Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.004
Filtrar
1.
Exp Parasitol ; 261: 108766, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677581

RESUMO

Control of mosquito vectors, which have caused a global disease burden, has employed various methods. However, the challenges posed by current physical and chemical methods have raised concerns about vector control programs, leading to the search for alternative methods that are less toxic, eco-friendly, and cost-effective. This study investigated the larvicidal potential of aqueous, methanol, and ethylacetate extracts of Guava (Psidium guajava) against Aedes aegypti and Culex quinquefasciatus larvae. Functional group and phytochemical characterization were performed using Fourier-Transform Infrared Spectroscopy (FTIR) and GC-MS analysis to identify the bioactive compounds in the extracts. Larval bioassays were conducted using WHO standard procedures at concentrations of 12.5, 25, 50, 125, and 250 mg/L, and mortality was recorded after 24, 48, and 72 h. Additionally, antioxidant enzyme profiles in the larvae were studied. All of the solvent extracts showed larvicidal activity, with the methanol extract exhibiting the highest mortality against Ae. aegypti and Cx. quinquefasciatus larvae, followed by aqueous and ethylacetate extracts. FTIR spectroscopic analysis revealed the presence of OH, C-H of methyl and methylene, CO and CC. The GC-MS analysis indicated that the methanol, aqueous, and ethylacetate extracts all had 27, 34, and 43 phytoactive compounds that were effective at causing larvicidal effects, respectively. Different concentrations of each extract significantly modulated the levels of superoxide dismutase, catalase, glutathione peroxidase, and reduced glutathione in larvae. This study's findings indicate the potential for developing environmentally friendly vector control products using the bioactive components of extracts from P. guajava leaves.


Assuntos
Aedes , Antioxidantes , Culex , Cromatografia Gasosa-Espectrometria de Massas , Larva , Mosquitos Vetores , Extratos Vegetais , Psidium , Animais , Psidium/química , Aedes/efeitos dos fármacos , Aedes/enzimologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Larva/efeitos dos fármacos , Culex/efeitos dos fármacos , Culex/enzimologia , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/química , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/enzimologia , Espectroscopia de Infravermelho com Transformada de Fourier , Filariose Linfática/prevenção & controle , Inseticidas/farmacologia , Catalase/metabolismo , Folhas de Planta/química , Superóxido Dismutase/metabolismo , Controle de Mosquitos , Dengue/prevenção & controle , Dengue/transmissão , Bioensaio , Glutationa Peroxidase/metabolismo , Insetos Vetores/efeitos dos fármacos
2.
J Vector Borne Dis ; 61(1): 143-148, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648417

RESUMO

BACKGROUND OBJECTIVES: In Brazil, one of the visceral leishmaniasis control measures in urban environments is the elimination of Lutzomyia longipalpis, which occurs through the application of pyrethroid insecticides with residual action in homes and outbuildings. Due to the loss of sensitivity of this vector to these insecticides, the search for more efficient insecticide compounds against L. longipalpis has been intensified. The objective of this work was to evaluate the toxicity of Trixis vauthieri essential oil on adult sandflies of the species L. longipalpis, and identify the phytochemical composition of these essential oils. METHODS: Essential oils from leaves collected from T. vauthieri at different times were obtained at concentrations of 5, 10 and 20 mg/mL. Twenty sandflies were exposed to the essential oils and the mortality was evaluated after 1, 2, 4, 16, 24, 48 and 72 h. The chemical constituents of the essential oil were also identified. RESULTS: The essential oils of T. vauthieri at a concentration of 20 mg/mL were the most toxic to sandflies, reaching a mortality rate of 98.33% and 95%, respectively, after 72 h of exposure. The analysis of chemical constituents revealed the presence of triterpenes and/or steroids, tannins, flavonoids, alkaloids, saponins and coumarins. INTERPRETATION CONCLUSION: The results obtained suggest that T. vauthieri essential oil is fairly promising as an insecticidal potential against L. longipalpis. A more detailed analysis of the oil's phytochemical composition is necessary to identify active and pure compounds that can be used in vector control of visceral leishmaniasis.


Assuntos
Insetos Vetores , Inseticidas , Leishmaniose Visceral , Óleos Voláteis , Psychodidae , Animais , Psychodidae/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Inseticidas/farmacologia , Leishmaniose Visceral/prevenção & controle , Leishmaniose Visceral/transmissão , Brasil , Insetos Vetores/efeitos dos fármacos , Folhas de Planta/química , Feminino , Óleos de Plantas/farmacologia , Óleos de Plantas/química
3.
J Infect Dis ; 223(12 Suppl 2): S55-S60, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906220

RESUMO

The transmission of Plasmodium parasites in residual foci is currently a major roadblock for malaria elimination. Human activities and behavior, along with outdoor biting mosquitoes with opportunistic feeding preferences are the main causes of the inefficacy of the main vector control interventions, long lasting insecticide-impregnated nets and insecticide residual spraying. Several strategies to abate or repel outdoor biting mosquito vectors are currently being researched, but the impact of insecticide resistance on the efficacy of these and current indoor-applied insecticides requires further assessment. Understanding the human, ecological and vector factors, determining transmission in residual foci is necessary for the design and implementation of novel control strategies. Vector control alone is insufficient without adequate epidemiological surveillance and prompt treatment of malaria cases, the participation of endemic communities in prevention and control is required. In addition, malaria control programs should optimize their structure and organization, and their coordination with other government sectors.


Assuntos
Insetos Vetores/efeitos dos fármacos , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Malária/prevenção & controle , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores , Animais , Antimaláricos/uso terapêutico , Humanos , Malária/tratamento farmacológico
4.
Trop Med Int Health ; 26(7): 823-828, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33733549

RESUMO

OBJECTIVES: Indoor residual spraying (IRS) with insecticides is the main vector control intervention for the elimination of visceral leishmaniasis in India. After a change in IRS policy in 2015 due to widespread resistance of Phlebotomus argentipes to DDT, IRS with DDT was replaced with alpha-cypermethrin IRS in 2016. The objective of the present study was to evaluate the susceptibility of P. argentipes to DDT and its alternatives, namely malathion and pirimiphos-methyl (organophosphates); alpha-cypermethrin, deltamethrin, lambda-cyhalothrin and permethrin (pyrethroids), and bendiocarb and propoxur (carbamates), in support of visceral leishmaniasis elimination in India. METHODS: Phlebotomus argentipes sandflies were collected from the visceral-leishmaniasis endemic states of Bihar, Jharkhand and West Bengal. In the WHO tube tests, the phenotypic susceptibility of F1, 2-day old, non-blood fed females were determined against filter papers impregnated with DDT 4%, malathion 5%, pirimiphos-methyl 0.25%, alpha-cypermethrin 0.05%, deltamethrin 0.05%, lambda-cyhalothrin 0.05%, permethrin 0.75%, bendiocarb 0.1% and propoxur 0.1%, which were sourced from Universiti Sains Malaysia. The knockdown of sandflies after 1-h exposure and mortality at 24 h after the 1-h exposure period were scored. RESULTS: Mean mortality of P. argentipes 24 h after exposure in tube tests was 22.6% for DDT and ≥ 98% for other insecticide-impregnated papers tested. CONCLUSION: Phlebotomus argentipes continues to be highly resistant to DDT with no reversal of resistance after DDT's withdrawal from IRS. P. argentipes was fully susceptible to pyrethroid, organophosphate and carbamate insecticides tested. Regular monitoring is warranted for insecticide resistance management in sandfly vectors.


Assuntos
Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Leishmaniose Visceral/prevenção & controle , Phlebotomus/efeitos dos fármacos , Psychodidae/efeitos dos fármacos , Animais , Humanos , Índia , Resistência a Inseticidas/efeitos dos fármacos
5.
Malar J ; 20(1): 388, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34587958

RESUMO

BACKGROUND: Female mosquitoes serve as vectors for a host of illnesses, including malaria, spread by the Plasmodium parasite. Despite monumental strides to reduce this disease burden through tools such as bed nets, the rate of these gains is slowing. Ongoing disruptions related to the COVID-19 pandemic may also negatively impact gains. The following scoping review was conducted to examine novel means of reversing this trend by exploring the efficacy of insecticide-treated window screens or eaves to reduce Anopheles mosquito bites, mosquito house entry, and density. METHODS: Two reviewers independently searched PubMed, Scopus, and ProQuest databases on 10 July, 2020 for peer-reviewed studies using insecticide-treated screens or eaves in malaria-endemic countries. These articles were published in English between the years 2000-2020. Upon collection, the reports were stratified into categories of biting incidence and protective efficacy, mosquito entry and density, and mosquito mortality. RESULTS: Thirteen out of 2180 articles were included in the final review. Eaves treated with beta-cyfluthrin, transfluthrin or bendiocarb insecticides were found to produce vast drops in blood-feeding, biting or mosquito prevalence. Transfluthrin-treated eaves were reported to have greater efficacy at reducing mosquito biting: Rates dropped by 100% both indoors and outdoors under eave ribbon treatments of 0.2% transfluthrin (95% CI 0.00-0.00; p < 0.001). Additionally, co-treating window screens and eaves with polyacrylate-binding agents and with pirimiphos-methyl has been shown to retain insecticidal potency after several washes, with a mosquito mortality rate of 94% after 20 washes (95% CI 0.74-0.98; p < 0.001). CONCLUSIONS: The results from this scoping review suggest that there is value in implementing treated eave tubes or window screens. More data are needed to study the longevity of screens and household attitudes toward these interventions.


Assuntos
Anopheles/fisiologia , Habitação/normas , Insetos Vetores/fisiologia , Inseticidas , Malária/prevenção & controle , Animais , Anopheles/efeitos dos fármacos , Feminino , Mordeduras e Picadas de Insetos/prevenção & controle , Insetos Vetores/efeitos dos fármacos , Malária/transmissão
6.
Mem Inst Oswaldo Cruz ; 115: e200313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33533870

RESUMO

BACKGROUND: Aedes aegypti is the sole vector of urban arboviruses in French Guiana. Overtime, the species has been responsible for the transmission of viruses during yellow fever, dengue, chikungunya and Zika outbreaks. Decades of vector control have produced resistant populations to deltamethrin, the sole molecule available to control adult mosquitoes in this French Territory. OBJECTIVES: Our surveillance aimed to provide public health authorities with data on insecticide resistance in Ae. aegypti populations and other species of interest in French Guiana. Monitoring resistance to the insecticide used for vector control and to other molecule is a key component to develop an insecticide resistance management plan. METHODS: In 2009, we started to monitor resistance phenotypes to deltamethrin and target-site mechanisms in Ae. aegypti populations across the territory using the WHO impregnated paper test and allelic discrimination assay. FINDINGS: Eight years surveillance revealed well-installed resistance and the dramatic increase of alleles on the sodium voltage-gated gene, known to confer resistance to pyrethroids (PY). In addition, we observed that populations were resistant to malathion (organophosphorous, OP) and alpha-cypermethrin (PY). Some resistance was also detected to molecules from the carbamate family. Finally, those populations somehow recovered susceptibility against fenitrothion (OP). In addition, other species distributed in urban areas revealed to be also resistant to pyrethroids. CONCLUSION: The resistance level can jeopardize the efficiency of chemical adult control in absence of other alternatives and conducts to strongly rely on larval control measures to reduce mosquito burden. Vector control strategies need to evolve to maintain or regain efficacy during epidemics.


Assuntos
Aedes/efeitos dos fármacos , Insetos Vetores/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Piretrinas/farmacologia , Aedes/genética , Aedes/virologia , Animais , Guiana Francesa , Insetos Vetores/efeitos dos fármacos , Controle de Mosquitos/métodos , Mosquitos Vetores/virologia , Análise Espaço-Temporal
7.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361781

RESUMO

The protozoan diseases Human African Trypanosomiasis (HAT), Chagas disease (CD), and leishmaniases span worldwide and therefore their impact is a universal concern. The present regimen against kinetoplastid protozoan infections is poor and insufficient. Target-based design expands the horizon of drug design and development and offers novel chemical entities and potential drug candidates to the therapeutic arsenal against the aforementioned neglected diseases. In this review, we report the most promising targets of the main kinetoplastid parasites, as well as their corresponding inhibitors. This overview is part of the Special Issue, entitled "Advances of Medicinal Chemistry against Kinetoplastid Protozoa (Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp.) Infections: Drug Design, Synthesis and Pharmacology".


Assuntos
Antiprotozoários/farmacologia , Doença de Chagas/tratamento farmacológico , Desenho de Fármacos , Leishmaniose/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Tripanossomíase Africana/tratamento farmacológico , Animais , Antiprotozoários/síntese química , Antiprotozoários/classificação , Doença de Chagas/parasitologia , Doença de Chagas/transmissão , Descoberta de Drogas , Humanos , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/parasitologia , Leishmania/efeitos dos fármacos , Leishmania/genética , Leishmania/crescimento & desenvolvimento , Leishmania/metabolismo , Leishmaniose/parasitologia , Leishmaniose/transmissão , Estágios do Ciclo de Vida/efeitos dos fármacos , Estágios do Ciclo de Vida/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Estrutura Molecular , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade , Trypanosoma brucei gambiense/efeitos dos fármacos , Trypanosoma brucei gambiense/genética , Trypanosoma brucei gambiense/crescimento & desenvolvimento , Trypanosoma brucei gambiense/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/transmissão
8.
Trop Med Int Health ; 25(12): 1480-1485, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32945539

RESUMO

OBJECTIVE: To investigate what toxicological interactions occur when binary combinations of azamethiphos and botanical monoterpenes (eugenol, menthol or menthyl acetate) are applied to Triatoma infestans. METHODS: The toxicity of binary mixtures of azamethiphos and sublethal doses of a monoterpene (eugenol, menthol or menthyl acetate) was evaluated in nymphs of the first stage of T. infestans. Experiments using exposure to filter papers and topical application were carried out. Values of Lethal Concentration 50% (LC50) were calculated in the first case, and values of Lethal Dose 50% (LD50) in the second. RESULTS: The LC50 of azamethiphos applied on filter paper was 50.3 µg/cm2 . However, when it was simultaneously applied with a sublethal concentration of monoterpene, its toxicity increased (LC50 with eugenol = 11.20 µg/cm2 , LC50 with menthyl acetate = 5.30 µg/cm2 , LC50 with menthol = 7.26 µg/cm2 ). When applied topically, the LD50 of azamethiphos was 7.85 µg/insect, but its toxicity drastically increased when it was applied together with sublethal doses of menthol (LD50 = 0.00016 µg/insect) or menthyl acetate (LD50 = 0.00051 µg/insect). The simultaneous application with eugenol did not significantly change azamethiphos toxicity (LD50 = 12.79 µg/insect). CONCLUSIONS: The toxicity of azamethiphos in T. infestans was synergised when it was applied together with eugenol, menthol or menthyl acetate on a filter paper. However, only menthol and menthyl acetate synergysed azamethiphos when mixtures were topically applied. The drastic effects of menthol and menthyl acetate in topical application experiments should be further studied as they could be the basis for developing more efficient triatomicidal products with a lower content of conventional insecticides than those currently used for controlling T. infestans.


OBJECTIF: Etudier les interactions toxicologiques qui se produisent lorsque des combinaisons binaires d'azaméthiphos et de monoterpènes botaniques (eugénol, menthol ou acétate de menthyle) sont appliquées à Triatoma infestans. MÉTHODES: La toxicité de mélanges binaires d'azaméthiphos et de doses sublétales d'un monoterpène (eugénol, menthol ou acétate de menthyle) a été évaluée sur les nymphes du premier stade de T. infestans. Des expériences utilisant une exposition à des papiers filtres et une application topique ont été réalisées. Les valeurs de concentration létale à 50% (CL50) ont été calculées dans le premier cas et les valeurs de dose létale à 50% (DL50) dans le second. RÉSULTATS: La CL50 de l'azaméthiphos appliqué sur papier filtre était de 50,3 µg/cm2 . Cependant, lorsqu'il était appliqué simultanément avec une concentration sublétale de monoterpène, sa toxicité augmentait (CL50 avec eugénol = 11,20 µg/cm2 , CL50 avec acétate de menthyle = 5,30 µg/cm2 , CL50 avec menthol = 7,26 µg/cm2 ). Lorsqu'il était appliqué localement, la DL50 de l'azaméthiphos était de 7,85 µg/insecte, mais sa toxicité augmentait considérablement lorsqu'il était appliqué avec des doses sublétales de menthol (DL50 = 0,00016 µg/insecte) ou d' acétate de menthyle (DL50 = 0,00051 µg/insecte). L'application simultanée d'eugénol n'a pas modifié de manière significative la toxicité de l'azaméthiphos (DL50 = 12,79 µg/insecte). CONCLUSIONS: La toxicité de l'azaméthiphos chez T. infestans a été mise en synergie lorsqu'il a été appliqué avec de l'eugénol, du menthol ou de l' acétate de menthyle sur un papier filtre. Cependant, seuls le menthol et l' acétate de menthyle ont eu un effet synergique avec l'azaméthiphos lorsque les mélanges étaient appliqués localement. Les effets drastiques du menthol et de l' acétate de menthyle dans les expériences d'application topique devraient être plus étudiés car ils pourraient être la base du développement de produits triatomicides plus efficaces avec une teneur inférieure en insecticides conventionnels que ceux actuellement utilisés pour lutter contre T. infestans.


Assuntos
Repelentes de Insetos/farmacologia , Insetos Vetores/efeitos dos fármacos , Óleos de Plantas/farmacologia , Triatoma/efeitos dos fármacos , Animais , Doença de Chagas/parasitologia , Controle de Insetos/métodos , Repelentes de Insetos/química , Dose Letal Mediana , Monoterpenos/química , Monoterpenos/farmacologia , Ninfa/efeitos dos fármacos , Organotiofosfatos/farmacologia , Óleos de Plantas/química
10.
PLoS Genet ; 13(2): e1006539, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28151952

RESUMO

Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the 'resistance curve' and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistance-associated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised.


Assuntos
Anopheles/genética , Genômica , Insetos Vetores/efeitos dos fármacos , Resistência a Inseticidas/genética , Piretrinas/farmacologia , África , Animais , Anopheles/fisiologia , Sequência de Bases , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/genética , Variação Genética , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Proteínas de Insetos/genética , Insetos Vetores/genética , Insetos Vetores/fisiologia , Inseticidas/farmacologia , Malária/parasitologia , Malária/prevenção & controle , Repetições de Microssatélites/genética , Modelos Genéticos , Filogenia , Locos de Características Quantitativas/genética , Seleção Genética , Homologia de Sequência do Ácido Nucleico
11.
Mem Inst Oswaldo Cruz ; 115: e190431, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32935748

RESUMO

BACKGROUND: Long lasting insecticide-treated nets (LLINs) may be effective for vector control of cutaneous leishmaniasis (CL). Their efficacy, however, has not been sufficiently evaluated. OBJECTIVE: To evaluate the large-scale efficacy of LLINs on Lutzomyia longiflocosa entomological parameters up to two years post-intervention in the sub-Andean region of Colombia. METHODS: A matched-triplet cluster-randomised study of 21 rural settlements, matched by pre-intervention L. longiflocosa indoor density was used to compare three interventions: dip it yourself (DIY) lambda-cyhalothrin LLIN, deltamethrin LLIN, and untreated nets (control). Sand fly indoor density, feeding success, and parity were recorded using CDC light trap collections at 1, 6, 12, and 24 months post-intervention. FINDINGS: Both LLINs reduced significantly (74-76%) the indoor density and the proportion of fully engorged sand flies up to two years post-intervention without differences between them. Residual lethal effects of both LLINs and the use of all nets remained high throughout the two-year evaluation period. CONCLUSIONS: Both LLINs demonstrated high efficacy against L. longiflocosa indoors. Therefore, the deployment of these LLINs could have a significant impact on the reduction of CL transmission in the sub-Andean region. The DIY lambda-cyhalothrin kit may be used to convert untreated nets to LLINs increasing coverage.


Assuntos
Anopheles/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Mosquiteiros Tratados com Inseticida , Inseticidas/administração & dosagem , Leishmaniose Cutânea/prevenção & controle , Controle de Mosquitos/métodos , Animais , Colômbia , Resistência a Inseticidas , Leishmaniose Cutânea/parasitologia , Mosquitos Vetores , População Rural
12.
J Invertebr Pathol ; 165: 46-53, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29339191

RESUMO

Entomopathogenic fungi play a central role in Brazil's biopesticide market. Approximately 50% of registered microbial biopesticides comprise mycoinsecticides and/or mycoacaricides consisting of hypocrealean fungi, with most based on Metarhizium anisopliae sensu stricto (s. str.) and Beauveria bassiana s. str. These fungi are mainly used to control spittlebugs in sugarcane fields and whiteflies in row crops, respectively, with annual applications surpassing three million hectares. Research also emphasizes the potential of fungal entomopathogens to manage arthropod vectors of human diseases. Most registered fungal formulations comprise wettable powders or technical (non-formulated) products, with relatively few new developments in formulation technology. Despite the large area treated with mycoinsecticides (i.e., approx. 2 million ha of sugarcane treated with M. anisopliae and 1.5 million ha of soybean treated with B. bassiana), their market share remains small compared with the chemical insecticide market. Nevertheless, several major agricultural companies are investing in fungus-based products with the aim at achieving more sustainable IPM programs for major pests in both organic and conventional crops. Government and private research groups are pursuing innovative technologies for mass production, formulation, product stability and quality control, which will support cost-effective commercial mycoinsecticides. Here, we summarize the status of mycoinsecticides currently available in Brazil and discuss future prospects.


Assuntos
Agentes de Controle Biológico , Fungos , Controle de Insetos , Controle Biológico de Vetores , Agricultura/tendências , Animais , Beauveria , Agentes de Controle Biológico/farmacologia , Brasil , Produtos Agrícolas , Composição de Medicamentos , Alimentos Orgânicos , Fungos/isolamento & purificação , Fungos/patogenicidade , Hemípteros/efeitos dos fármacos , Hemípteros/microbiologia , Controle de Insetos/métodos , Controle de Insetos/tendências , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/microbiologia , Insetos/efeitos dos fármacos , Insetos/microbiologia , Metarhizium , Ortópteros/efeitos dos fármacos , Ortópteros/microbiologia , Controle Biológico de Vetores/métodos , Controle Biológico de Vetores/tendências , Saccharum , Glycine max
13.
Pestic Biochem Physiol ; 160: 163-170, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31519251

RESUMO

Aedes aegypti is a major mosquito vector that can transfer many deadly diseases such as dengue, chikungunya, Zika, and yellow fever viruses. Due to the developing resistance among the vector populations by the application of chemical insecticides, alternative eco-friendly vector management strategies are being focused. In this aspect, the present study was carried out to evaluate the mosquitocidal potentials of essential oil of Sphaeranthus amaranthoides (EO-Sa). EO-Sa was found to be effective against Ae. aegypti mosquito vector by exhibiting significant larvicidal, adulticidal and repellent activities. GCMS analysis of EO-Sa revealed the presence of Carvone as the major component (peak area of 89.7%). The larvicidal bioassays performed revealed that the second instar larvae were relatively more susceptible (94.32% mortality) to EO-Sa treatments (75 ppm), LC50, 20.38 ppm.The sub lethal treatment concentration (20 ppm) significantly affected the oviposition, fecundity and morphology of Ae. aegypti. At sub lethal treatment concentration, EO-Sa down regulated α- and ß carboxylesterase and up regulated the GST and CYP450 level of third and fourth instar larvae. Thus the present results illustrates that EO-Sa can deliver a durable larvicidal, repellent and adulticidal activity against Ae. aegypti in an effective and eco-friendly manner.


Assuntos
Aedes/efeitos dos fármacos , Asteraceae/química , Dengue/transmissão , Insetos Vetores/efeitos dos fármacos , Óleos Voláteis/toxicidade , Animais
14.
Trop Anim Health Prod ; 51(3): 637-642, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30334132

RESUMO

Stomoxyines are mechanical vectors of several pathogens of livestock with severe consequences such as low productivity from constant irritation and disturbance. In vitro and in vivo bioassays were conducted to confirm the efficacy of cypermethrin analogues on stomoxyines. Cattle treated with cypermethrin (Pantex 30 g l-1) and cypermethrin-mix (cypermethrin + oil from Senna occidentalis locally prepared by Fulani herdsmen) were compared using the restricted insecticidal application (RAP) method and a local Fulani application approach (FAA), while untreated cattle serve as control. A total of 550 speciated-fed Stomoxys niger were exposed to graded concentration of cypermethrin (Group A-D) at 30 µg/ml, 20 µg/ml, 10 µg/ml, 5 µg/ml, 1 µg/ml and 0.5 µg/ml. After 48 h, the flies were assessed for mortality. In vivo bioassay of behavioural responses to stomoxyines showed greater mean percentage repellence using RAP (94.6%) of cypermethrin when compared with FAA (46.3%). The sigmoidal non-linear regression model curve of in vitro bioassay showed cypermethrin (Pantex®-group A) to be most effective with LC50 of 1.52 µg/mL and it is significantly more effective than cypermethrin (Ectopouron®-group B) and cypermethrin-mix (Fulani cypermethrin mixture-group C) at 22.62 µg/ml and 20.62 µg/ml concentration, respectively. In this study, Pantex® demonstrated excellent stomoxyine repellence using RAP method with significant insecticidal effect. Therefore, the appropriate use of cypermethrin insecticides using RAP method is recommended for vector control to prevent African animal trypanosomiasis in Nigeria.


Assuntos
Inseticidas/farmacologia , Muscidae/efeitos dos fármacos , Óleos de Plantas/farmacologia , Piretrinas/farmacologia , Senna/química , Tripanossomíase Africana/prevenção & controle , Animais , Insetos Vetores/efeitos dos fármacos , Dose Letal Mediana , Nigéria
15.
Clin Infect Dis ; 66(suppl_4): S293-S300, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860294

RESUMO

Background: The World Health Organization's 2020 goals for Chagas disease are (1) interrupting vector-borne intradomiciliary transmission and (2) having all infected people under care in endemic countries. Insecticide spraying has proved efficacious for reaching the first goal, but active transmission remains in several regions. For the second, treatment has mostly been restricted to recently infected patients, who comprise only a small proportion of all infected individuals. Methods: We extended our previous dynamic transmission model to simulate a domestic Chagas disease transmission cycle and examined the effects of both vector control and etiological treatment on achieving the operational criterion proposed by the Pan American Health Organization for intradomiciliary, vectorial transmission interruption (ie, <2% seroprevalence in children <5 years of age). Results: Depending on endemicity, an antivectorial intervention that decreases vector density by 90% annually would achieve the transmission interruption criterion in 2-3 years (low endemicity) to >30 years (high endemicity). When this strategy is combined with annual etiological treatment in 10% of the infected human population, the seroprevalence criterion would be achieved, respectively, in 1 and 11 years. Conclusions: Combining highly effective vector control with etiological (trypanocidal) treatment in humans would substantially reduce time to transmission interruption as well as infection incidence and prevalence. However, the success of vector control may depend on prevailing vector species. It will be crucial to improve the coverage of screening programs, the performance of diagnostic tests, the proportion of people treated, and the efficacy of trypanocidal drugs. While screening and access can be incremented as part of strengthening the health systems response, improving diagnostics performance and drug efficacy will require further research.


Assuntos
Doença de Chagas/prevenção & controle , Erradicação de Doenças , Insetos Vetores/efeitos dos fármacos , Inseticidas/administração & dosagem , Modelos Teóricos , Tripanossomicidas/administração & dosagem , Trypanosoma cruzi/imunologia , Animais , Doença de Chagas/tratamento farmacológico , Doença de Chagas/epidemiologia , Doença de Chagas/transmissão , Humanos , Incidência , Controle de Insetos , Insetos Vetores/parasitologia , Prevalência , Estudos Soroepidemiológicos
16.
Clin Infect Dis ; 66(suppl_4): S267-S274, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860291

RESUMO

Background: Great strides have been made toward onchocerciasis elimination by mass drug administration (MDA) of ivermectin. Focusing on MDA-eligible areas, we investigated where the elimination goal can be achieved by 2025 by continuation of current practice (annual MDA with ivermectin) and where intensification or additional vector control is required. We did not consider areas hypoendemic for onchocerciasis with loiasis coendemicity where MDA is contraindicated. Methods: We used 2 previously published mathematical models, ONCHOSIM and EPIONCHO, to simulate future trends in microfilarial prevalence for 80 different settings (defined by precontrol endemicity and past MDA frequency and coverage) under different future treatment scenarios (annual, biannual, or quarterly MDA with different treatment coverage through 2025, with or without vector control strategies), assessing for each strategy whether it eventually leads to elimination. Results: Areas with 40%-50% precontrol microfilarial prevalence and ≥10 years of annual MDA may achieve elimination with a further 7 years of annual MDA, if not achieved already, according to both models. For most areas with 70%-80% precontrol prevalence, ONCHOSIM predicts that either annual or biannual MDA is sufficient to achieve elimination by 2025, whereas EPIONCHO predicts that elimination will not be achieved even with complementary vector control. Conclusions: Whether elimination will be reached by 2025 depends on precontrol endemicity, control history, and strategies chosen from now until 2025. Biannual or quarterly MDA will accelerate progress toward elimination but cannot guarantee it by 2025 in high-endemicity areas. Long-term concomitant MDA and vector control for high-endemicity areas might be useful.


Assuntos
Antiparasitários/administração & dosagem , Erradicação de Doenças , Inseticidas/administração & dosagem , Ivermectina/administração & dosagem , Modelos Teóricos , Oncocercose/prevenção & controle , Simuliidae/efeitos dos fármacos , Animais , Feminino , Humanos , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/parasitologia , Masculino , Administração Massiva de Medicamentos , Microfilárias , Oncocercose/tratamento farmacológico , Oncocercose/epidemiologia , Oncocercose/transmissão , Prevalência , Simuliidae/parasitologia
17.
PLoS Pathog ; 12(12): e1006060, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27977810

RESUMO

The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria. When an agonist of the steroid hormone 20-hydroxyecdysone (20E) is applied to Anopheles gambiae females, which are the dominant malaria mosquito vector in Sub Saharan Africa, it substantially shortens lifespan, prevents insemination and egg production, and significantly blocks Plasmodium falciparum development, three components that are crucial to malaria transmission. Modeling the impact of these effects on Anopheles population dynamics and Plasmodium transmission predicts that disrupting steroid hormone signaling using 20E agonists would affect malaria transmission to a similar extent as insecticides. Manipulating 20E pathways therefore provides a powerful new approach to tackle malaria transmission by the mosquito vector, particularly in areas affected by the spread of insecticide resistance.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/parasitologia , Hidrazinas/farmacologia , Inseticidas/farmacologia , Hormônios Juvenis/farmacologia , Malária/transmissão , Controle de Mosquitos/métodos , Animais , Ecdisterona/agonistas , Feminino , Marcação In Situ das Extremidades Cortadas , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/parasitologia , Mosquiteiros Tratados com Inseticida , Estágios do Ciclo de Vida/efeitos dos fármacos , Modelos Teóricos , Dinâmica Populacional
18.
J Theor Biol ; 454: 396-409, 2018 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-29883743

RESUMO

Biolarvicides are in use in several parts of the world for malaria vector control. We propose a five compartment dynamical systems model to study malaria transmission when biolarvicides are administered, to study the impact of this environmentally safe method on malaria spread. A comprehensive analysis of the model is presented. Model analysis shows that the basic reproductive rate R is larger in the absence of biolarvicides as compared to their presence. Theoretical analysis is corroborated by data from field studies. We show that there exist intermediate parameter regimes that separate disease-free and endemic states, which can in turn be modulated by biolarvicide use. Using Latin hypercube sampling we study the sensitivity of the model to parameter value changes. Calibration of our model to mosquito population and biolarvicide data for indoor and outdoors scenarios, yield parameter values hitherto not available or measurable. We validate our model with malaria incidence data from a region in India and provide predictions for malaria incidence in the presence and absence of biolarvicide. This model provides a prognostic tool to field work involving biolarvicide use in control of malaria.


Assuntos
Inseticidas/farmacologia , Larva/efeitos dos fármacos , Malária/transmissão , Modelos Teóricos , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos , Animais , Anopheles/efeitos dos fármacos , Anopheles/crescimento & desenvolvimento , Feminino , Humanos , Incidência , Índia/epidemiologia , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/crescimento & desenvolvimento , Malária/epidemiologia , Malária/prevenção & controle , Modelos Estatísticos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/crescimento & desenvolvimento
19.
Mem Inst Oswaldo Cruz ; 113(5): e170377, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29590235

RESUMO

BACKGROUND: There is little information on the effect of using deltamethrin-impregnated dog collars for the control of canine visceral leishmaniasis. OBJECTIVES: The objective of this study was to evaluate the effectiveness of the use of 4% deltamethrin-impregnated collars (Scalibor®) in controlling visceral leishmaniasis in Lutzomyia longipalpis by comparing populations in intervention and non-intervention areas. METHODS: Phlebotomine flies were captured over 30 months in four neighbourhoods with intense visceral leishmaniasis transmission in Fortaleza and Montes Claros. We calculated the rates of domicile infestation, relative abundance of Lu. longipalpis, and Lu. longipalpis distribution in each site, capture location (intra- and peridomestic locations) and area (intervention and non-intervention areas). FINDINGS: In the control area in Fortaleza, the relative abundance of Lu. longipalpis was 415 specimens at each capture site, whereas in the intervention area it was 159.25; in Montes Claros, the relative abundance was 5,660 specimens per capture site in the control area, whereas in the intervention area it was 2,499.4. The use of dog collars was associated with a reduction in captured insects of 15% (p = 0.004) and 60% (p < 0.001) in Montes Claros and Fortaleza, respectively. MAIN CONCLUSIONS: We observed a lower vector abundance in the intervention areas, suggesting an effect of the insecticide-impregnated collars.


Assuntos
Controle de Insetos/instrumentação , Insetos Vetores/efeitos dos fármacos , Inseticidas/administração & dosagem , Leishmaniose Visceral/prevenção & controle , Nitrilas/administração & dosagem , Psychodidae/efeitos dos fármacos , Piretrinas/administração & dosagem , Animais , Brasil/epidemiologia , Cães , Feminino , Controle de Insetos/métodos , Insetos Vetores/classificação , Leishmaniose Visceral/epidemiologia , Masculino , Densidade Demográfica , Psychodidae/classificação
20.
Parasitol Res ; 117(12): 4027-4032, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30324257

RESUMO

Stomoxys calcitrans (Diptera: Muscidae), is an important vector of lumpy skin disease and bovine besnoitiosis in Europe. Control of this biting fly could represent a keystone in the containment of this emerging disease. Reports of insecticide resistance in S. calcitrans are scarce in Europe. Therefore, the purpose of this study was to evaluate the phenotypic susceptibility to deltamethrin, cypermethrin and phoxim of five wild S. calcitrans populations from southwestern France, where transmission of bovine besnoitiosis is very prevalent. Adult S. calcitrans were caught at each study site and exposed to insecticide-impregnated filter papers under laboratory conditions. Quantities of active ingredients on filter papers corresponded to the recommended doses proposed by the manufacturers (37.5 mg a.i./m2 of cattle's skin, 125 mg a.i./m2 and 750 mg a.i./m2 for deltamethrin, cypermethrin and phoxim respectively) were tested. Knock-down effects (KD) (1 h after the onset of exposure) and mortality rates (24 h and 48 h after exposure) were evaluated. Phoxim showed a rapid and full efficacy in all populations. However, the KD effects (37.5 to 97.5%) and the mortality rates at 48 h (10 to 91.25%) induced by the exposure to pyrethroids varied greatly according to the study site but none of the populations showed full susceptibility. Therefore, the current recommended doses of these pyrethroids are probably less efficient than expected in the field and should be considered with caution in the control of bovine besnoitiosis in France.


Assuntos
Inseticidas/farmacologia , Muscidae/efeitos dos fármacos , Nitrilas/farmacologia , Organofosfatos/farmacologia , Compostos Organotiofosforados/farmacologia , Piretrinas/farmacologia , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/transmissão , Europa (Continente) , França , Insetos Vetores/efeitos dos fármacos , Resistência a Inseticidas , Muscidae/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA