bmp signaling. miR-200c/141 induced expression of E-cadherin and the dental epithelial cell differentiation marker amelogenin. In addition, miR-203 expression was activated by endogenous Pitx2 and targeted the Bmp antagonist Bmper to further regulate Bmp signaling. miR-200c/141 knockout mice showed defects in enamel formation, with decreased E-cadherin and amelogenin expression and increased noggin expression. Our in vivo and in vitro studies reveal a multistep transcriptional program involving the Pitx2:miR-200c/141:noggin regulatory pathway that is important in epithelial cell differentiation and tooth development.


Assuntos
Proteínas de Transporte/metabolismo , Diferenciação Celular , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Amelogenina/genética , Amelogenina/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Caderinas/genética , Caderinas/metabolismo , Proteínas de Transporte/genética , Adesão Celular , Esmalte Dentário/metabolismo , Esmalte Dentário/patologia , Embrião de Mamíferos/metabolismo , Epitélio/metabolismo , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Incisivo/citologia , Incisivo/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/genética , Regiões Promotoras Genéticas , Ligação Proteica , Proteína Smad1/genética , Proteína Smad1/metabolismo , Nicho de Células-Tronco , Fatores de Transcrição/genética , Transcrição Gênica , Proteína Homeobox PITX2
15.
Stem Cells ; 33(5): 1670-81, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25693510

RESUMO

Continuous growth of rodent incisors relies on epithelial stem cells (SCs) located in the SC niche called labial cervical loop (LaCL). Here, we found a population of apoptotic cells residing in a specific location of the LaCL in mouse incisor. Activated Caspase 3 and Caspase 9, expressed in this location colocalized in part with Lgr5 in putative SCs. The addition of Caspase inhibitors to incisors ex vivo resulted in concentration dependent thickening of LaCL. To examine the role of Wnt signaling in regulation of apoptosis, we exposed the LaCL of postnatal day 2 (P2) mouse incisor ex vivo to BIO, a known activator of Wnt/ß-catenin signaling. This resulted in marked thinning of LaCL as well as enhanced apoptosis. We found that Wnt/ß-catenin signaling was intensely induced by BIO in the mesenchyme surrounding the LaCL, but, unexpectedly, no ß-catenin activity was detected in the LaCL epithelium either before or after BIO treatment. We discovered that the expression of Fgf10, an essential growth factor for incisor epithelial SCs, was dramatically downregulated in the mesenchyme around BIO-treated LaCL, and that exogenous Fgf10 could rescue the thinning of the LaCL caused by BIO. We conclude that the homeostasis of the epithelial SC population in the mouse incisor depends on a proper rate of apoptosis and that this apoptosis is controlled by signals from the mesenchyme surrounding the LaCL. Fgf10 is a key mesenchymal signal limiting apoptosis of incisor epithelial SCs and its expression is negatively regulated by Wnt/ß-catenin. Stem Cells 2015;33:1670-1681.


Assuntos
Apoptose/efeitos dos fármacos , Células Epiteliais/citologia , Fator 10 de Crescimento de Fibroblastos/farmacologia , Homeostase/efeitos dos fármacos , Mesoderma/metabolismo , Células-Tronco/metabolismo , Dente/citologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Incisivo/citologia , Mesoderma/efeitos dos fármacos , Camundongos , Modelos Biológicos , Receptores Acoplados a Proteínas G/metabolismo , Nicho de Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
16.
J Biol Chem ; 289(39): 27327-27341, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25122764

RESUMO

Pitx2, Wnt/ß-catenin signaling, and microRNAs (miRs) play a critical role in the regulation of dental stem cells during embryonic development. In this report, we have identified a Pitx2:ß-catenin regulatory pathway involved in epithelial cell differentiation and conversion of mesenchymal cells to amelogenin expressing epithelial cells via miR-200a. Pitx2 and ß-catenin are expressed in the labial incisor cervical loop or epithelial stem cell niche, with decreased expression in the differentiating ameloblast cells of the mouse lower incisor. Bioinformatics analyses reveal that miR-200a-3p expression is activated in the pre-ameloblast cells to enhance epithelial cell differentiation. We demonstrate that Pitx2 activates miR-200a-3p expression and miR-200a-3p reciprocally represses Pitx2 and ß-catenin expression. Pitx2 and ß-catenin interact to synergistically activate gene expression during odontogenesis and miR-200a-3p attenuates their expression and directs differentiation. To understand how this mechanism controls cell differentiation and cell fate, oral epithelial and odontoblast mesenchymal cells were reprogrammed by a two-step induction method using Pitx2 and miR-200a-3p. Conversion to amelogenin expressing dental epithelial cells involved an up-regulation of the stem cell marker Sox2 and proliferation genes and decreased expression of mesenchymal markers. E-cadherin expression was increased as well as ameloblast specific factors. The combination of Pitx2, a regulator of dental stem cells and miR-200a converts mesenchymal cells to a fully differentiated dental epithelial cell type. This pathway and reprogramming can be used to reprogram mesenchymal or oral epithelial cells to dental epithelial (ameloblast) cells, which can be used in tissue repair and regeneration studies.


Assuntos
Amelogenina/metabolismo , Diferenciação Celular/fisiologia , Células Epiteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Incisivo/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo , Amelogenina/genética , Animais , Células Epiteliais/citologia , Proteínas de Homeodomínio/genética , Humanos , Incisivo/citologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética , beta Catenina/genética , Proteína Homeobox PITX2
17.
Cell Tissue Res ; 362(3): 633-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26246398

RESUMO

Dental stem cells are located at the proximal ends of rodent incisors. These stem cells reside in the dental epithelial stem cell niche, termed the apical bud. We focused on identifying critical features of a chemotactic signal in the niche. Here, we report that CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in dental stem cell niche cells. We report cells in the apical bud express CXCR4 mRNA at high levels while expression is restricted in the basal epithelium (BE) and transit-amplifying (TA) cell regions. Furthermore, the CXCL12 ligand is present in mesenchymal cells adjacent to the apical bud. We then performed gain- and loss-of-function analyses to better elucidate the role of CXCR4 and CXCL12. CXCR4-deficient mice contain epithelial cell aggregates, while cell proliferation in mutant incisors was also significantly reduced. We demonstrate in vitro that dental epithelial cells migrate toward sources of CXCL12, whereas knocking down CXCR4 impaired motility and resulted in formation of dense cell colonies. These results suggest that CXCR4 expression may be critical for activation of enamel progenitor cell division and that CXCR4/CXCL12 signaling may control movement of epithelial progenitors from the dental stem cell niche.


Assuntos
Movimento Celular , Quimiocina CXCL12/metabolismo , Esmalte Dentário/citologia , Receptores CXCR4/metabolismo , Transdução de Sinais , Nicho de Células-Tronco , Células-Tronco/citologia , Animais , Agregação Celular , Linhagem Celular , Proliferação de Células , Forma Celular , Quimiocina CXCL12/deficiência , Quimiocina CXCL12/genética , Células Epiteliais , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Incisivo/citologia , Incisivo/embriologia , Camundongos Knockout , Mutação , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CXCR4/deficiência , Receptores CXCR4/genética , Células-Tronco/metabolismo
18.
Dev Dyn ; 243(6): 844-51, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24616052

RESUMO

BACKGROUND: Tooth development is highly regulated in mammals and it is regulated by networks of signaling pathways (e. g. Tnf, Wnt, Shh, Fgf and Bmp) whose activities are controlled by the balance between ligands, activators, inhibitors and receptors. The members of the R-spondin family are known as activators of Wnt signaling, and Lgr4, Lgr5, and Lgr6 have been identified as receptors for R-spondins. The role of R-spondin/Lgr signaling in tooth development, however, remains unclear. RESULTS: We first carried out comparative in situ hybridization analysis of R-spondins and Lgrs, and identified their dynamic spatio-temporal expression in murine odontogenesis. R-spondin2 expression was found both in tooth germs and the tooth-less region, the diastema. We further examined tooth development in R-spondin2 mutant mice, and although molars and incisors exhibited no significant abnormalities, supernumerary teeth were observed in the diastema. CONCLUSIONS: R-spondin/Lgr signaling is thus involved in tooth development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Incisivo/embriologia , Dente Molar/embriologia , Odontogênese/fisiologia , Receptores Acoplados a Proteínas G/biossíntese , Trombospondinas/metabolismo , Animais , Incisivo/citologia , Camundongos , Dente Molar/citologia
19.
Bull Exp Biol Med ; 158(6): 824-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25894786

RESUMO

We examined morphometric parameters of the bone tissue of 168 dentoalveolar segments that include maxillary incisors and canines regarding vertical midline. The area of dentoalveolar medial incisor segments was 1.81±0.14 cm(2); it did not differ significantly from the area of lateral incisor segments. The area of dentoalveolar segments including canines exceeded the corresponding figures in incisor segments. The thickness of the compact bone on the vestibular surface significantly increased from the cervical portion of the segment towards its base. The maximum thickness of the spongy bone on the vestibular surface was recorded in the apical part of canines dentition segments; the minimum thickness, in the middle portion of the dentoalveolar segments of lateral incisors.


Assuntos
Dente Canino/anatomia & histologia , Incisivo/anatomia & histologia , Dente Canino/citologia , Feminino , Humanos , Incisivo/citologia , Masculino
20.
Genesis ; 52(2): 79-92, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307456

RESUMO

The rodent incisor is one of a number of organs that grow continuously throughout the life of an animal. Continuous growth of the incisor arose as an evolutionary adaptation to compensate for abrasion at the distal end of the tooth. The sustained turnover of cells that deposit the mineralized dental tissues is made possible by epithelial and mesenchymal stem cells residing at the proximal end of the incisor. A complex network of signaling pathways and transcription factors regulates the formation, maintenance, and differentiation of these stem cells during development and throughout adulthood. Research over the past 15 years has led to significant progress in our understanding of this network, which includes FGF, BMP, Notch, and Hh signaling, as well as cell adhesion molecules and micro-RNAs. This review surveys key historical experiments that laid the foundation of the field and discusses more recent findings that definitively identified the stem cell population, elucidated the regulatory network, and demonstrated possible genetic mechanisms for the evolution of continuously growing teeth.


Assuntos
Evolução Biológica , Incisivo/citologia , Incisivo/fisiologia , Roedores/fisiologia , Células-Tronco/citologia , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Filogenia , Regeneração , Roedores/genética , Transdução de Sinais , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA