RESUMO
DNA repair and autophagy are distinct biological processes vital for cell survival. Although autophagy helps maintain genome stability, there is no evidence of its direct role in the repair of DNA lesions. We discovered that lysosomes process topoisomerase 1 cleavage complexes (TOP1cc) DNA lesions in vertebrates. Selective degradation of TOP1cc by autophagy directs DNA damage repair and cell survival at clinically relevant doses of topoisomerase 1 inhibitors. TOP1cc are exported from the nucleus to lysosomes through a transient alteration of the nuclear envelope and independent of the proteasome. Mechanistically, the autophagy receptor TEX264 acts as a TOP1cc sensor at DNA replication forks, triggering TOP1cc processing by the p97 ATPase and mediating the delivery of TOP1cc to lysosomes in an MRE11-nuclease- and ATR-kinase-dependent manner. We found an evolutionarily conserved role for selective autophagy in DNA repair that enables cell survival, protects genome stability, and is clinically relevant for colorectal cancer patients.
Assuntos
Autofagia , Sobrevivência Celular , Dano ao DNA , Reparo do DNA , DNA Topoisomerases Tipo I , Lisossomos , Proteínas de Membrana , Animais , Humanos , Camundongos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Replicação do DNA , DNA Topoisomerases Tipo I/metabolismo , Instabilidade Genômica , Lisossomos/metabolismo , Proteína Homóloga a MRE11/metabolismo , Inibidores da Topoisomerase I/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismoRESUMO
The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, in vitro, and in vivo analyses, we report that topoisomerase 1 (TOP1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of topotecan (TPT), an FDA-approved TOP1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as 4 days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of TOP1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing TOP1 inhibitors for severe coronavirus disease 2019 (COVID-19) in humans.
Assuntos
Tratamento Farmacológico da COVID-19 , DNA Topoisomerases Tipo I/metabolismo , SARS-CoV-2/metabolismo , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia , Animais , COVID-19/enzimologia , COVID-19/patologia , Chlorocebus aethiops , Humanos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Inflamação/patologia , Inflamação/virologia , Mesocricetus , Camundongos , Camundongos Transgênicos , Células THP-1 , Células VeroRESUMO
In a recent study in Cell, Lascaux et al.1 implicate TEX264 in the autophagy-driven resolution of nuclear topoisomerase 1 cleavage complexes (TOP1cc) in lysosomes, altering current concepts on the mechanism of action for clinically relevant doses of TOP1 inhibitors.
Assuntos
Autofagia , Reparo do DNA , Replicação do DNA , DNA Topoisomerases Tipo I , Lisossomos , Lisossomos/metabolismo , Autofagia/efeitos dos fármacos , Humanos , Replicação do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo I/genética , Inibidores da Topoisomerase I/farmacologia , Adutos de DNA/metabolismo , Adutos de DNA/genética , AnimaisRESUMO
Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas de Ciclo Celular/genética , Replicação do DNA , DNA Topoisomerases Tipo I/genética , DNA/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Reparo de DNA por Recombinação , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Camptotecina/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/química , Cromatina/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo I/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Células HeLa , Humanos , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas/metabolismo , Piridinas/farmacologia , Quinolinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Inibidores da Topoisomerase I/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos , Quinase 1 Polo-LikeRESUMO
RTEL1 helicase is a component of DNA repair and telomere maintenance machineries. While RTEL1's role in DNA replication is emerging, how RTEL1 preserves genomic stability during replication remains elusive. Here we used a range of proteomic, biochemical, cell, and molecular biology and gene editing approaches to provide further insights into potential role(s) of RTEL1 in DNA replication and genome integrity maintenance. Our results from complementary human cell culture models established that RTEL1 and the Polδ subunit Poldip3 form a complex and are/function mutually dependent in chromatin binding after replication stress. Loss of RTEL1 and Poldip3 leads to marked R-loop accumulation that is confined to sites of active replication, enhances endogenous replication stress, and fuels ensuing genomic instability. The impact of depleting RTEL1 and Poldip3 is epistatic, consistent with our proposed concept of these two proteins operating in a shared pathway involved in DNA replication control under stress conditions. Overall, our data highlight a previously unsuspected role of RTEL1 and Poldip3 in R-loop suppression at genomic regions where transcription and replication intersect, with implications for human diseases including cancer.
Assuntos
DNA Helicases/metabolismo , Replicação do DNA , Estruturas R-Loop , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular , Cromatina/metabolismo , Humanos , Estresse Fisiológico , Inibidores da Topoisomerase I/farmacologiaRESUMO
Human DNA topoisomerase 1 (Top1) is a crucial enzyme responsible for alleviating torsional stress on DNA during transcription and replication, thereby maintaining genome stability. Previous researches had found that non-working Top1 interacted extensively with chromosomal DNA in human cells. However, the reason for its retention on chromosomal DNA remained unclear. In this study, we discovered a close association between Top1 and chromosomal DNA, specifically linked to the presence of G-quadruplex (G4) structures. G4 structures, formed during transcription, trap Top1 and hinder its ability to relax neighboring DNAs. Disruption of the Top1-G4 interaction using G4 ligand relieved the inhibitory effect of G4 on Top1 activity, resulting in a further reduction of R-loop levels in cells. Additionally, the activation of Top1 through the use of a G4 ligand enhanced the toxicity of Top1 inhibitors towards cancer cells. Our study uncovers a negative regulation mechanism of human Top1 and highlights a novel pathway for activating Top1.
Assuntos
DNA Topoisomerases Tipo I , Quadruplex G , Transcrição Gênica , Humanos , DNA/química , Replicação do DNA , DNA Topoisomerases Tipo I/metabolismo , Ligantes , Inibidores da Topoisomerase I/farmacologiaRESUMO
We designed and carried out a high-throughput screen for compounds that trap topoisomerase III beta (TOP3B poisons) by developing a Comparative Cellular Cytotoxicity Screen. We found a bisacridine compound NSC690634 and a thiacyanine compound NSC96932 that preferentially sensitize cell lines expressing TOP3B, indicating that they target TOP3B. These compounds trap TOP3B cleavage complex (TOP3Bcc) in cells and in vitro and predominately act on RNA, leading to high levels of RNA-TOP3Bccs. NSC690634 also leads to enhanced R-loops in a TOP3B-dependent manner. Preliminary structural activity studies show that the lengths of linkers between the two aromatic moieties in each compound are critical; altering the linker length completely abolishes the trapping of TOP3Bccs. Both of our lead compounds share a similar structural motif, which can serve as a base for further modification. They may also serve in anticancer, antiviral, and/or basic research applications.
Assuntos
DNA Topoisomerases Tipo I , Inibidores da Topoisomerase I , Linhagem Celular , DNA Topoisomerases Tipo I/metabolismo , RNA , Inibidores da Topoisomerase I/químicaRESUMO
Current immune checkpoint inhibiters (ICIs) have contrasting clinical results in poorly immunogenic cancers such as microsatellite-stable colorectal cancer (MSS-CRC). Therefore, understanding and developing the combinational therapeutics for ICI-unresponsive cancers is critical. Here, we demonstrated that the novel topoisomerase I inhibitor TLC388 can reshape the tumor immune landscape, corroborating their antitumor effects combined with radiotherapy as well as immunotherapy. We found that TLC388 significantly triggered cytosolic single-stranded DNA (ssDNA) accumulation for STING activation, leading to type I interferons (IFN-Is) production for increased cancer immunogenicity to enhance antitumor immunity. TLC388-treated tumors were infiltrated by a vast number of dendritic cells, immune cells, and costimulatory molecules, contributing to the favorable antitumor immune response within the tumor microenvironment. The infiltration of cytotoxic T and NK cells were more profoundly existed within tumors in combination with radiotherapy and ICIs, leading to superior therapeutic efficacy in poorly immunogenic MSS-CRC. Taken together, these results showed that the novel topoisomerase I inhibitor TLC388 increased cancer immunogenicity by ssDNA/STING-mediated IFN-I production, enhancing antitumor immunity for better therapeutic efficacy in combination with radiotherapy and ICIs for poorly immunogenic cancer.
Assuntos
Camptotecina/análogos & derivados , Neoplasias Colorretais , Inibidores da Topoisomerase I , Humanos , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , Neoplasias Colorretais/terapia , Citosol , Microambiente TumoralRESUMO
BACKGROUND: HER3 (ErbB3), a member of the human epidermal growth factor receptor family, is frequently overexpressed in various cancers. Multiple HER3-targeting antibodies and antibody-drug conjugates (ADCs) were developed for the solid tumor treatment, however none of HER3-targeting agent has been approved for tumor therapy yet. We developed DB-1310, a HER3 ADC composed of a novel humanized anti-HER3 monoclonal antibody covalently linked to a proprietary DNA topoisomerase I inhibitor payload (P1021), and evaluate the efficacy and safety of DB-1310 in preclinical models. METHODS: The binding of DB-1310 to Her3 and other HER families were measured by ELISA and SPR. The competition of binding epitope for DB-1310 and patritumab was tested by FACS. The sensitivity of breast, lung, prostate and colon cancer cell lines to DB-1310 was evaluated by in vitro cell killing assay. In vivo growth inhibition study evaluated the sensitivity of DB-1310 to Her3 + breast, lung, colon and prostate cancer xenograft models. The safety profile was also measured in cynomolgus monkey. RESULTS: DB-1310 binds HER3 via a novel epitope with high affinity and internalization capacity. In vitro, DB-1310 exhibited cytotoxicity in numerous HER3 + breast, lung, prostate and colon cancer cell lines. In vivo studies in HER3 + HCC1569 breast cancer, NCI-H441 lung cancer and Colo205 colon cancer xenograft models showed DB-1310 to have dose-dependent tumoricidal activity. Tumor suppression was also observed in HER3 + non-small cell lung cancer (NSCLC) and prostate cancer patient-derived xenograft (PDX) models. Moreover, DB-1310 showed stronger tumor growth-inhibitory activity than patritumab deruxtecan (HER3-DXd), which is another HER3 ADC in clinical development at the same dose. The tumor-suppressive activity of DB-1310 synergized with that of EGFR tyrosine kinase inhibitor, osimertinib, and exerted efficacy also in osimertinib-resistant PDX model. The preclinical assessment of safety in cynomolgus monkeys further revealed DB-1310 to have a good safety profile with a highest non severely toxic dose (HNSTD) of 45 mg/kg. CONCLUSIONS: These finding demonstrated that DB-1310 exerted potent antitumor activities against HER3 + tumors in in vitro and in vivo models, and showed acceptable safety profiles in nonclinical species. Therefore, DB-1310 may be effective for the clinical treatment of HER3 + solid tumors.
Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Neoplasias do Colo , Imunoconjugados , Indóis , Neoplasias Pulmonares , Neoplasias da Próstata , Pirimidinas , Inibidores da Topoisomerase I , Animais , Humanos , Masculino , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Epitopos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Macaca fascicularis/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Receptor ErbB-3 , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Delta-like ligand 3 (DLL3) is highly expressed on the cell surface of small cell lung cancer (SCLC), one of the most lethal malignancies, but minimally or not in normal tissues, making it an attractive target for SCLC. However, none of the DLL3-targeting antibody-drug conjugates (ADCs) have been approved for SCLC therapy yet. We developed DB-1314, the new anti-DLL3 ADC composed of a novel humanized anti-DLL3 monoclonal antibody (DB131401) conjugated with eight molecules of P1021 (topoisomerase I inhibitor), and described its preclinical profiles. METHODS: The binding epitope for DB131401 and Rovalpituzumab was tested by biolayer interferometry. The binding affinity and specificity of DB-1314 to DLL3 and other homologous proteins were respectively measured by surface plasmon resonance and enzyme-linked immunosorbent assay. Internalization, bystander effects, and antibody-dependent cell-mediated cytotoxicity (ADCC) were assessed by respective assay. DLL3 was quantified by antibodies bound per cell assay and immunohistochemistry. In vitro and in vivo growth inhibition studies were evaluated in SCLC cell lines, and cell line/patient-derived xenograft models. The safety profile was measured in cynomolgus monkeys. RESULTS: DB-1314 induces potent, durable, and dose-dependent antitumor effects in cells in vitro and in cell/patient-derived xenograft models in vivo. The killing activity of DB-1314 mechanically arises from P1021-induced DNA damage, whereby P1021 is delivered and released within tumor cells through DLL3-specific binding and efficient internalization. Bystander effects and ADCC also contribute to the antitumor activity of DB-1314. DB-1314 displays favorable pharmacokinetic and toxicokinetic profiles in rats and cynomolgus monkeys; besides, DB-1314 is well-tolerated at a dose of up to 60 mg/kg in monkeys. CONCLUSIONS: These results suggest that DB-1314 may be a candidate ADC targeting DLL3 for the treatment of DLL3-positive SCLC, supporting further evaluation in the clinical setting.
Assuntos
Imunoconjugados , Neoplasias Pulmonares , Proteínas de Membrana , Carcinoma de Pequenas Células do Pulmão , Inibidores da Topoisomerase I , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/patologia , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Humanos , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , Linhagem Celular Tumoral , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Proteínas de Membrana/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Macaca fascicularis , Ensaios Antitumorais Modelo de Xenoenxerto , Ratos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Feminino , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Camundongos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , BenzodiazepinonasRESUMO
PURPOSE: To study the long-term efficacy of intravitreal topotecan (IVT) for vitreous seeds in eyes with retinoblastoma and risk factors for their recurrence. DESIGN: Retrospective, non-comparative, interventional study. PARTICIPANTS: Ninety-one eyes of 90 patients with retinoblastoma treated between January 2013 and April 2019. METHODS: Patients with recurrent or refractory vitreous seeds after completion of intravenous or intra-arterial chemotherapy were treated with IVT (30 µg/0.15 ml) by the safety-enhanced technique. The injection was repeated every 4 weeks until the regression of seeds. Patients with a minimum follow-up of 12 months were included in the analysis. MAIN OUTCOME MEASURES: Primary outcome measures were vitreous seed regression and eye salvage. Secondary outcomes were risk factors for vitreous seed recurrence after treatment with IVT, vision salvage, and complications of IVT. RESULTS: The median age of the patients was 18 months, with most having group D (n = 58 [64%]) and group E (n = 26 [29%]) retinoblastoma. Vitreous seeds were refractory in 46 eyes (51%) and recurrent in 45 eyes (49%). A total of 317 IVT injections were administered, with the median being 3 injections. The median number of IVT injections required was 2.5 injections for dust, 3 injections for sphere, and 5 injections for cloud morphologic features. Recurrence of vitreous seeds after IVT was seen in 17 eyes (19%) at a mean follow-up of 7.9 months. At a mean follow-up 34 months, vitreous seed regression was achieved in 88 eyes (97%) and eye salvage was achieved in 77 eyes (85%). Older age (P = 0.018) and recurrence of retinal tumor (15/17 eyes; P < 0.01) significantly increased the risk of vitreous seed recurrence. Cataract was the most common complication seen in 17 eyes (9%). CONCLUSIONS: Intravitreal topotecan at an every 3- to 4-week regimen is effective against both refractory and recurrent vitreous seeds. The vitreous seed morphologic features correspond to the number of injections required for regression. Increasing age and recurrence of retinal tumor increase the risk of vitreous seed recurrence after treatment with IVT. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Assuntos
Injeções Intravítreas , Inoculação de Neoplasia , Neoplasias da Retina , Retinoblastoma , Inibidores da Topoisomerase I , Topotecan , Corpo Vítreo , Humanos , Retinoblastoma/tratamento farmacológico , Topotecan/administração & dosagem , Estudos Retrospectivos , Masculino , Neoplasias da Retina/tratamento farmacológico , Lactente , Feminino , Corpo Vítreo/efeitos dos fármacos , Pré-Escolar , Inibidores da Topoisomerase I/administração & dosagem , Inibidores da Topoisomerase I/uso terapêutico , Seguimentos , Recidiva Local de Neoplasia/tratamento farmacológico , Criança , Fatores de Risco , Acuidade Visual/fisiologiaRESUMO
Coumestan represents a biologically relevant structural motif distributed in a number of natural products, and the rapid construction of related derivatives as well as the characterization of targets would accelerate lead compound discovery in medicinal chemistry. In this work, a general and scalable approach to 8,9-dihydroxycoumestans via two-electrode constant current electrolysis was developed. The application of a two-phase (aqueous/organic) system plays a crucial role for success, protecting the sensitive o-benzoquinone intermediates from over-oxidation. Based on the structurally diverse products, a primary SAR study on coumestan scaffold was completed, and compound 3 r exhibited potent antiproliferative activities and a robust topoisomerase I (Top1) inhibitory activity. Further mechanism studies demonstrates that compound 3 r was a novel Top1 poison, which might open an avenue for the development of Top1-targeted antitumor agent.
Assuntos
Antineoplásicos , Cumarínicos , DNA Topoisomerases Tipo I , Inibidores da Topoisomerase I , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/síntese química , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo I/química , Humanos , Relação Estrutura-Atividade , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Cumarínicos/química , Cumarínicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Oxirredução , Umbeliferonas/química , Umbeliferonas/farmacologia , Ensaios de Seleção de Medicamentos AntitumoraisRESUMO
Inhibitors of a DNA repair enzyme known as polynucleotide kinase 3'-phosphatase (PNKP) are expected to show synergistic cytotoxicity in combination with topoisomerase I (TOP1) inhibitors in cancer. In this study, the synergistic cytotoxicity of a novel inhibitor of PNKP, i.e., A83B4C63, with a potent TOP1 inhibitor, i.e., SN-38, against colorectal cancer cells was investigated. Polymeric micelles (PMs) for preferred tumor delivery of A83B4C63, developed through physical encapsulation of this compound in methoxy poly(ethylene oxide)-poly(α-benzyl carboxylate-ε-caprolactone) (mPEO-b-PBCL) micelles, were combined with SN-38 in free or PM form. The PM form of SN-38 was prepared through chemical conjugation of SN-38 to the functional end group of mPEO-b-PBCL and further assembly of mPEO-b-PBCL-SN-38 in water. Moreover, mixed micelles composed of mPEO-b-PBCL and mPEO-b-PBCL-SN-38 were used to co-load A83B4C63 and SN-38 in the same nanoformulation. The loading content (% w/w) of the SN-38 and A83B4C63 to mPEO-b-PBCL in the co-loaded formulation was 7.91 ± 0.66 and 16.13 ± 0.11% (w/w), respectively, compared to 15.67 ± 0.34 (% w/w) and 23.06 ± 0.63 (% w/w) for mPEO-b-PBCL micelles loading individual drugs. Notably, the average diameter of PMs co-encapsulating both SN-38 and A83B4C63 was larger than that of PMs encapsulating either of these compounds alone but still lower than 60 nm. The release of A83B4C63 from PMs co-encapsulating both drugs was 76.36 ± 1.41% within 24 h, which was significantly higher than that of A83B4C63-encapsulated micelles (42.70 ± 0.72%). In contrast, the release of SN-38 from PMs co-encapsulating both drugs was 44.15 ± 2.61% at 24 h, which was significantly lower than that of SN-38-conjugated PMs (74.16 ± 3.65%). Cytotoxicity evaluations by the MTS assay as analyzed by the Combenefit software suggested a clear synergy between PM/A83B4C63 (at a concentration range of 10-40 µM) and free SN-38 (at a concentration range of 0.001-1 µM). The synergistic cytotoxic concentration range for SN-38 was narrowed down to 0.1-1 or 0.01-1 µM when combined with PM/A83B4C63 at 10 or 20-40 µM, respectively. In general, PMs co-encapsulating A83B4C63 and SN-38 at drug concentrations within the synergistic range (10 µM for A83B4C63 and 0.05-1 µM for SN-38) showed slightly less enhancement of SN-38 anticancer activity than a combination of individual micelles, i.e., A83B4C63 PMs + SN-38 PMs at the same molar concentrations. This was attributed to the slower release of SN-38 from the SN-38 and A83B4C63 co-encapsulated PMs compared to PMs only encapsulating SN-38. Cotreatment of cells with TOP1 inhibitors and A83B4C63 formulation enhanced the expression level of γ-HA2X, cleaved PARP, caspase-3, and caspase-7 in most cases. This trend was more consistent and notable for PMs co-encapsulating both A83B4C63 and SN-38. The overall result from the study shows a synergy between PMs of SN-38 and A83B4C63 as a mixture of two PMs for individual drugs or PMs co-encapsulating both drugs.
Assuntos
Neoplasias Colorretais , Irinotecano , Micelas , Inibidores da Topoisomerase I , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Irinotecano/farmacologia , Irinotecano/administração & dosagem , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/administração & dosagem , Inibidores da Topoisomerase I/química , Linhagem Celular Tumoral , Animais , Camundongos , Nanomedicina/métodos , Sinergismo Farmacológico , DNA Topoisomerases Tipo I/metabolismo , Nanopartículas/química , Ensaios Antitumorais Modelo de Xenoenxerto , Poliésteres/química , Fosfotransferases (Aceptor do Grupo Álcool) , Enzimas Reparadoras do DNARESUMO
Targeting myeloid cells, especially microglia, for the treatment of neuroinflammatory diseases such as multiple sclerosis (MS), is underappreciated. Our in silico drug screening reveals topoisomerase 1 (TOP1) inhibitors as promising drug candidates for microglial modulation. We show that TOP1 is highly expressed in neuroinflammatory conditions, and TOP1 inhibition using camptothecin (CPT) and its FDA-approved analog topotecan (TPT) reduces inflammatory responses in microglia/macrophages and ameliorates neuroinflammation in vivo. Transcriptomic analyses of sorted microglia from LPS-challenged mice reveal an altered transcriptional phenotype following TPT treatment. To target myeloid cells, we design a nanosystem using ß-glucan-coated DNA origami (MyloGami) loaded with TPT (TopoGami). MyloGami shows enhanced specificity to myeloid cells while preventing the degradation of the DNA origami scaffold. Myeloid-specific TOP1 inhibition using TopoGami significantly suppresses the inflammatory response in microglia and mitigates MS-like disease progression. Our findings suggest that TOP1 inhibition in myeloid cells represents a therapeutic strategy for neuroinflammatory diseases and that the myeloid-specific nanosystems we designed may also benefit the treatment of other diseases with dysfunctional myeloid cells.
Assuntos
Doenças Neuroinflamatórias , Inibidores da Topoisomerase I , Animais , DNA , Macrófagos , Camundongos , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologiaRESUMO
Suppression of fungal camptothecin (CPT) biosynthesis with the preservation and successive subculturing is the challenge that impedes fungi from the industrial application, so, screening for a novel fungal isolate with a conceivable stable producing potency of CPT was the main objective of this work. Catharanthus roseus with diverse contents of bioactive metabolites could have a plethora of novel endophytes with unique metabolic properties. Among the endophytes of C. roseus, Alternaria brassicicola EFBL-NV OR131587.1 was the highest CPT producer (96.5 µg/L). The structural identity of the putative CPT was verified by HPLC, FTIR, HNMR and LC-MS/MS, with a molecular mass 349 m/z, and molecular fragmentation patterns that typically identical to the authentic one. The purified A. brassicicola CPT has a strong antiproliferative activity towards UO-31 (0.75 µM) and MCF7 (3.2 µM), with selectivity index 30.8, and 7.1, respectively, in addition to resilient activity to inhibit Topo II (IC50 value 0.26 nM) than Topo 1 (IC50 value 3.2 nM). The purified CPT combat the wound healing of UO-31 cells by ~ 52%, stops their matrix formation, cell migration and metastasis. The purified CPT arrest the cellular division of the UO-31 at the S-phase, and inducing their cellular apoptosis by ~ 20.4 folds, compared to the control cells. Upon bioprocessing with the surface response methodology, the CPT yield by A. brassicicola was improved by ~ 3.3 folds, compared to control. The metabolic potency of synthesis of CPT by A. brassicicola was attenuated with the fungal storage and subculturing, losing ~ 50% of their CPT productivity by the 6th month of storage and 6th generation. Practically, the CPT productivity of the attenuated A. brassicicola was restored by addition of 1% surface sterilized leaves of C. roseus, ensuring the eliciting of cryptic gene cluster of A. brassicicola CPT via the plant microbiome-A. brassicicola interactions. So, for the first time, a novel endophytic isolate A. brassicicola, from C. roseus, was explored to have a relatively stable CPT biosynthetic machinery, with an affordable feasibility to restore their CPT productivity using C. roseus microbiome, in addition to the unique affinity of the extracted CPT to inhibit Topoisomerase I and II.
Assuntos
Alternaria , Camptotecina , Catharanthus , Proliferação de Células , Endófitos , Camptotecina/farmacologia , Camptotecina/biossíntese , Camptotecina/metabolismo , Endófitos/metabolismo , Catharanthus/microbiologia , Humanos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Células MCF-7 , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacosRESUMO
PURPOSE: Quantifying unencapsulated drug concentrations in tissues is crucial for understanding the mechanisms underlying the efficacy and safety of liposomal drugs; however, the methodology for this has not been fully established. Herein, we aimed to investigate the enhanced therapeutic potential of a pegylated liposomal formulation of topotecan (FF-10850) by analyzing the concentrations of the unencapsulated drug in target tissues, to guide the improvement of its dosing regimen. METHODS: We developed a method for measuring unencapsulated topotecan concentrations in tumor and bone marrow interstitial fluid (BM-ISF) and applied this method to pharmacokinetic assessments. The ratios of the area under the concentration-time curves (AUCs) between tumor and BM-ISF were calculated for total and unencapsulated topotecan. DNA damage and antitumor effects of FF-10850 or non-liposomal topotecan (TPT) were evaluated in an ES-2 mice xenograft model. RESULTS: FF-10850 exhibited a much larger AUC ratio between tumor and BM-ISF for unencapsulated topotecan (2.96), but not for total topotecan (0.752), than TPT (0.833). FF-10850 promoted milder DNA damage in the bone marrow than TPT; however, FF-10850 and TPT elicited comparable DNA damage in the tumor. These findings highlight the greater tumor exposure to unencapsulated topotecan and lower bone marrow exposure to FF-10850 than TPT. The dosing regimen was successfully improved based on the kinetics of unencapsulated topotecan and DNA damage. CONCLUSIONS: Tissue pharmacokinetics of unencapsulated topotecan elucidated the favorable pharmacological properties of FF-10850. Evaluation of tissue exposure to an unencapsulated drug with appropriate pharmacodynamic markers can be valuable in optimizing liposomal drugs and dosing regimens.
Assuntos
Antineoplásicos , Neoplasias , Humanos , Camundongos , Animais , Topotecan/farmacocinética , Inibidores da Topoisomerase I/farmacocinética , Lipossomos , Neoplasias/tratamento farmacológico , Modelos Animais de Doenças , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêuticoRESUMO
A novel series of benzo[6,7]indolo[3,4-c]isoquinolines 3a-3f was designed by scaffold hopping of topoisomerase I inhibitor benzo[g][1]benzopyrano[4,3-b]indol-6(13H)-ones (BBPIs), which were developed by structural modification of the natural marine product lamellarin. The unconventional pentacycle was constructed by Bischler-Napieralski-type condensation of amide 11 and subsequent intramolecular Heck reaction. In vitro anticancer activity of the synthesized benzo[6,7]indolo[3,4-c]isoquinolines was evaluated on a panel of 39 human cancer cell lines (JFCR39). Among the compounds tested, N-(3-morpholinopropyl) derivative 3e showed the most potent antiproliferative activity, with a mean GI50 value of 39 nM. This compound inhibited topoisomerase I activity by stabilizing the enzyme-DNA complex.
Assuntos
Antineoplásicos , Cumarínicos , Compostos Heterocíclicos de 4 ou mais Anéis , Isoquinolinas , Inibidores da Topoisomerase I , Humanos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Isoquinolinas/síntese química , Isoquinolinas/química , Isoquinolinas/farmacologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/farmacologia , Desenho de Fármacos , Cumarínicos/síntese química , Cumarínicos/química , Cumarínicos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologiaRESUMO
Damage-associated molecular patterns (DAMPs) contribute to antitumor immunity during cancer chemotherapy. We previously demonstrated that topotecan (TPT), a topoisomerase I inhibitor, induces DAMP secretion from cancer cells, which activates STING-mediated antitumor immune responses. However, how TPT induces DAMP secretion in cancer cells is yet to be elucidated. Here, we identified RPL15, a 60S ribosomal protein, as a novel TPT target and showed that TPT inhibited preribosomal subunit formation via its binding to RPL15, resulting in the induction of DAMP-mediated antitumor immune activation independent of TOP1. TPT inhibits RPL15-RPL4 interactions and decreases RPL4 stability, which is recovered by CDK12 activity. RPL15 knockdown induced DAMP secretion and increased the CTL population but decreased the regulatory T cell population in a B16-F10 murine melanoma model, which sensitized B16-F10 tumors against PD-1 blockade. Our study identified a novel TPT target protein and showed that ribosomal stress is a trigger of DAMP secretion, which contributes to antitumor immunotherapy.
Assuntos
Neoplasias , Topotecan , Animais , Camundongos , Neoplasias/tratamento farmacológico , Proteínas Ribossômicas , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia , Topotecan/uso terapêuticoRESUMO
The development of novel topoisomerase I (TOP1) inhibitors is crucial for overcoming the drawbacks and limitations of current TOP1 poisons. Here, we identified two potential TOP1 inhibitors, namely, FTY720 (a sphingosine 1-phosphate antagonist) and COH29 (a ribonucleotide reductase inhibitor), through experimental screening of known active compounds. Biological experiments verified that FTY720 and COH29 were nonintercalative TOP1 catalytic inhibitors that did not induce the formation of DNA-TOP1 covalent complexes. Molecular docking revealed that FTY720 and COH29 interacted favorably with TOP1. Molecular dynamics simulations revealed that FTY720 and COH29 could affect the catalytic domain of TOP1, thus resulting in altered DNA-binding cavity size. The alanine scanning and interaction entropy identified Arg536 as a hotspot residue. In addition, the bioinformatics analysis predicted that FTY720 and COH29 could be effective in treating malignant breast tumors. Biological experiments verified their antitumor activities using MCF-7 breast cancer cells. Their combinatory effects with TOP1 poisons were also investigated. Further, FTY720 and COH29 were found to cause less DNA damage compared with TOP1 poisons. The findings provide reliable lead compounds for the development of novel TOP1 catalytic inhibitors and offer new insights into the potential clinical applications of FTY720 and COH29 in targeting TOP1.
Assuntos
Antineoplásicos , DNA Topoisomerases Tipo I , Cloridrato de Fingolimode , Simulação de Acoplamento Molecular , Inibidores da Topoisomerase I , Humanos , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/química , Cloridrato de Fingolimode/síntese química , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo I/química , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/síntese química , Estrutura Molecular , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Simulação de Dinâmica Molecular , Células MCF-7RESUMO
Conventional topoisomerase (Topo) inhibitors typically usually exert their cytotoxicity by damaging the DNAs, which exhibit high toxicity and tend to result in secondary carcinogenesis risk. Molecules that have potent topoisomerase inhibitory activity but involve less DNA damage provide more desirable scaffolds for developing novel chemotherapeutic agents. In this work, we broke the rigid pentacyclic system of luotonin A and synthesized thirty-three compounds as potential Topo inhibitors based on the devised molecular motif. Further investigation disclose that two compounds with the highest antiproliferation activity against cancer cells, 5aA and 5dD, had a distinct Topo I inhibitory mechanism different from those of the classic Topo I inhibitors CPT or luteolin, and were able to obviate the obvious cellular DNA damage typically associated with clinically available Topo inhibitors. The animal model experiments demonstrated that even in mice treated with a high dosage of 50 mg/kg 5aA, there were no obvious signs of toxicity or loss of body weight. The tumor growth inhibition (TGI) rate was 54.3 % when 20 mg/kg 5aA was given to the T24 xenograft mouse model, and 5aA targeted the cancer tissue precisely without causing damage to the liver and other major organs.