Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.362
Filtrar
1.
Cell ; 187(8): 1874-1888.e14, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38518773

RESUMO

Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Pulmão , Polissacarídeos Bacterianos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Feminino , Masculino , Camundongos , Biofilmes , Escherichia coli/fisiologia , Hipotermia/metabolismo , Hipotermia/patologia , Inflamação/metabolismo , Inflamação/patologia , Pulmão/microbiologia , Pulmão/patologia , Pneumonia/microbiologia , Pneumonia/patologia , Pseudomonas aeruginosa/fisiologia , Células Receptoras Sensoriais , Polissacarídeos Bacterianos/metabolismo , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Nociceptores/metabolismo
2.
Nature ; 618(7964): 358-364, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225987

RESUMO

The ability to switch between different lifestyles allows bacterial pathogens to thrive in diverse ecological niches1,2. However, a molecular understanding of their lifestyle changes within the human host is lacking. Here, by directly examining bacterial gene expression in human-derived samples, we discover a gene that orchestrates the transition between chronic and acute infection in the opportunistic pathogen Pseudomonas aeruginosa. The expression level of this gene, here named sicX, is the highest of the P. aeruginosa genes expressed in human chronic wound and cystic fibrosis infections, but it is expressed at extremely low levels during standard laboratory growth. We show that sicX encodes a small RNA that is strongly induced by low-oxygen conditions and post-transcriptionally regulates anaerobic ubiquinone biosynthesis. Deletion of sicX causes P. aeruginosa to switch from a chronic to an acute lifestyle in multiple mammalian models of infection. Notably, sicX is also a biomarker for this chronic-to-acute transition, as it is the most downregulated gene when a chronic infection is dispersed to cause acute septicaemia. This work solves a decades-old question regarding the molecular basis underlying the chronic-to-acute switch in P. aeruginosa and suggests oxygen as a primary environmental driver of acute lethality.


Assuntos
Doença Aguda , Doença Crônica , Genes Bacterianos , Oxigênio , Infecções por Pseudomonas , Pseudomonas aeruginosa , RNA Bacteriano , Animais , Humanos , Oxigênio/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Fibrose Cística/microbiologia , Ferimentos e Lesões/microbiologia , Ubiquinona/biossíntese , Anaerobiose , Genes Bacterianos/genética , Sepse/complicações , Sepse/microbiologia
3.
Am J Physiol Lung Cell Mol Physiol ; 327(5): L672-L683, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39316674

RESUMO

In cystic fibrosis, the airway gel-forming mucin MUC5B accumulates in the airways, preventing clearance of pathogens like Pseudomonas aeruginosa (PA). The cystic fibrosis transmembrane conductance regulator (CFTR)-/- (KO) rat model exhibits a similar accumulation of Muc5b. Our lab has shown that increased Muc5b precipitates the development of chronic PA infection. We hypothesized that reducing Muc5b in the KO rat airway would prevent occlusive mucus plugs and development of persistent PA infection. Six-month-old KO rats received Muc5b or scramble siRNA via intratracheal instillation. Rats were then inoculated with 106 colony-forming units of mucoid P. aeruginosa isolate PAM57-15 and euthanized at 3- or 14-days post infection (dpi) to assess acute and persistent infection. At 14 dpi, Muc5b siRNA-treated KO rats had increased weight, decreased neutrophilic inflammation, and reduced mucus plugging in the small airways compared with scramble-treated KO and WT rats. These results indicate that pharmacological intervention of Muc5b reduces mucus plugging during persistent PA infection.NEW & NOTEWORTHY Although highly effective modulator therapies for cystic fibrosis (CF) have improved mucus-related outcomes of disease for people with CF, eradication of Pseudomonas aeruginosa (PA) infection has not been achieved in this population. In addition, current therapies for CF do not target mucin hypersecretion directly. Here, we show that a novel approach of normalizing airway Muc5b hypersecretion ameliorates infection-induced mucus plugging and neutrophilic inflammation during persistent PA infection in CFTR-/- rats.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Mucina-5B , Muco , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Mucina-5B/metabolismo , Mucina-5B/genética , Muco/metabolismo , Ratos , Fibrose Cística/microbiologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Masculino
4.
Am J Physiol Lung Cell Mol Physiol ; 327(3): L395-L405, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39076085

RESUMO

Pseudomonas aeruginosa utilizes a type 3 secretion system to intoxicate host cells with the nucleotidyl cyclase ExoY. After activation by its host cell cofactor, filamentous actin, ExoY produces purine and pyrimidine cyclic nucleotides, including cAMP, cGMP, and cUMP. ExoY-generated cyclic nucleotides promote interendothelial gap formation, impair motility, and arrest cell growth. The disruptive activities of cAMP and cGMP during the P. aeruginosa infection are established; however, little is known about the function of cUMP. Here, we tested the hypothesis that cUMP contributes to endothelial cell barrier disruption during P. aeruginosa infection. Using a membrane permeable cUMP analog, cUMP-AM, we revealed that during infection with catalytically inactive ExoY, cUMP promotes interendothelial gap formation in cultured pulmonary microvascular endothelial cells (PMVECs) and contributes to increased filtration coefficient in the isolated perfused lung. These findings indicate that cUMP contributes to endothelial permeability during P. aeruginosa lung infection.NEW & NOTEWORTHY During pneumonia, bacteria utilize a virulence arsenal to communicate with host cells. The Pseudomonas aeruginosa T3SS directly introduces virulence molecules into the host cell cytoplasm. These molecules are enzymes that trigger interkingdom communication. One of the exoenzymes is a nucleotidyl cyclase that produces noncanonical cyclic nucleotides like cUMP. Little is known about how cUMP acts in the cell. Here we found that cUMP instigates pulmonary edema during Pseudomonas aeruginosa infection of the lung.


Assuntos
Células Endoteliais , Nucleotídeos Cíclicos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Humanos , Camundongos , Proteínas de Bactérias/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Junções Comunicantes/metabolismo , Glucosiltransferases , Pulmão/microbiologia , Pulmão/metabolismo , Pulmão/patologia , Nucleotídeos Cíclicos/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/patologia , Sistemas de Secreção Tipo III/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L551-L561, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38375579

RESUMO

Excessive or persistent inflammation may have detrimental effects on lung structure and function. Currently, our understanding of conserved host mechanisms that control the inflammatory response remains incompletely understood. In this study, we investigated the role of type I interferon signaling in the inflammatory response against diverse clinically relevant stimuli. Using mice deficient in type I interferon signaling (IFNAR1-/-), we demonstrate that the absence of interferon signaling resulted in a robust and persistent inflammatory response against Pseudomonas aeruginosa, lipopolysaccharide, and chemotherapeutic agent bleomycin. The elevated inflammatory response in IFNAR1-/- mice was manifested as elevated myeloid cells, such as macrophages and neutrophils, in the bronchoalveolar lavage. The inflammatory cell response in the IFNAR1-/- mice persisted to 14 days and there is impaired recovery and fibrotic remodeling of the lung in IFNAR1-/- mice after bleomycin injury. In the Pseudomonas infection model, the elevated inflammatory cell response led to improved bacterial clearance in IFNAR1-/- mice, although there was similar lung injury and survival. We performed RNA sequencing of lung tissue in wild-type and IFNAR1-/- mice after LPS and bleomycin injury. Our unbiased analysis identified differentially expressed genes between IFNAR1-/- and wild-type mice, including previously unknown regulation of nucleotide-binding oligomerization domain (NOD)-like receptor signaling, retinoic acid-inducible gene-I (RIG-I) signaling, and necroptosis pathway by type I interferon signaling in both models. These data provide novel insights into the conserved anti-inflammatory mechanisms of the type I interferon signaling.NEW & NOTEWORTHY Type I interferons are known for their antiviral activities. In this study, we demonstrate a conserved anti-inflammatory role of type I interferon signaling against diverse stimuli in the lung. We show that exacerbated inflammatory response in the absence of type I interferon signaling has both acute and chronic consequences in the lung including structural changes.


Assuntos
Interferon Tipo I , Pulmão , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta , Transdução de Sinais , Animais , Interferon Tipo I/metabolismo , Pulmão/metabolismo , Pulmão/imunologia , Pulmão/patologia , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Camundongos , Bleomicina , Pseudomonas aeruginosa , Lipopolissacarídeos/farmacologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/patologia , Infecções por Pseudomonas/microbiologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/imunologia , Masculino
6.
Am J Physiol Lung Cell Mol Physiol ; 327(5): L756-L768, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39316682

RESUMO

Type three secretion system (TTSS)-competent Pseudomonas aeruginosa expressing soluble promiscuous cyclase, exoenzyme Y (ExoY), generates cyclic nucleotides in pulmonary microvascular endothelial cells (PMVECs). Within cells, cyclic nucleotide signals are highly compartmentalized, but these second messengers are also released into the extracellular space. Although agonist stimulation of endogenous adenylyl cyclase (AC) or the presence of ExoY increases cyclic nucleotides, the proportion of the signal that is in the intracellular versus extracellular compartments is unresolved. Furthermore, it is unclear whether P. aeruginosa primary infection or treatment with sterile media supernatants derived from a primary infection alters beta-adrenergic agonist-induced elevations in cAMP in PMVECs. Herein, we determine that PMVECs release cAMP into the extracellular space constitutively, following beta-adrenergic stimulation of endogenous AC, and following infection with P. aeruginosa expressing ExoY. Surprisingly, in PMVECs, only a small proportion of cGMP is detected within the cell at baseline or following P. aeruginosa ExoY infection with a larger proportion of total cGMP being detected extracellularly. Thus, the ability of lung endothelium to generate cyclic nucleotides may be underestimated by examining intracellular cyclic nucleotides alone, since a large portion is delivered into the extracellular compartment. In addition, P. aeruginosa infection or treatment with sterile media supernatants from a primary infection suppresses the beta-adrenergic cAMP response, which is further attenuated by the expression of functional ExoY. These findings reveal an overabundance of extracellular cyclic nucleotides following infection with ExoY expressing TTSS-competent P. aeruginosa.NEW & NOTEWORTHY P. aeruginosa exoenzyme Y (ExoY) infection increases cyclic nucleotides intracellularly, but an overabundance of cAMP and cGMP is also detected in the extracellular space and reveals a greater capacity of pulmonary endothelial cells to generate cAMP and cGMP. P. aeruginosa infection or treatment with sterile media supernatants derived from a primary infection suppresses the ß-adrenergic-induced cAMP response in pulmonary endothelial cells, which is exacerbated by the expression of functional ExoY.


Assuntos
Proteínas de Bactérias , AMP Cíclico , GMP Cíclico , Células Endoteliais , Pulmão , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Pulmão/microbiologia , Pulmão/metabolismo , Pulmão/patologia , AMP Cíclico/metabolismo , Animais , GMP Cíclico/metabolismo , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Proteínas de Bactérias/metabolismo , Adenilil Ciclases/metabolismo , Células Cultivadas , Fósforo-Oxigênio Liases/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Ratos , Microvasos/metabolismo , Microvasos/microbiologia , Microvasos/patologia , Espaço Extracelular/metabolismo , Glucosiltransferases
7.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L574-L588, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38440830

RESUMO

Although tobramycin increases lung function in people with cystic fibrosis (pwCF), the density of Pseudomonas aeruginosa (P. aeruginosa) in the lungs is only modestly reduced by tobramycin; hence, the mechanism whereby tobramycin improves lung function is not completely understood. Here, we demonstrate that tobramycin increases 5' tRNA-fMet halves in outer membrane vesicles (OMVs) secreted by laboratory and CF clinical isolates of P. aeruginosa. The 5' tRNA-fMet halves are transferred from OMVs into primary CF human bronchial epithelial cells (CF-HBEC), decreasing OMV-induced IL-8 and IP-10 secretion. In mouse lungs, increased expression of the 5' tRNA-fMet halves in OMVs attenuated KC (murine homolog of IL-8) secretion and neutrophil recruitment. Furthermore, there was less IL-8 and neutrophils in bronchoalveolar lavage fluid isolated from pwCF during the period of exposure to tobramycin versus the period off tobramycin. In conclusion, we have shown in mice and in vitro studies on CF-HBEC that tobramycin reduces inflammation by increasing 5' tRNA-fMet halves in OMVs that are delivered to CF-HBEC and reduce IL-8 and neutrophilic airway inflammation. This effect is predicted to improve lung function in pwCF receiving tobramycin for P. aeruginosa infection.NEW & NOTEWORTHY The experiments in this report identify a novel mechanism, whereby tobramycin reduces inflammation in two models of CF. Tobramycin increased the secretion of tRNA-fMet halves in OMVs secreted by P. aeruginosa, which reduced the OMV-LPS-induced inflammatory response in primary cultures of CF-HBEC and in mouse lung, an effect predicted to reduce lung damage in pwCF.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Pseudomonas aeruginosa , Tobramicina , Fibrose Cística/microbiologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Fibrose Cística/tratamento farmacológico , Animais , Tobramicina/farmacologia , Humanos , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Interleucina-8/metabolismo , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/microbiologia , Pulmão/patologia , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar
8.
Lung ; 202(5): 711-722, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39096413

RESUMO

PURPOSE: Pseudomonas aeruginosa is the predominant bacterial pathogen colonizing the cystic fibrosis (CF) lung. Mixed populations of nonmucoid and mucoid variants of P. aeruginosa have been isolated from the CF airway. While the association between mucoid variants and pulmonary function decline is well-established, their impact on inflammation and tissue damage in advanced CF lung disease remains unclear. METHODS: This pilot study utilized 1 non-CF and 3 CF lung explants to examine lobar distribution, inflammation, and histopathology related to nonmucoid and mucoid P. aeruginosa infection. To study tissue damage, we developed a novel lung histopathology scoring system, the first applied to human CF lung biopsies, which is comprised of five indicators: bronchiolar epithelial infiltrate, luminal inflammation, peribronchial/bronchiolar infiltrate, peribronchiolar fibrosis, and alveolar involvement. RESULTS: Mucoid P. aeruginosa variants were distributed throughout the CF lung but associated with greater concentrations of proinflammatory cytokines, IL-1ß, TNF-α, IL-6, IL-8, and IFN-γ, and one anti-inflammatory cytokine, IL-10, compared to nonmucoid variants. CF lung explants exhibited higher histopathology scores compared to a non-CF lung control. In mixed-variant infection, nonmucoid constituents associated with increased bronchiolar epithelial infiltration, one indicator of histopathology. CONCLUSION: This pilot study suggests ongoing interplay between host and bacterial elements in late-stage CF pulmonary disease. Mucoid P. aeruginosa infection correlates with inflammation regardless of lung lobe, whereas nonmucoid P. aeruginosa is associated with increased inflammatory cell infiltration. The development of a novel lung histopathology scoring system lays the groundwork for future large-cohort investigations.


Assuntos
Fibrose Cística , Citocinas , Pulmão , Infecções por Pseudomonas , Pseudomonas aeruginosa , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Fibrose Cística/complicações , Humanos , Projetos Piloto , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/isolamento & purificação , Pulmão/patologia , Pulmão/microbiologia , Citocinas/metabolismo , Masculino , Feminino , Biópsia , Adulto , Estudos de Casos e Controles , Mediadores da Inflamação/metabolismo , Inflamação/patologia , Inflamação/microbiologia , Interleucina-8/metabolismo , Fator de Necrose Tumoral alfa
9.
PLoS Pathog ; 17(9): e1009927, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34516571

RESUMO

Regulated cell necrosis supports immune and anti-infectious strategies of the body; however, dysregulation of these processes drives pathological organ damage. Pseudomonas aeruginosa expresses a phospholipase, ExoU that triggers pathological host cell necrosis through a poorly characterized pathway. Here, we investigated the molecular and cellular mechanisms of ExoU-mediated necrosis. We show that cellular peroxidised phospholipids enhance ExoU phospholipase activity, which drives necrosis of immune and non-immune cells. Conversely, both the endogenous lipid peroxidation regulator GPX4 and the pharmacological inhibition of lipid peroxidation delay ExoU-dependent cell necrosis and improve bacterial elimination in vitro and in vivo. Our findings also pertain to the ExoU-related phospholipase from the bacterial pathogen Burkholderia thailandensis, suggesting that exploitation of peroxidised phospholipids might be a conserved virulence mechanism among various microbial phospholipases. Overall, our results identify an original lipid peroxidation-based virulence mechanism as a strong contributor of microbial phospholipase-driven pathology.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Peroxidação de Lipídeos/fisiologia , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/patogenicidade , Animais , Humanos , Camundongos , Camundongos Knockout , Necrose/metabolismo , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/metabolismo , Virulência/fisiologia
10.
Microb Pathog ; 180: 106123, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37088400

RESUMO

Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes healthcare-associated infection and high mortality in immunocompromised patients. It produces several virulence factors through quorum sensing (QS) mechanisms that is essential for subverting host immune system. Even front-line antibiotics are unable to control PA pathogenicity due to the emergence of antibiotic resistance. Luteolin is a naturally derived compound that has proven to be the effective drug to annihilate pathogens through quorum quenching mechanism. In this study, the protective effect of luteolin against the PA-mediated inflammation was demonstrated using zebrafish model. Luteolin protects zebrafish from PA infection and increases their survival rate. It was found that PA-mediated ROS, lipid peroxidation, and apoptosis were also significantly reduced in luteolin-treated zebrafish larvae. Open field test (OFT) reveals that luteolin rescued PA-infected zebrafish from retarded swimming behavior. Furthermore, luteolin increases SOD and CAT levels and decreases LDH and NO levels in PA-infected zebrafish compare to control group. Histological and gene expression analysis reveals that luteolin protects PA-infected zebrafish by decreasing gut inflammation and altering the expression of inflammatory (TNF-α, IL-1ß, IL-6) and antioxidant markers (iNOS, SOD, CAT). Thus, luteolin was found to have dual effect in protecting PA-infected zebrafish by decreasing virulence factors production in PA and stimulating host immune system. This is the first study demonstrating the protective effect of luteolin using animal model. Hence, luteolin could be used as a future therapeutic drug to control multi-drug resistant PA.


Assuntos
Infecções por Pseudomonas , Fatores de Virulência , Animais , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Pseudomonas aeruginosa , Luteolina/farmacologia , Peixe-Zebra , Percepção de Quorum , Inflamação , Superóxido Dismutase/metabolismo , Antibacterianos/metabolismo , Biofilmes , Proteínas de Bactérias/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/patologia
11.
Proc Natl Acad Sci U S A ; 117(49): 31376-31385, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229526

RESUMO

For a myriad of different reasons most antimicrobial peptides (AMPs) have failed to reach clinical application. Different AMPs have different shortcomings including but not limited to toxicity issues, potency, limited spectrum of activity, or reduced activity in situ. We synthesized several cationic peptide mimics, main-chain cationic polyimidazoliums (PIMs), and discovered that, although select PIMs show little acute mammalian cell toxicity, they are potent broad-spectrum antibiotics with activity against even pan-antibiotic-resistant gram-positive and gram-negative bacteria, and mycobacteria. We selected PIM1, a particularly potent PIM, for mechanistic studies. Our experiments indicate PIM1 binds bacterial cell membranes by hydrophobic and electrostatic interactions, enters cells, and ultimately kills bacteria. Unlike cationic AMPs, such as colistin (CST), PIM1 does not permeabilize cell membranes. We show that a membrane electric potential is required for PIM1 activity. In laboratory evolution experiments with the gram-positive Staphylococcus aureus we obtained PIM1-resistant isolates most of which had menaquinone mutations, and we found that a site-directed menaquinone mutation also conferred PIM1 resistance. In similar experiments with the gram-negative pathogen Pseudomonas aeruginosa, PIM1-resistant mutants did not emerge. Although PIM1 was efficacious as a topical agent, intraperitoneal administration of PIM1 in mice showed some toxicity. We synthesized a PIM1 derivative, PIM1D, which is less hydrophobic than PIM1. PIM1D did not show evidence of toxicity but retained antibacterial activity and showed efficacy in murine sepsis infections. Our evidence indicates the PIMs have potential as candidates for development of new drugs for treatment of pan-resistant bacterial infections.


Assuntos
Antibacterianos/farmacologia , Drogas Desenhadas/farmacologia , Imidazóis/farmacologia , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Morte Celular/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Drogas Desenhadas/química , Drogas Desenhadas/uso terapêutico , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/química , Imidazóis/uso terapêutico , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/efeitos dos fármacos , Sepse/tratamento farmacológico , Sepse/prevenção & controle , Pele/efeitos dos fármacos , Pele/microbiologia , Pele/patologia
12.
J Biol Chem ; 296: 100279, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33450229

RESUMO

Pseudomonas aeruginosa is a significant threat in both healthcare and industrial biofouling. Surface attachment of P. aeruginosa is particularly problematic as surface association induces virulence and is necessary for the ensuing process of biofilm formation, which hampers antibiotic treatments. Previous efforts have searched for dispersal agents of mature biofilm collectives, but there are no known factors that specifically disperse individual surface-attached P. aeruginosa. In this study, we develop a quantitative single-cell surface-dispersal assay and use it to show that P. aeruginosa itself produces factors that can stimulate its dispersal. Through bioactivity-guided fractionation, mass spectrometry, and nuclear magnetic resonance, we elucidated the structure of one such factor, 2-methyl-4-hydroxyquinoline (MHQ). MHQ is an alkyl quinolone with a previously unknown activity and is synthesized by the PqsABC enzymes. Pure MHQ is sufficient to disperse P. aeruginosa, but the dispersal activity of natural P. aeruginosa conditioned media requires additional factors. Whereas other alkyl quinolones have been shown to act as antibiotics or membrane depolarizers, MHQ lacks these activities and known antibiotics do not induce dispersal. In contrast, we show that MHQ inhibits the activity of Type IV Pili (TFP) and that TFP targeting can explain its dispersal activity. Our work thus identifies single-cell surface dispersal as a new activity of P. aeruginosa-produced small molecules, characterizes MHQ as a promising dispersal agent, and establishes TFP inhibition as a viable mechanism for P. aeruginosa dispersal.


Assuntos
Biofilmes/efeitos dos fármacos , Hidroxiquinolinas/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , Compostos de Anilina/química , Fímbrias Bacterianas/efeitos dos fármacos , Fímbrias Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/patogenicidade , Quinolonas/farmacologia , Análise de Célula Única , Virulência/efeitos dos fármacos
13.
Mol Microbiol ; 116(1): 1-15, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33576132

RESUMO

Pseudomonas aeruginosa (Pa) and Staphylococcus aureus (Sa) are opportunistic pathogens that are most commonly co-isolated from chronic wounds and the sputum of cystic fibrosis patients. Over the last few years, there have been plenty of contrasting results from studies involving P. aeruginosa and S. aureus co-cultures. The general concept that P. aeruginosa outcompetes S. aureus has been challenged and there is more evidence now that they can co-exist. Nevertheless, it still remains difficult to mimic polymicrobial infections in vitro and in vivo. In this review, we discuss recent advances in regard to Pa-Sa molecular interactions, their physical responses, and in vitro and in vivo models. We believe it is important to optimize growth conditions in the laboratory, determine appropriate bacterial starting ratios, and consider environmental factors to study the co-existence of these two pathogens. Ideally, optimized growth media should reflect host-mimicking conditions with or without host cells that allow both bacteria to co-exist. To further identify mechanisms that could help to treat these complex infections, we propose to use relevant polymicrobial animal models. Ultimately, we briefly discuss how polymicrobial infections can increase antibiotic tolerance.


Assuntos
Biofilmes/crescimento & desenvolvimento , Coinfecção/microbiologia , Interações Microbianas/fisiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Antibacterianos/farmacologia , Técnicas de Cocultura , Fibrose Cística/microbiologia , Fasciite Necrosante/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/fisiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/efeitos dos fármacos , Infecção da Ferida Cirúrgica/microbiologia , Infecção dos Ferimentos/microbiologia
14.
PLoS Pathog ; 16(9): e1008867, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32925969

RESUMO

Surface attachment, an early step in the colonization of multiple host environments, activates the virulence of the human pathogen P. aeruginosa. However, the downstream toxins that mediate surface-dependent P. aeruginosa virulence remain unclear, as do the signaling pathways that lead to their activation. Here, we demonstrate that alkyl-quinolone (AQ) secondary metabolites are rapidly induced upon surface association and act directly on host cells to cause cytotoxicity. Surface-induced AQ cytotoxicity is independent of other AQ functions like quorum sensing or PQS-specific activities like iron sequestration. We further show that packaging of AQs in outer-membrane vesicles (OMVs) increases their cytotoxicity to host cells but not their ability to stimulate downstream quorum sensing pathways in bacteria. OMVs lacking AQs are significantly less cytotoxic, suggesting these molecules play a role in OMV cytotoxicity, in addition to their previously characterized role in OMV biogenesis. AQ reporters also enabled us to dissect the signal transduction pathways downstream of the two known regulators of surface-dependent virulence, the quorum sensing receptor, LasR, and the putative mechanosensor, PilY1. Specifically, we show that PilY1 regulates surface-induced AQ production by repressing the AlgR-AlgZ two-component system. AlgR then induces RhlR, which can induce the AQ biosynthesis operon under specific conditions. These findings collectively suggest that the induction of AQs upon surface association is both necessary and sufficient to explain surface-induced P. aeruginosa virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa , Quinolonas/farmacologia , Percepção de Quorum/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Virulência/metabolismo , Células A549 , Animais , Humanos , Camundongos , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade
15.
PLoS Pathog ; 16(6): e1008511, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32555671

RESUMO

The clinical importance of microbiomes to the chronicity of wounds is widely appreciated, yet little is understood about patient-specific processes shaping wound microbiome composition. Here, a two-cohort microbiome-genome wide association study is presented through which patient genomic loci associated with chronic wound microbiome diversity were identified. Further investigation revealed that alternative TLN2 and ZNF521 genotypes explained significant inter-patient variation in relative abundance of two key pathogens, Pseudomonas aeruginosa and Staphylococcus epidermidis. Wound diversity was lowest in Pseudomonas aeruginosa infected wounds, and decreasing wound diversity had a significant negative linear relationship with healing rate. In addition to microbiome characteristics, age, diabetic status, and genetic ancestry all significantly influenced healing. Using structural equation modeling to identify common variance among SNPs, six loci were sufficient to explain 53% of variation in wound microbiome diversity, which was a 10% increase over traditional multiple regression. Focusing on TLN2, genotype at rs8031916 explained expression differences of alternative transcripts that differ in inclusion of important focal adhesion binding domains. Such differences are hypothesized to relate to wound microbiomes and healing through effects on bacterial exploitation of focal adhesions and/or cellular migration. Related, other associated loci were functionally enriched, often with roles in cytoskeletal dynamics. This study, being the first to identify patient genetic determinants for wound microbiomes and healing, implicates genetic variation determining cellular adhesion phenotypes as important drivers of infection type. The identification of predictive biomarkers for chronic wound microbiomes may serve as risk factors and guide treatment by informing patient-specific tendencies of infection.


Assuntos
Microbiota , Polimorfismo de Nucleotídeo Único , Infecções por Pseudomonas , Pseudomonas aeruginosa , Infecções Estafilocócicas , Staphylococcus epidermidis , Cicatrização/genética , Infecção dos Ferimentos , Animais , Doença Crônica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Talina/genética , Talina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Infecção dos Ferimentos/genética , Infecção dos Ferimentos/metabolismo , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/patologia
16.
FASEB J ; 35(4): e21441, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33749902

RESUMO

An excessive, non-resolving inflammatory response underlies severe COVID-19 that may have fatal outcomes. Therefore, the investigation of endogenous pathways leading to resolution of inflammation is of interest to uncover strategies for mitigating inflammation in people with SARS-CoV-2 infection. This becomes particularly urgent in individuals with preexisting pathologies characterized by chronic respiratory inflammation and prone to bacterial infection, such as cystic fibrosis (CF). Here, we analyzed the immune responses to SARS-CoV-2 virion spike 1 glycoprotein (S1) of macrophages (MΦ) from volunteers with and without CF and tested the efficacy of resolvins (Rv) D1 and D2 in regulating the inflammatory and antimicrobial functions of MΦ exposed to S1. S1 significantly increased chemokine release, including interleukin (IL)-8, in CF and non-CF MΦ, while it enhanced IL-6 and tumor necrosis factor (TNF)-α in non-CF MΦ, but not in CF cells. S1 also triggered the biosynthesis of RvD1 and modulated microRNAs miR-16, miR-29a, and miR-103, known to control the inflammatory responses. RvD1 and RvD2 treatment abated S1-induced inflammatory responses in CF and non-CF MΦ, significantly reducing the release of select chemokines and cytokines including IL-8 and TNF-α. RvD1 and RvD2 both restored the expression of miR-16 and miR-29a, while selectively increasing miR-223 and miR-125a, which are involved in NF-κB activation and MΦ inflammatory polarization. During Pseudomonas aeruginosa infection, S1 stimulated the MΦ phagocytic activity that was further enhanced by RvD1 and RvD2. These results provide a map of molecular responses to SARS-CoV-2 in MΦ, key determinants of COVID-19-related inflammation, unveiling some peculiarity in the response of cells from individuals with CF. They also demonstrate beneficial, regulatory actions of RvD1 and RvD2 on SARS-CoV-2-induced inflammation.


Assuntos
COVID-19 , Fibrose Cística , Ácidos Docosa-Hexaenoicos/farmacologia , Macrófagos , Infecções por Pseudomonas , Pseudomonas aeruginosa/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/imunologia , COVID-19/microbiologia , COVID-19/patologia , Fibrose Cística/imunologia , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Fibrose Cística/virologia , Citocinas/imunologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Inflamação/virologia , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Macrófagos/virologia , Masculino , MicroRNAs/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/patologia , Infecções por Pseudomonas/virologia
17.
J Immunol ; 204(1): 169-179, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31767781

RESUMO

The aim of this study was to elucidate the expression and functions of IL-17 in C57BL/6 mouse corneas in response to Pseudomonas aeruginosa infection. We found that P. aeruginosa infection induced and increased signaling of IL-23/23R/17/17R in mouse corneas. Targeting IL-17A or the IL-17A-specific receptor IL-17RA/IL-17RC with neutralizing Abs resulted in a significant decrease in the severity of P. aeruginosa keratitis, including a decrease in bacterial burden and polymorphonuclear leukocyte infiltration. IL-17A-signaling blockade also significantly reduced the expression of the proinflammatory cytokines L-1ß, IL-24, and MMP-13 and increased the expression of the anti-inflammatory cytokine IL-1RA in mouse corneal epithelium. The presence of mouse IL-17A exacerbated P. aeruginosa-mediated tissue destruction. A cytokine protein array revealed that the expression of osteoprotegerin (OPG) was regulated by IL-17A, and OPG neutralization also resulted in a decrease in the severity of P. aeruginosa keratitis. Although both IL-17 and OPG affected the balanced expression of IL-1ß and IL-1RA, only IL-17 inhibited the expression of TH2 cytokines. Taken together, our results revealed that IL-17A, along with its downstream factor OPG, plays a detrimental role in the pathogenesis of P. aeruginosa keratitis. Targeting IL-17A and/or the OPG/RANKL/RANK/TRAIL system is a potential therapeutic strategy in controlling the outcome of P. aeruginosa keratitis, which was demonstrated by concurrent topical application of IL-17A-neutralizing Ab and ciprofloxacin in B6 mice.


Assuntos
Córnea/imunologia , Interleucina-17/imunologia , Ceratite/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Animais , Córnea/patologia , Feminino , Ceratite/patologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/patologia
18.
J Immunol ; 205(8): 2231-2242, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32929043

RESUMO

The DNA repair enzyme 8-oxoguanine DNA glycosylase 1 (OGG1), which excises 8-oxo-7,8-dihydroguanine lesions induced in DNA by reactive oxygen species, has been linked to the pathogenesis of lung diseases associated with bacterial infections. A recently developed small molecule, SU0268, has demonstrated selective inhibition of OGG1 activity; however, its role in attenuating inflammatory responses has not been tested. In this study, we report that SU0268 has a favorable effect on bacterial infection both in mouse alveolar macrophages (MH-S cells) and in C57BL/6 wild-type mice by suppressing inflammatory responses, particularly promoting type I IFN responses. SU0268 inhibited proinflammatory responses during Pseudomonas aeruginosa (PA14) infection, which is mediated by the KRAS-ERK1-NF-κB signaling pathway. Furthermore, SU0268 induces the release of type I IFN by the mitochondrial DNA-cGAS-STING-IRF3-IFN-ß axis, which decreases bacterial loads and halts disease progression. Collectively, our results demonstrate that the small-molecule inhibitor of OGG1 (SU0268) can attenuate excessive inflammation and improve mouse survival rates during PA14 infection. This strong anti-inflammatory feature may render the inhibitor as an alternative treatment for controlling severe inflammatory responses to bacterial infection.


Assuntos
DNA Glicosilases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Animais , DNA Glicosilases/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/patologia
19.
Cell Mol Life Sci ; 79(1): 67, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971429

RESUMO

Mutations in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein lead to persistent lung bacterial infections, mainly due to Pseudomonas aeruginosa, causing loss of respiratory function and finally death of people affected by CF. Unfortunately, even in the era of CFTR modulation therapies, management of pulmonary infections in CF remains highly challenging especially for patients with advanced stages of lung disease. Recently, we identified antimicrobial peptides (AMPs), namely Esc peptides, with potent antipseudomonal activity. In this study, by means of electrophysiological techniques and computational studies we discovered their ability to increase the CFTR-controlled ion currents, by direct interaction with the F508del-CFTR mutant. Remarkably, this property was not explored previously with any AMPs or peptides in general. More interestingly, in contrast with clinically used CFTR modulators, Esc peptides would give particular benefit to CF patients by combining their capability to eradicate lung infections and to act as promoters of airway wound repair with their ability to ameliorate the activity of the channel with conductance defects. Overall, our findings not only highlighted Esc peptides as the first characterized AMPs with a novel property, that is the potentiator activity of CFTR, but also paved the avenue to investigate the functions of AMPs and/or other peptide molecules, for a new up-and-coming pharmacological approach to address CF lung disease.


Assuntos
Peptídeos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Pneumopatias/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bicarbonatos/metabolismo , Cloretos/metabolismo , Fibrose Cística/genética , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Transporte de Íons/efeitos dos fármacos , Pneumopatias/microbiologia , Pneumopatias/patologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/patogenicidade , Ratos , Ratos Endogâmicos F344
20.
Biochemistry ; 60(34): 2610-2622, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34383467

RESUMO

The Aer2 receptor from Pseudomonas aeruginosa has an O2-binding PAS-heme domain that stabilizes O2 via a Trp residue in the distal heme pocket. Trp rotates ∼90° to bond with the ligand and initiate signaling. Although the isolated PAS domain is monomeric, both in solution and in a cyanide-bound crystal structure, an unliganded structure forms a dimer. An overlay of the two structures suggests possible signaling motions but also predicts implausible clashes at the dimer interface when the ligand is bound. Moreover, in a full-length Aer2 dimer, PAS is sandwiched between multiple N- and C-terminal HAMP domains, which would feasibly restrict PAS motions. To explore the PAS dimer interface and signal-induced motions in full-length Aer2, we introduced Cys substitutions and used thiol-reactive probes to examine in vivo accessibility and residue proximities under both aerobic and anaerobic conditions. In vivo, PAS dimers were retained in full-length Aer2 in the presence and absence of O2, and the dimer interface was consistent with the isolated PAS dimer structure. O2-mediated changes were also consistent with structural predictions in which the PAS N-terminal caps move apart and the C-terminal DxT region moves closer together. The DxT motif links PAS to the C-terminal HAMP domains and was critical for PAS-HAMP signaling. Removing the N-terminal HAMP domains altered the distal PAS dimer interface and prevented signaling, even after signal-on lesions were introduced into PAS. The N-terminal HAMP domains thus facilitate the O2-dependent shift of PAS to the signal-on conformation, clarifying their role upstream of the PAS-sensing domain.


Assuntos
Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Proteínas Ligantes de Grupo Heme/química , Heme/metabolismo , Oxigênio/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo III/química , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Ligantes de Grupo Heme/metabolismo , Modelos Moleculares , Domínios Proteicos , Estrutura Terciária de Proteína , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/isolamento & purificação , Transdução de Sinais , Relação Estrutura-Atividade , Sistemas de Secreção Tipo III/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA