Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 850
Filtrar
1.
Mol Cell ; 67(3): 512-527.e4, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28757207

RESUMO

Aberrant signaling by the mammalian target of rapamycin (mTOR) contributes to the devastating features of cancer cells. Thus, mTOR is a critical therapeutic target and catalytic inhibitors are being investigated as anti-cancer drugs. Although mTOR inhibitors initially block cell proliferation, cell viability and migration in some cancer cells are quickly restored. Despite sustained inhibition of mTORC1/2 signaling, Akt, a kinase regulating cell survival and migration, regains phosphorylation at its regulatory sites. Mechanistically, mTORC1/2 inhibition promotes reorganization of integrin/focal adhesion kinase-mediated adhesomes, induction of IGFR/IR-dependent PI3K activation, and Akt phosphorylation via an integrin/FAK/IGFR-dependent process. This resistance mechanism contributes to xenograft tumor cell growth, which is prevented with mTOR plus IGFR inhibitors, supporting this combination as a therapeutic approach for cancers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Quinase 1 de Adesão Focal/metabolismo , Melanoma/tratamento farmacológico , Complexos Multiproteicos/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Receptores de Somatomedina/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Quinase 1 de Adesão Focal/genética , Humanos , Integrina alfa2/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Melanoma/enzimologia , Melanoma/patologia , Camundongos Nus , Complexos Multiproteicos/metabolismo , Invasividade Neoplásica , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biophys J ; 123(17): 2716-2729, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38098231

RESUMO

The integrin heterodimer is a transmembrane protein critical for driving cellular process and is a therapeutic target in the treatment of multiple diseases linked to its malfunction. Activation of integrin involves conformational transitions between bent and extended states. Some of the conformations that are intermediate between bent and extended states of the heterodimer have been experimentally characterized, but the full activation pathways remain unresolved both experimentally due to their transient nature and computationally due to the challenges in simulating rare barrier crossing events in these large molecular systems. An understanding of the activation pathways can provide new fundamental understanding of the biophysical processes associated with the dynamic interconversions between bent and extended states and can unveil new putative therapeutic targets. In this work, we apply nonlinear manifold learning to coarse-grained molecular dynamics simulations of bent, extended, and two intermediate states of αIIbß3 integrin to learn a low-dimensional embedding of the configurational phase space. We then train deep generative models to learn an inverse mapping between the low-dimensional embedding and high-dimensional molecular space and use these models to interpolate the molecular configurations constituting the activation pathways between the experimentally characterized states. This work furnishes plausible predictions of integrin activation pathways and reports a generic and transferable multiscale technique to predict transition pathways for biomolecular systems.


Assuntos
Integrina alfa2 , Integrina beta3 , Simulação de Dinâmica Molecular , Aprendizado Profundo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Multimerização Proteica , Integrina alfa2/química , Integrina alfa2/metabolismo , Integrina beta3/química , Integrina beta3/metabolismo
3.
Carcinogenesis ; 45(4): 235-246, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38142122

RESUMO

Glioma is the most common malignant brain tumor in adults with a high mortality and recurrence rate. Integrin alpha 2 (ITGA2) is involved in cell adhesion, stem cell regulation, angiogenesis and immune cell function. The role of ITGA2 in glioma malignant invasion remains unknown. The function and clinical relevance of ITGA2 were analysed by bioinformatics databases. The expression of ITGA2 in parent cells and GSCs was detected by flow cytometry and immunofluorescence double staining. The role of ITGA2 on the malignant phenotype of GSCs and epithelial-mesenchymal transition (EMT) was identified by stem cell function assays and Western blot. The effect of ITGA2 on glioma progression in vivo was determined by the intracranial orthotopic xenograft model. Immunohistochemistry, Spearman correlation and Kaplan-Meier were used to analyse the relationship of ITGA2 with clinical features and glioma prognosis. Biological analysis showed that ITGA2 might be related to cell invasion and migration. ITGA2, enriched in GSCs and co-expressed with SOX2, promoted the invasion and migration of GSCs by activating STAT3 phosphorylation and enhancing EMT. ITGA2 knockout suppressed the intracranial orthotopic xenograft growth and prolonged the survival of xenograft mice. In addition, the expression level of ITGA2 was significantly correlated to the grade of malignancy, N-cadherin and Ki67. High expression of ITGA2 indicated a worse prognosis of glioma patients. As a biomarker for the prediction of prognosis, ITGA2 promotes the malignant invasion of GSCs by activating STAT3 phosphorylation and enhancing EMT, leading to tumor recurrence and poor prognosis.


Assuntos
Neoplasias Encefálicas , Glioma , Integrina alfa2 , Células-Tronco Neoplásicas , Fator de Transcrição STAT3 , Adulto , Animais , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Integrina alfa2/genética , Integrina alfa2/metabolismo , Fosforilação , Prognóstico , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Células-Tronco Neoplásicas/metabolismo
4.
BMC Cancer ; 24(1): 559, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702644

RESUMO

In contrast to the decreasing trends in developed countries, the incidence and mortality rates of cervical squamous cell carcinoma in China have increased significantly. The screening and identification of reliable biomarkers and candidate drug targets for cervical squamous cell carcinoma are urgently needed to improve the survival rate and quality of life of patients. In this study, we demonstrated that the expression of MUC1 was greater in neoplastic tissues than in non-neoplastic tissues of the cervix, and cervical squamous cell carcinoma patients with high MUC1 expression had significantly worse overall survival than did those with low MUC1 expression, indicating its potential for early diagnosis of cervical squamous cell carcinoma. Next, we explored the regulatory mechanism of MUC1 in cervical squamous cell carcinoma. MUC1 could upregulate ITGA2 and ITGA3 expression via ERK phosphorylation, promoting the proliferation and metastasis of cervical cancer cells. Further knockdown of ITGA2 and ITGA3 significantly inhibited the tumorigenesis of cervical cancer cells. Moreover, we designed a combination drug regimen comprising MUC1-siRNA and a novel ERK inhibitor in vivo and found that the combination of these drugs achieved better results in animals with xenografts than did MUC1 alone. Overall, we discovered a novel regulatory pathway, MUC1/ERK/ITGA2/3, in cervical squamous cell carcinoma that may serve as a potential biomarker and therapeutic target in the future.


MUC1 is overexpressed in cervical squamous cell carcinoma. MUC1 regulates ERK phosphorylation, and subsequently upregulates ITGA2 and ITGA3 expression to promote tumorigenesis in cervical squamous cell carcinoma. A combination drug regimen targeting MUC1 and ERK achieved better results compared than MUC1 alone.


Assuntos
Carcinoma de Células Escamosas , Proliferação de Células , Integrina alfa2 , Integrina alfa3 , Mucina-1 , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Feminino , Integrina alfa2/metabolismo , Integrina alfa2/genética , Animais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Mucina-1/metabolismo , Mucina-1/genética , Camundongos , Fosforilação , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Ensaios Antitumorais Modelo de Xenoenxerto , Sistema de Sinalização das MAP Quinases , Camundongos Nus , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
5.
Mol Cell Proteomics ; 21(4): 100213, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182768

RESUMO

Primary myelofibrosis (PMF) is a neoplasm prone to leukemic transformation, for which limited treatment is available. Among individuals diagnosed with PMF, the most prevalent mutation is the JAK2V617F somatic point mutation that activates the Janus kinase 2 (JAK2) enzyme. Our earlier reports on hyperactivity of ß1 integrin and enhanced adhesion activity of the α2ß1 complex in JAK2V617F megakaryocytes (MKs) led us to examine the new hypothesis that this mutation leads to posttranslational modification via changes in glycosylation. Samples were derived from immunoprecipitation of MKs obtained from Vav1-hJAK2V617F and WT mice. Immunoprecipitated fractions were separated by SDS-PAGE and analyzed using LC-MS/MS techniques in a bottom-up glycoproteomics workflow. In the immunoprecipitate, glycopeptiforms corresponding to 11 out of the 12 potential N-glycosylation sites of integrin ß1 and to all nine potential glycosylation sites of integrin α2 were observed. Glycopeptiforms were compared across WT and JAK2V617F phenotypes for both integrins. The overall trend observed is that JAK2V617F mutation in PMF MKs leads to changes in ß1 glycosylation; in most cases, it results in an increase in the integrated area of glycopeptiforms. We also observed that in mutated MKs, changes in integrin α2 glycosylation were more substantial than those observed for integrin ß1 glycosylation, a finding that suggests that altered integrin α2 glycosylation may also affect activation. Additionally, the identification of proteins associated to the cytoskeleton that were co-immunoprecipitated with integrins α2 and ß1 demonstrated the potential of the methodology employed in this study to provide some insight, at the peptide level, into the consequences of integrin activation in MKs. The extensive and detailed glycosylation patterns we uncovered provide a basis for future functional studies of each site in control cells as compared to JAK2V617F-mutated cells. Data are available via ProteomeXchange with identifier PXD030550.


Assuntos
Janus Quinase 2/genética , Megacariócitos , Mielofibrose Primária , Animais , Cromatografia Líquida , Integrina alfa2/genética , Integrina alfa2/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Megacariócitos/metabolismo , Camundongos , Mutação , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/genética , Espectrometria de Massas em Tandem
6.
Am J Respir Crit Care Med ; 207(5): 553-565, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36170617

RESUMO

Rationale: Tissue-resident natural killer (trNK) cells have been identified in numerous organs, but little is known about their functional contribution to respiratory immunity, in particular during chronic lung diseases such as chronic obstructive pulmonary disease (COPD). Objectives: To investigate the phenotype and antiviral responses of trNK cells in murine cigarette smoke-induced experimental COPD and in human lung parenchyma from COPD donors. Methods: Mice were exposed to cigarette smoke for 12 weeks to induce COPD-like lung disease. Lung trNK cell phenotypes and function were analyzed by flow cytometry in both murine and human disease with and without challenge with influenza A virus. Measurements and Main Results: In the mouse lung, CD49a+CD49b+EOMES+ and CD49a+CD49b-EOMESlo NK cell populations had a distinct phenotype compared with CD49a- circulating NK cells. CD49a+ NK cells were more extensively altered earlier in disease onset than circulating NK cells, and increased proportions of CD49a+ NK cells correlated with worsening disease in both murine and human COPD. Furthermore, the presence of lung disease delayed both circulating and trNK cell functional responses to influenza infection. CD49a+ NK cells markedly increased their NKG2D, CD103, and CD69 expression in experimental COPD after influenza infection, and human CD49a+ NK cells were hyperactive to ex vivo influenza infection in COPD donors. Conclusions: Collectively, these results demonstrate that trNK cell function is altered in cigarette smoke-induced disease and suggests that smoke exposure may aberrantly prime trNK cell responsiveness to viral infection. This may contribute to excess inflammation during viral exacerbations of COPD.


Assuntos
Influenza Humana , Pneumopatias , Doença Pulmonar Obstrutiva Crônica , Humanos , Camundongos , Animais , Integrina alfa1/metabolismo , Influenza Humana/metabolismo , Integrina alfa2/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Células Matadoras Naturais , Pulmão/metabolismo , Pneumopatias/metabolismo , Antivirais
7.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203768

RESUMO

Osteoarthritis (OA) is common and affected by several factors, such as age, weight, sex, and genetics. The pathogenesis of OA remains unclear. Therefore, using a rat model of monosodium iodoacetate (MIA)-induced OA, we examined genomic-wide DNA methylation using methyl-seq and characterized the transcriptome using RNA-seq in the articular cartilage tissue from a negative control (NC) and MIA-induced rats. We identified 170 genes (100 hypomethylated and upregulated genes and 70 hypermethylated and downregulated genes) regulated by DNA methylation in OA. DNA methylation-regulated genes were enriched in functions related to focal adhesion, extracellular matrix (ECM)-receptor interaction and the PI3K-Akt and Hippo signaling pathways. Functions related to extracellular matrix organization, extracellular matrix proteoglycans, and collagen formation were involved in OA. A molecular and protein-protein network was constructed using methylated expression-correlated genes. Erk1/2 was a downstream target of OA-induced changes in DNA methylation and RNA expression. We found that the integrin subunit alpha 2 (ITGA2) gene is important in focal adhesion, alpha6-beta4 integrin signaling, and the inflammatory response pathway in OA. Overall, gene expression changes because DNA methylation influences OA pathogenesis. ITGA2, whose gene expression changes are regulated by DNA methylation during OA onset, is a candidate gene. Our findings provide insights into the epigenetic targets of OA processes in rats.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Ratos , Metilação de DNA , Transcriptoma , Fosfatidilinositol 3-Quinases , Integrina alfa2 , Ácido Iodoacético , Osteoartrite/induzido quimicamente , Osteoartrite/genética
8.
J Cell Biochem ; 124(7): 989-1001, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37210732

RESUMO

Mutations in the αIIb ß-propeller domain have long been known to disrupt heterodimerization and intracellular trafficking of αIIbß3 complexes leading to diminished surface expression and/or function, resulting in Glanzmann thrombasthenia. Our previous study on three ß-propeller mutations, namely G128S, S287L, and G357S, showed variable defects in protein transport correlated with the patient's clinical phenotypes. Pulse-chase experiments revealed differences in αIIbß3 complex maturation among the three mutations. Hence, the current study aims to correlate conformational changes caused by each one of them. Evolutionary conservation analysis, stability analysis, and molecular dynamics simulations of the three mutant structures were carried out. Stability analysis revealed that, while G128S and G357S mutations destabilized the ß-propeller structure, S287L retained the stability. Wild-type and mutant ß-propeller structures, when subjected to molecular dynamics simulations, confirmed that G128S and G357S were both destabilizing in nature when compared with the wild-type and S287L based on several parameters studied, like RMSD, RMSF, Rg, FEL, PCA, secondary structure, and hydrogen bonds. In our previous study, we demonstrated that mutant S287L αIIbß3 complexes were more stable than the wild-type αIIbß3 complexes, as evidenced in pulse-chase experiments. These findings corroborate variable intracellular fates of mutant αIIbß3 complexes as a result of these ß-propeller mutations.


Assuntos
Integrina alfa2 , Integrina beta3 , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Trombastenia , Humanos , Integrina beta3/genética , Simulação de Dinâmica Molecular , Mutação , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Estrutura Secundária de Proteína , Trombastenia/genética , Trombastenia/metabolismo , Integrina alfa2/genética , Integrina alfa2/metabolismo
9.
J Anat ; 242(5): 831-845, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36602038

RESUMO

We previously reported that septoclasts, which are uncalcified growth plate (GP) cartilage matrix-resorbing cells, are derived from pericytes surrounding capillary endothelial cells. Resorption of the GP is assumed to be regulated synchronously by septoclasts, pericytes, and endothelial cells. To reveal the contribution of the extracellular matrix (ECM) to the regulatory mechanisms of septoclastic cartilage resorption, we investigated the spatial correlation between the cells and the ECM in the GP matrix and basement membrane (BM) and investigated the expression of integrins-ECM receptors-in the cells. Septoclasts attached to the transverse septa containing collagen-II/-X at the tip of their processes and to the longitudinal septa containing collagen-II/-X at the spine-like processes extending from their bodies and processes. Collagen-IV and laminin α4 in the BM were sparsely detected between septoclasts and capillary endothelial cells at the chondro-osseous junction (COJ) and were absent in the outer surface of pericytes at the metaphysis. Integrin α1/α2, integrin α1, and integrin α2/α6 were detected in the cell membranes of septoclasts, pericytes, and endothelial cells, respectively. These results suggest that the adhesion between septoclasts and the cartilage ECM forming the scaffolds for cartilage resorption and migration is provided by integrin α2-collagen-II/-X interaction and that the adhesions between the BM and pericytes or endothelial cells are mediated by integrin α1-collagen-IV and integrin α2/α6-laminin interaction, respectively.


Assuntos
Integrinas , Laminina , Camundongos , Animais , Integrinas/metabolismo , Laminina/metabolismo , Integrina alfa1 , Integrina alfa2 , Pericitos/metabolismo , Células Endoteliais , Tíbia/metabolismo , Matriz Extracelular/metabolismo , Colágeno
10.
PLoS Biol ; 18(4): e3000704, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32251437

RESUMO

Lymph nodes (LNs) are highly organized secondary lymphoid organs that mediate adaptive immune responses to antigens delivered via afferent lymphatic vessels. Lymphatic endothelial cells (LECs) line intranodal lymphatic sinuses and organize lymph and antigen distribution. LECs also directly regulate T cells, mediating peripheral tolerance to self-antigens, and play a major role in many diseases, including cancer metastasis. However, little is known about the phenotypic and functional heterogeneity of LN LECs. Using single-cell RNA sequencing, we comprehensively defined the transcriptome of LECs in murine skin-draining LNs and identified new markers and functions of distinct LEC subpopulations. We found that LECs residing in the subcapsular sinus (SCS) have an unanticipated function in scavenging of modified low-density lipoprotein (LDL) and also identified a specific cortical LEC subtype implicated in rapid lymphocyte egress from LNs. Our data provide new, to our knowledge, insights into the diversity of LECs in murine LNs and a rich resource for future studies into the regulation of immune responses by LN LECs.


Assuntos
Linfonodos/citologia , Análise de Célula Única/métodos , Animais , Biomarcadores/metabolismo , Células Endoteliais/citologia , Endotélio Linfático/citologia , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Integrina alfa2/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Receptores CCR/genética , Receptores CCR/metabolismo , Análise de Sequência de RNA , Proteínas de Transporte Vesicular/genética
11.
Jpn J Clin Oncol ; 53(1): 63-73, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36151049

RESUMO

BACKGROUND: Integrins are transmembrane proteins that mediate cell adhesion to extracellular matrix. Whereas expression of integrin alpha 2 is associated with motility, invasiveness and cellular differentiation in various tumors, the role of integrin alpha 2 in lung cancer has not been studied in detail. The aim of this study was to determine whether and how aberrant integrin alpha 2 expression in non-small cell lung cancer leads to different outcomes. METHODS: We measured expression of integrin alpha 2 by quantitative polymerase chain reaction in 100 samples collected from non-small cell lung cancer patients who had undergone surgical resection. We assigned patients to high and low expression groups and analyzed survival. Cellular morphology, adhesion, proliferation, migration and invasion were examined in human lung cancer cell lines. RESULTS: Among 100 cases, 41 were female, with a median age of 71 years. High expression of integrin alpha 2 in non-small cell lung cancer was associated with lower recurrence-free survival (P = 0.004). Overexpression of integrin alpha 2 in cell lines had no effect on cell proliferation or invasion but resulted in increased cell size (1416 µm2 versus 470 µm2 in H522 cells, P < 0.001; 1822 µm2 versus 1029 µm2 in H661 cells, P = 0.02), adhesion (P < 0.001 in H522 and H661 cells) and migration (gap area filled was 71% versus 36% in H522 cells, P < 0.001; 57% versus 26% in H661 cells, P = 0.001). These changes were suppressed by E7820, an inhibitor of integrin alpha 2. CONCLUSIONS: Integrin alpha 2 may play a significant role in lung cancer adhesion and migration, and may lead to a higher risk of recurrence.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Feminino , Idoso , Masculino , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/metabolismo , Integrina alfa2 , Integrinas/metabolismo , Adesão Celular , Movimento Celular , Linhagem Celular Tumoral
12.
Chem Biodivers ; 20(1): e202200961, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36522286

RESUMO

Cinobufagin (CB), with its steroidal nucleus structure, is one of the major, biologically active components of Chan Su. Recent studies have shown that CB exerts inhibitory effects against numerous cancer cells. However, the effects of CB regarding the metastasis of non-small cell lung cancer (NSCLC) and the involved mechanisms need to be further studied. The purpose of the present study aimed to report the inhibitory function of CB against proliferation and metastasis of H1299 cells. CB inhibited proliferation of H1299 lung cancer cells with an IC50 value of 0.035±0.008 µM according to the results of MTT assays. Antiproliferative activity was also observed in colony forming cell assays. In addition, 5-ethynyl-2'-deoxyuridine (EdU) retention assays revealed that CB significantly inhibited the rate of DNA synthesis in H1299 cells. Moreover, results of the scratch wound healing assays and transwell migration assays displayed that CB exhibited significant inhibition against migration and invasion of H1299 cells. Furthermore, CB could concentration-dependently reduce the expression of integrin α2, ß-catenin, FAK, Src, c-Myc, and STAT3 in H1299 cells. These western blotting results indicated that CB might target integrin α2, ß-catenin, FAK and Src to suppress invasion and migration of NSCLC, which was consistent with the network pharmacology analysis results. Collectively, findings of the current study suggest that CB possesses promising activity against NSCLC growth and metastasis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , beta Catenina , Integrina alfa2 , Linhagem Celular Tumoral , Proliferação de Células , Movimento Celular
13.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674478

RESUMO

The Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) is known to dephosphorylate PtdIns(3,4,5)P3 into PtdIns(3,4)P2 and to interact with several signaling proteins though its docking functions. It has been shown to negatively regulate platelet adhesion and spreading on a fibrinogen surface and to positively regulate thrombus growth. In the present study, we have investigated its role during the early phase of platelet activation. Using confocal-based morphometric analysis, we found that SHIP1 is involved in the regulation of cytoskeletal organization and internal contractile activity in thrombin-activated platelets. The absence of SHIP1 has no significant impact on thrombin-induced Akt or Erk1/2 activation, but it selectively affects the RhoA/Rho-kinase pathway and myosin IIA relocalization to the cytoskeleton. SHIP1 interacts with the spectrin-based membrane skeleton, and its absence induces a loss of sustained association of integrins to this network together with a decrease in αIIbß3 integrin clustering following thrombin stimulation. This αIIbß3 integrin dynamics requires the contractile cytoskeleton under the control of SHIP1. RhoA activation, internal platelet contraction, and membrane skeleton integrin association were insensitive to the inhibition of PtdIns(3,4,5)P3 synthesis or SHIP1 phosphatase activity, indicating a role for the docking properties of SHIP1 in these processes. Altogether, our data reveal a lipid-independent function for SHIP1 in the regulation of the contractile cytoskeleton and integrin dynamics in platelets.


Assuntos
Integrina alfa2 , Integrina beta3 , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Ativação Plaquetária , Plaquetas/metabolismo , Integrina beta3/metabolismo , Fosfatidilinositóis/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trombina/farmacologia , Trombina/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Integrina alfa2/metabolismo
14.
Am J Physiol Gastrointest Liver Physiol ; 322(6): G583-G597, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35319286

RESUMO

Intestinal ganglionic cells in the adult enteric nervous system (ENS) are continually exposed to stimuli from the surrounding microenvironment and need at times to respond to disturbed homeostasis following acute intestinal injury. The kinase DCLK1 and intestinal Dclk1-positive cells have been reported to contribute to intestinal regeneration. Although Dclk1-positive cells are present in adult enteric ganglia, their cellular identity and response to acute injury have not been investigated in detail. Here, we reveal the presence of distinct Dclk1-tdTom+/CD49b+ glial-like and Dclk1-tdTom+/CD49b- neuronal cell types in adult myenteric ganglia. These ganglionic cells demonstrate distinct patterns of tracing over time yet show a similar expansion in response to elevated serotonergic signaling. Interestingly, Dclk1-tdTom+ glial-like and neuronal cell types appear resistant to acute irradiation injury-mediated cell death. Moreover, Dclk1-tdTom+/CD49b+ glial-like cells show prominent changes in gene expression profiles induced by injury, in contrast to Dclk1-tdTom+/CD49b- neuronal cell types. Finally, subsets of Dclk1-tdTom+/CD49b+ glial-like cells demonstrate prominent overlap with Nestin and p75NTR and strong responses to elevated serotonergic signaling or acute injury. These findings, together with their role in early development and their neural crest-like gene expression signature, suggest the presence of reserve progenitor cells in the adult Dclk1 glial cell lineage.NEW & NOTEWORTHY The kinase DCLK1 identifies glial-like and neuronal cell types in adult murine enteric ganglia, which resist acute injury-mediated cell death yet differ in their cellular response to injury. Interestingly, Dclk1-labeled glial-like cells show prominent transcriptional changes in response to injury and harbor features reminiscent of previously described enteric neural precursor cells. Our data thus add to recently emerging evidence of reserve cellular plasticity in the adult enteric nervous system.


Assuntos
Sistema Nervoso Entérico , Células-Tronco Neurais , Animais , Sistema Nervoso Entérico/fisiologia , Integrina alfa2/metabolismo , Camundongos , Camundongos Transgênicos , Neuroglia/metabolismo , Neurônios/metabolismo
15.
Breast Cancer Res Treat ; 192(1): 89-100, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35098437

RESUMO

PURPOSE: ITGA2 encodes the integrin, α2 which mediates metastatic progression, and is a predictor of poor prognosis and chemoresistance in breast cancer. Decreased ITGA2 promoter methylation is implicated as a driver of increased gene expression in aggressive prostate and pancreatic tumours, however the contribution of altered methylation to ITGA2 expression changes in breast tumours has not been examined. METHODS: ITGA2 gene methylation and gene expression was examined in publicly available breast cancer datasets, and ITGA2 promoter methylation was mapped by targeted bisulphite sequencing analysis in breast tumour cell lines. The expression of a putative regulatory long noncoding RNA (lncRNA) was examined by qPCR and its' functionality was investigated using gene knockdown (antisense oligonucleotides) and over expression in breast cancer cell lines. RESULTS: In breast tumours and breast cancer cell lines the ITGA2 promoter is largely unmethylated, with gene expression variable in tumour subtypes, irrespective of promoter methylation. A novel lncRNA (AC025180.1;ENSG00000249899), named herein I2ALR, was identified at the ITGA2 gene locus, and was variably expressed in breast tumours and breast cancer cell subtypes. I2LAR knockdown resulted in upregulation of ITGA2 gene expression, whilst over-expression of I2ALR resulted in downregulation of ITGA2 mRNA. Further, examination of two downstream targets of ITGA2 associated with breast tumor stemness and metastasis (CCND1 and ACLY), revealed concomitant gene expression changes in response to I2ALR modulation. CONCLUSION: I2ALR represents a novel regulatory molecule targeting ITGA2 expression in breast tumours; a finding of significant and topical interest to the development of therapeutics targeting this integrin.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina alfa2/genética , Integrina alfa2/metabolismo , Integrinas , Masculino , RNA Longo não Codificante/genética
16.
Platelets ; 33(4): 551-561, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34275420

RESUMO

Glanzmann thrombasthenia (GT) is a rare autosomal recessive bleeding disorder characterized by impaired platelet aggregation due to defects in integrin αIIbß3, a fibrinogen receptor. Platelet phenotypes and allelic variations in 28 Turkish GT patients are reported. Platelets αIIbß3 expression was evaluated by flow cytometry. Sequence analyzes of ITGA2B and ITGB3 genes allowed identifying nine variants. Non-sense variation effect on αIIbß3 expression was studied by using transfected cell lines. 3D molecular dynamics (MDs) simulations allowed characterizing structural alterations. Five new alleles were described. αIIb:p.Gly423Asp, p.Asp560Ala and p.Tyr784Cys substitutions impaired αIIbß3 expression. The αIIb:p.Gly128Val substitution allowed normal expression; however, the corresponding NM_000419.3:c.476G>T variation would create a cryptic donor splicing site altering mRNA processing. The ß3:p.Gly540Asp substitution allowed αIIbß3 expression in HEK-293 cells but induced its constitutive activation likely by impairing αIIb and ß3 legs interaction. The substitution alters the ß3 I-EGF-3 domain flexibility as shown by MDs simulations. GT variations are mostly unique although the NM_000419.3:c.1752 + 2 T > C and NM_000212.2:c.1697 G > A variations identified in 4 and 8 families, respectively, might be a current cause of GT in Turkey. MD simulations suggested how some subtle structural variations in the ß3 I-EGF domains might induce constitutive activation of αIIbß3 without altering the global domain structure.


Assuntos
Integrina alfa2 , Integrina beta3 , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Trombastenia , Fator de Crescimento Epidérmico , Células HEK293 , Humanos , Integrina alfa2/genética , Integrina beta3/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trombastenia/genética , Trombastenia/metabolismo , Turquia
17.
Pediatr Crit Care Med ; 23(9): 727-735, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35687090

RESUMO

OBJECTIVES: Morbidity and mortality related to modified Blalock-Taussig shunt (mBTTS) thrombosis remain a significant risk. Platelet inhibition following mBTTS may reduce this risk. However, oral antiplatelet agents have variable absorption following surgery. We determine risk factors for mBTTS thrombosis and hypothesize that IV glycoprotein IIb/IIIa inhibitor (tirofiban) as a bridge to oral aspirin reduces the rate of shunt thrombosis in the immediate postoperative period. End points within the 14-day follow-up period include mBTTS thrombosis, overall thrombosis, bleeding, length of stay, and mortality. DESIGN: Retrospective, Institutional Review Board-approved cohort study. SETTING: Single-center cardiac ICU. PATIENTS: Patients under the age of 18 who had an mBTTS placed within the study period of January 2008 to December 2018 were included. INTERVENTIONS: Patients were divided into two groups: standard of care (SOC) anticoagulation alone and SOC with tirofiban as a bridge to oral aspirin. MEASUREMENTS AND MAIN RESULTS: Freedom from mBTTS thrombosis was estimated using the Kaplan-Meier method. A multivariable predictive model using the four most significant risk factors was developed using logistic regression. A total of 272 patients were included: 36 subjects in the SOC/tirofiban group and 236 in the SOC group. Shunt thrombosis occurred in 26 (11%) SOC group with zero in SOC/tirofiban group ( p = 0.03). The median time to thrombosis was 0 days (range, 0-12 d). The area under the curve for the predictive model (anticoagulation group, history of coagulopathy, intraoperative shunt clipping, and shunt size/weight ratio) is 0.790 ( p < 0.001). Prevalence of bleeding and mortality was not significantly different between the groups. CONCLUSIONS: Highest risk for shunt thrombosis following mBTTS occurs within the first few days after surgical procedure. Tirofiban is a safe addition to SOC and may be an effective strategy to prevent early mBTTS thrombosis.


Assuntos
Procedimento de Blalock-Taussig , Fibrinolíticos , Integrina alfa2 , Integrina beta3 , Inibidores da Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Trombose , Tirofibana , Anticoagulantes , Aspirina/uso terapêutico , Procedimento de Blalock-Taussig/efeitos adversos , Estudos de Coortes , Fibrinolíticos/uso terapêutico , Hemorragia/etiologia , Humanos , Integrina alfa2/metabolismo , Integrina beta3/metabolismo , Inibidores da Agregação Plaquetária/uso terapêutico , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Estudos Retrospectivos , Trombose/etiologia , Trombose/prevenção & controle , Tirofibana/uso terapêutico , Resultado do Tratamento
18.
Arch Gynecol Obstet ; 305(5): 1291-1298, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34689222

RESUMO

PURPOSE: Integrins may be involved in the metastatic spread of high-grade serous ovarian cancer (HGSOC) which determines the therapeutical approach and prognosis. We investigated the integrin expression in primary tumor and metastases of advanced HGSOC. METHODS: The expression of integrin α2, α4, α5, α6, and ß1 was assessed by immunostaining in tumor samples of the ovary, omentum, and peritoneum of each patient. Differences in integrin expression among tumor localizations and their association with clinicopathological parameters were examined by Fisher's exact test. The impact of integrin expression on progression-free survival (PFS) and overall survival (OS) was examined by Cox regression and Kaplan-Meier analyses. RESULTS: Hundred and thirteen tumor samples of 40 HGSOC patients were examined. The expression of the integrins did not differ between the three tumor localizations (all p values > 0.05) with the exception of high expression of integrin α4 in primary tumor and omentum (52.5% versus 47.5%, p = 0.008) and primary tumor and peritoneum (52.5% versus 47.5%, p = 0.050). High expression of integrin α4 in peritoneum was associated with poorer PFS (HR 2.02 95% CI 1.01-4.05, p = 0.047), younger age (p = 0.047), and death (p = 0.046). Median PFS in patients with high expression of integrin α4 was 13.00 months, whereas median PFS in patients without high expression of integrin α4 was 21.00 months (p = 0.040). Expression of other integrins did not correlate with PFS or OS. CONCLUSION: Expression of integrin α4 may be altered during the metastatic spread of HGSOC and affect prognosis, whereas expression of integrin α2, α5, α6, and ß1 did not reveal any prognostic value.


Assuntos
Integrinas , Neoplasias Ovarianas , Feminino , Humanos , Integrina alfa2 , Integrina alfa4 , Neoplasias Ovarianas/patologia , Prognóstico
19.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054807

RESUMO

Hemophilia A (HA) is caused by mutations in the coagulation factor VIII (FVIII) gene (F8). Gene therapy is a hopeful cure for HA; however, FVIII inhibitors formation hinders its clinical application. Given that platelets promote coagulation via locally releasing α-granule, FVIII ectopically expressed in platelets has been attempted, with promising results for HA treatment. The B-domain-deleted F8 (BDDF8), driven by a truncated ITGA2B promoter, was targeted at the ribosomal DNA (rDNA) locus of HA patient-specific induced pluripotent stem cells (HA-iPSCs). The F8-modified, human induced pluripotent stem cells (2bF8-iPSCs) were differentiated into induced hematopoietic progenitor cells (iHPCs), induced megakaryocytes (iMKs), and mesenchymal stem cells (iMSCs), and the FVIII expression was detected. The ITGA2B promoter-driven BDDF8 was site-specifically integrated into the rDNA locus of HA-iPSCs. The 2bF8-iPSCs were efficiently differentiated into 2bF8-iHPCs, 2bF8-iMKs, and 2bF8-iMSCs. FVIII was 10.31 ng/106 cells in lysates of 2bF8-iHPCs, compared to 1.56 ng/106 cells in HA-iHPCs, and FVIII was 3.64 ng/106 cells in 2bF8-iMSCs lysates, while 1.31 ng/106 cells in iMSCs with CMV-driven BDDF8. Our results demonstrated a high expression of FVIII in iHPCs and iMSCs derived from hiPSCs with site-specific integration of ITGA2B promoter-driven BDDF8, indicating potential clinical prospects of this platelet-targeted strategy for HA gene therapy.


Assuntos
Expressão Ectópica do Gene , Fator VIII/genética , Células-Tronco Hematopoéticas/metabolismo , Hemofilia A/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Integrina alfa2/genética , Células-Tronco Mesenquimais/metabolismo , Regiões Promotoras Genéticas , Sequência de Bases , DNA Ribossômico/genética , Fator VIII/química , Fator VIII/metabolismo , Marcação de Genes , Loci Gênicos , Vetores Genéticos/metabolismo , Humanos , Integrina alfa2/metabolismo , Megacariócitos/metabolismo , Domínios Proteicos , Deleção de Sequência , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo
20.
J Cell Mol Med ; 25(4): 2013-2024, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33369167

RESUMO

Sepsis is a systemic inflammatory response to invading pathogens, leading to high mortality rates in intensive care units worldwide. Krüppel-like factor 4 (KLF4) is an important anti-inflammatory transcription factor. In this study, we investigate the anti-inflammatory role of KLF4 in caecal ligation and puncture (CLP)-induced septic mice and lipopolysaccharide (LPS)-induced RAW264.7 cells and its potential mechanism. We found that KLF4 was down-regulated in CLP-induced septic mice and in LPS-induced RAW264.7 cells, and that its overexpression led to increased survival rates of septic mice along with inhibited inflammatory response in vivo and in vitro. ITGA2B was up-regulated in the setting of sepsis and was inhibited by KLF4 overexpression. ITGA2B knock-down mimicked the effects of KLF4 overexpression on septic mice and LPS-induced RAW264.7 cells. TLR4 promoted the phosphorylation of ERK1/2 and then up-regulated the ubiquitination and the degradation of KLF4, thereby elevating the expression of ITGA2B. Moreover, TLR4 knock-down or treatment with PD98059 (a MEK inhibitor) inhibited inflammatory response in the setting of sepsis in vivo and in vitro. Furthermore, this effect of PD98059 treatment was lost upon KLF4 knock-down. Collectively, these results explain the down-regulation of KLF4 in sepsis, namely via TLR4 promotion of ERK1/2 phosphorylation, and identify ITGA2B as the downstream gene of KLF4, thus highlighting the anti-inflammatory role of KLF4 in sepsis.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Sepse/etiologia , Sepse/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Expressão Gênica , Integrina alfa2/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos , Modelos Biológicos , Fosforilação , Células RAW 264.7 , Sepse/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA