RESUMO
Intestinal goblet cells are secretory cells specialized in the production of mucins, and as such are challenged by the need for efficient protein folding. Goblet cells express Inositol-Requiring Enzyme-1ß (IRE1ß), a unique sensor in the unfolded protein response (UPR), which is part of an adaptive mechanism that regulates the demands of mucin production and secretion. However, how IRE1ß activity is tuned to mucus folding load remains unknown. We identified the disulfide isomerase and mucin chaperone AGR2 as a goblet cell-specific protein that crucially regulates IRE1ß-, but not IRE1α-mediated signaling. AGR2 binding to IRE1ß disrupts IRE1ß oligomerization, thereby blocking its downstream endonuclease activity. Depletion of endogenous AGR2 from goblet cells induces spontaneous IRE1ß activation, suggesting that alterations in AGR2 availability in the endoplasmic reticulum set the threshold for IRE1ß activation. We found that AGR2 mutants lacking their catalytic cysteine, or displaying the disease-associated mutation H117Y, were no longer able to dampen IRE1ß activity. Collectively, these results demonstrate that AGR2 is a central chaperone regulating the goblet cell UPR by acting as a rheostat of IRE1ß endonuclease activity.
Assuntos
Células Caliciformes , Chaperonas Moleculares , Mucinas , Endonucleases , Células Caliciformes/metabolismo , Chaperonas Moleculares/genética , Mucinas/genética , Isomerases de Dissulfetos de Proteínas , Humanos , Linhagem Celular TumoralRESUMO
In eukaryotic cells, oxidative protein folding occurs in the lumen of the endoplasmic reticulum (ER), catalyzed by ER sulfhydryl oxidase 1 (Ero1) and protein disulfide isomerase (PDI). The efficiency and fidelity of oxidative protein folding are vital for the function of secretory cells. Here, we summarize oxidative protein folding in yeast, plants, and mammals, and discuss how the conformation and activity of human Ero1-PDI machinery is regulated through various post-translational modifications (PTMs). We propose that oxidative protein folding fidelity and ER redox homeostasis are maintained by both the precise control of Ero1 oxidase activity and the division of labor between PDI family members. We also discuss how deregulated Ero1-PDI functions contribute to human diseases and can be leveraged for therapeutic interventions.
Assuntos
Isomerases de Dissulfetos de Proteínas , Dobramento de Proteína , Animais , Humanos , Isomerases de Dissulfetos de Proteínas/metabolismo , Oxirredução , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Estresse Oxidativo , MamíferosRESUMO
PDI catalyzes the oxidative folding of disulfide-containing proteins. However, the sequence of reactions leading to a natively folded and oxidized protein remains unknown. Here we demonstrate a technique that enables independent measurements of disulfide formation and protein folding. We find that non-native disulfides are formed early in the folding pathway and can trigger misfolding. In contrast, a PDI domain favors native disulfides by catalyzing oxidation at a late stage of folding. We propose a model for cotranslational oxidative folding wherein PDI acts as a placeholder that is relieved by the pairing of cysteines caused by substrate folding. This general mechanism can explain how PDI catalyzes oxidative folding in a variety of structurally unrelated substrates.
Assuntos
Pró-Colágeno-Prolina Dioxigenase/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Dissulfetos , Microscopia de Força Atômica , Modelos Moleculares , Oxirredução , Proteínas/química , Proteínas/metabolismoRESUMO
Every bacterial population harbors a small subpopulation of so-called persisters that are transiently antibiotic tolerant. These persisters are associated with the recalcitrance of chronic infections because they can recolonize the host after antibiotic removal. Although several effectors have been described to induce persistence, persister cell awakening is poorly understood. We previously reported that the toxin HokB induces persistence via pore formation, resulting in membrane depolarization and ATP leakage. We now delineate mechanisms responsible for the awakening of HokB-induced persisters. We show that HokB dimerization by the oxidoreductase DsbA is essential for pore formation and peptide stability. Pores are disassembled via DsbC-mediated monomerization, which targets HokB for DegQ-mediated degradation. Finally, pore disassembly allows membrane repolarization by the electron transport chain, supporting cells to resume growth. These results provide a detailed view of both the formation and awakening of HokB-induced persister cells.
Assuntos
Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Potenciais da Membrana/fisiologia , Proteólise , Serina Endopeptidases/metabolismo , Toxinas Bacterianas/genética , Membrana Celular/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Serina Endopeptidases/genéticaRESUMO
Antigen presentation via major histocompatibility complex class I (MHC-I) molecules is essential for surveillance by the adaptive immune system. Central to this process is the peptide-loading complex (PLC), which translocates peptides from the cytosol to the endoplasmic reticulum and catalyzes peptide loading and proofreading of peptide-MHC-I (pMHC-I) complexes. Despite its importance, the impact of individual PLC components on the presented pMHC-I complexes is still insufficiently understood. Here, we used stoichiometrically defined antibody-nanobody complexes and engineered soluble T cell receptors (sTCRs) to quantify different MHC-I allomorphs and defined pMHC-I complexes, respectively. Thereby, we uncovered distinct effects of individual PLC components on the pMHC-I surface pool. Knockouts of components of the PLC editing modules, namely tapasin, ERp57, or calreticulin, changed the MHC-I surface composition to a reduced proportion of HLA-A*02:01 presentation compensated by a higher ratio of HLA-B*40:01 molecules. Intriguingly, these knockouts not only increased the presentation of suboptimally loaded HLA-A*02:01 complexes but also elevated the presentation of high-affinity peptides overexpressed in the cytosol. Our findings suggest that the components of the PLC editing module serve a dual role, acting not only as peptide proofreaders but also as limiters for abundant peptides. This dual function ensures the presentation of a broad spectrum of antigenic peptides.
Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I , Peptídeos , Apresentação de Antígeno/imunologia , Humanos , Peptídeos/metabolismo , Peptídeos/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Calreticulina/metabolismo , Calreticulina/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Retículo Endoplasmático/metabolismoRESUMO
Recessive gene mutations underlie many developmental disorders and often lead to disabling neurological problems. Here, we report identification of a homozygous c.170G>A (p.Cys57Tyr or C57Y) mutation in the gene coding for protein disulfide isomerase A3 (PDIA3, also known as ERp57), an enzyme that catalyzes formation of disulfide bonds in the endoplasmic reticulum, to be associated with syndromic intellectual disability. Experiments in zebrafish embryos show that PDIA3C57Y expression is pathogenic and causes developmental defects such as axonal disorganization as well as skeletal abnormalities. Expression of PDIA3C57Y in the mouse hippocampus results in impaired synaptic plasticity and memory consolidation. Proteomic and functional analyses reveal that PDIA3C57Y expression leads to dysregulation of cell adhesion and actin cytoskeleton dynamics, associated with altered integrin biogenesis and reduced neuritogenesis. Biochemical studies show that PDIA3C57Y has decreased catalytic activity and forms disulfide-crosslinked aggregates that abnormally interact with chaperones in the endoplasmic reticulum. Thus, rare disease gene variant can provide insight into how perturbations of neuronal proteostasis can affect the function of the nervous system.
Assuntos
Deficiências do Desenvolvimento/genética , Retículo Endoplasmático/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Proteostase , Adolescente , Adulto , Animais , Axônios/metabolismo , Axônios/patologia , Adesão Celular , Células Cultivadas , Criança , Citoesqueleto/metabolismo , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Crescimento Neuronal , Plasticidade Neuronal , Linhagem , Isomerases de Dissulfetos de Proteínas/metabolismo , Peixe-ZebraRESUMO
In the methylotrophic yeast Komagataella phaffii, we identified an endoplasmic reticulum-resident protein disulfide isomerase (PDI) family member, Erp41, with a peculiar combination of active site motifs. Like fungal ERp38, it has two thioredoxin-like domains which contain active site motifs (a and a'), followed by an alpha-helical ERp29c C-terminal domain (c domain). However, while the a domain has a typical PDI-like active site motif (CGHC), the a' domain instead has CGYC, a glutaredoxin-like motif which confers to the protein an exceptional affinity for GSH/GSSG. This combination of active site motifs has so far been unreported in PDI-family members. Homology searches revealed ERp41 is present in the genome of some plants, fungal parasites, and a few nonconventional yeasts, among which are Komagataella spp. and Yarrowia lipolytica. These yeasts are both used for the production of secreted recombinant proteins. Here, we analyzed the activity of K. phaffii Erp41. We report that it is nonessential in K. phaffii, and that it can catalyze disulfide bond formation in partnership with the sulfhydryl oxidase Ero1 in vitro with higher turnover rates than the canonical PDI from K. phaffii, Pdi1, but slower activation times. We show how Erp41 has unusually fast glutathione-coupled oxidation activity and relate it to its unusual combination of active sites in its thioredoxin-like domains. We further describe how this determines its unusually efficient catalysis of dithiol oxidation in peptide and protein substrates.
Assuntos
Isomerases de Dissulfetos de Proteínas , Dobramento de Proteína , Saccharomycetales , Dissulfetos/química , Glutationa/metabolismo , Oxirredução , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Estrutura Terciária de Proteína , Saccharomycetales/enzimologia , Tiorredoxinas/metabolismoRESUMO
Protein disulfide isomerase-A1 (PDIA1) is a master regulator of oxidative protein folding and proteostasis in the endoplasmic reticulum (ER). However, PDIA1 can reach the extracellular space, impacting thrombosis and other pathophysiological phenomena. Whether PDIA1 is externalized via passive release or active secretion is not known. To investigate how PDIA1 negotiates its export, we generated a tagged variant that undergoes N-glycosylation in the ER (Glyco-PDIA1). Addition of N-glycans does not alter its enzymatic functions. Upon either deletion of its KDEL ER-localization motif or silencing of KDEL receptors, Glyco-PDIA1 acquires complex glycans in the Golgi and is secreted. In control cells, however, Glyco-PDIA1 is released with endoglycosidase-H sensitive glycans, implying that it does not follow the classical ER-Golgi route nor does it encounter glycanases in the cytosol. Extracellular Glyco-PDIA1 is more abundant than actin, lactate dehydrogenase, or other proteins released by damaged or dead cells, suggesting active transport through a Golgi-independent route. The strategy we describe herein can be extended to dissect how select ER-residents reach the extracellular space.
Assuntos
Retículo Endoplasmático , Complexo de Golgi , Isomerases de Dissulfetos de Proteínas , Transporte Proteico , Retículo Endoplasmático/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Complexo de Golgi/metabolismo , Humanos , Glicosilação , Espaço Extracelular/metabolismo , Células HeLa , Receptores de Peptídeos/metabolismo , Receptores de Peptídeos/genética , Polissacarídeos/metabolismo , Animais , Células HEK293RESUMO
Disulfide bond formation has a central role in protein folding of both eukaryotes and prokaryotes. In bacteria, disulfide bonds are catalyzed by DsbA and DsbB/VKOR enzymes. First, DsbA, a periplasmic disulfide oxidoreductase, introduces disulfide bonds into substrate proteins. Then, the membrane enzyme, either DsbB or VKOR, regenerate DsbA's activity by the formation of de novo disulfide bonds which reduce quinone. We have previously performed a high-throughput chemical screen and identified a family of warfarin analogs that target either bacterial DsbB or VKOR. In this work, we expressed functional human VKORc1 in Escherichia coli and performed a structure-activity-relationship analysis to study drug selectivity between bacterial and mammalian enzymes. We found that human VKORc1 can function in E. coli by removing two positive residues, allowing the search for novel anticoagulants using bacteria. We also found one warfarin analog capable of inhibiting both bacterial DsbB and VKOR and a second one antagonized only the mammalian enzymes when expressed in E. coli. The difference in the warfarin structure suggests that substituents at positions three and six in the coumarin ring can provide selectivity between the bacterial and mammalian enzymes. Finally, we identified the two amino acid residues responsible for drug binding. One of these is also essential for de novo disulfide bond formation in both DsbB and VKOR enzymes. Our studies highlight a conserved role of this residue in de novo disulfide-generating enzymes and enable the design of novel anticoagulants or antibacterials using coumarin as a scaffold.
Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Escherichia coli , Vitamina K Epóxido Redutases , Varfarina , Varfarina/metabolismo , Varfarina/química , Vitamina K Epóxido Redutases/metabolismo , Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/genética , Humanos , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dissulfetos/química , Dissulfetos/metabolismo , Cumarínicos/metabolismo , Cumarínicos/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética , Anticoagulantes/química , Anticoagulantes/metabolismo , Benzoquinonas/metabolismo , Benzoquinonas/química , Relação Estrutura-Atividade , Ligação Proteica , Proteínas de MembranaRESUMO
Proteins entering the secretory pathway need to attain native disulfide pairings to fold correctly. For proteins with complex disulfides, this process requires the reduction and isomerisation of non-native disulfides. Two key members of the protein disulfide isomerase (PDI) family, ERp57 and ERdj5 (also known as PDIA3 and DNAJC10, respectively), are thought to be required for correct disulfide formation but it is unknown whether they act as a reductase, an isomerase or both. In addition, it is unclear how reducing equivalents are channelled through PDI family members to substrate proteins. Here, we show that neither enzyme is required for disulfide formation, but ERp57 is required for isomerisation of non-native disulfides within glycoproteins. In addition, alternative PDIs compensate for the absence of ERp57 to isomerise glycoprotein disulfides, but only in the presence of a robust reductive pathway. ERdj5 is required for this alternative pathway to function efficiently indicating its role as a reductase. Our results define the essential cellular functions of two PDIs, highlighting a distinction between formation, reduction and isomerisation of disulfide bonds.
Assuntos
Oxirredutases , Isomerases de Dissulfetos de Proteínas , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Oxirredutases/metabolismo , Dobramento de Proteína , Glicoproteínas/metabolismo , Dissulfetos/metabolismo , OxirreduçãoRESUMO
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis worldwide, responsible for approximately 20 million infections annually. Among the three open reading frames (ORFs) of the HEV genome, the ORF3 protein is involved in virus release. However, the host proteins involved in HEV release need to be clarified. In this study, a host protein, thioredoxin domain-containing protein 5 (TXNDC5), interacted with the non-palmitoylated ORF3 protein by co-immunoprecipitation analysis. We determined that the overexpression or knockdown of TXNDC5 positively regulated HEV release from the host cells. The 17FCL19 mutation of the ORF3 protein lost the ability to interact with TXNDC5. The releasing amounts of HEV with the ORF3 mutation (FCL17-19SSP) were decreased compared with wild-type HEV. The overexpression of TXNDC5 can stabilize and increase ORF3 protein amounts, but not the TXNDC5 mutant with amino acids 1-88 deletion. Meanwhile, we determined that the function of TXNDC5 on the stabilization of ORF3 protein is independent of the Trx-like domains. Knockdown of TXNDC5 could lead to the degradation of ORF3 protein by the endoplasmic reticulum (ER)-associated protein degradation-proteasome system. However, the ORF3 protein cannot be degraded in the knockout-TXNDC5 stable cells, suggesting that it may hijack other proteins for its stabilization. Subsequently, we found that the other members of protein disulfide isomerase (PDI), including PDIA1, PDIA3, PDIA4, and PDIA6, can increase ORF3 protein amounts, and PDIA3 and PDIA6 interact with ORF3 protein. Collectively, our study suggested that HEV ORF3 protein can utilize TXNDC5 for its stability in ER to facilitate viral release. IMPORTANCE: Hepatitis E virus (HEV) infection is the leading cause of acute viral hepatitis worldwide. After the synthesis and modification in the cells, the mature ORF3 protein is essential for HEV release. However, the host protein involved in this process has yet to be determined. Here, we reported a novel host protein, thioredoxin domain-containing protein 5 (TXNDC5), as a chaperone, contributing to HEV release by facilitating ORF3 protein stability in the endoplasmic reticulum through interacting with non-palmitoylated ORF3 protein. However, we also found that in the knockout-TXNDC5 stable cell lines, the HEV ORF3 protein may hijack other proteins for its stabilization. For the first time, our study demonstrated the involvement of TXNDC5 in viral particle release. These findings provide some new insights into the process of the HEV life cycle, the interaction between HEV and host factors, and a new direction for antiviral design.
Assuntos
Vírus da Hepatite E , Hepatite E , Hepatite Viral Humana , Humanos , Vírus da Hepatite E/genética , Fatores Imunológicos , Isomerases de Dissulfetos de Proteínas/genética , Tiorredoxinas/genética , Vírion/metabolismoRESUMO
Oxidative protein folding in the endoplasmic reticulum (ER) depends on the coordinated action of protein disulfide isomerases and ER oxidoreductins (EROs). Strict dependence of ERO activity on molecular oxygen as the final electron acceptor implies that oxidative protein folding and other ER processes are severely compromised under hypoxia. Here, we isolated viable Arabidopsis thaliana ero1 ero2 double mutants that are highly sensitive to reductive stress and hypoxia. To elucidate the specific redox dynamics in the ER in vivo, we expressed the glutathione redox potential (EGSH) sensor Grx1-roGFP2iL-HDEL with a midpoint potential of -240 mV in the ER of Arabidopsis plants. We found EGSH values of -241 mV in wild-type plants, which is less oxidizing than previously estimated. In the ero1 ero2 mutants, luminal EGSH was reduced further to -253 mV. Recovery to reductive ER stress induced by dithiothreitol was delayed in ero1 ero2. The characteristic signature of EGSH dynamics in the ER lumen triggered by hypoxia was affected in ero1 ero2 reflecting a disrupted balance of reductive and oxidizing inputs, including nascent polypeptides and glutathione entry. The ER redox dynamics can now be dissected in vivo, revealing a central role of EROs as major redox integrators to promote luminal redox homeostasis.
Assuntos
Arabidopsis , Isomerases de Dissulfetos de Proteínas , Arabidopsis/genética , Arabidopsis/metabolismo , Ditiotreitol , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Glutationa/metabolismo , Hipóxia , Oxirredução , Oxigênio/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de ProteínaRESUMO
The cancer biomarker field has been an object of thorough investigation in the last decades. Despite this, colorectal cancer (CRC) heterogeneity makes it challenging to identify and validate effective prognostic biomarkers for patient classification according to outcome and treatment response. Although a massive amount of proteomics data has been deposited in public data repositories, this rich source of information is vastly underused. Here, we attempted to reuse public proteomics datasets with two main objectives: i) to generate hypotheses (detection of biomarkers) for their posterior/downstream validation, and (ii) to validate, using an orthogonal approach, a previously described biomarker panel. Twelve CRC public proteomics datasets (mostly from the PRIDE database) were re-analysed and integrated to create a landscape of protein expression. Samples from both solid and liquid biopsies were included in the reanalysis. Integrating this data with survival annotation data, we have validated in silico a six-gene signature for CRC classification at the protein level, and identified five new blood-detectable biomarkers (CD14, PPIA, MRC2, PRDX1, and TXNDC5) associated with CRC prognosis. The prognostic value of these blood-derived proteins was confirmed using additional public datasets, supporting their potential clinical value. As a conclusion, this proof-of-the-concept study demonstrates the value of re-using public proteomics datasets as the basis to create a useful resource for biomarker discovery and validation. The protein expression data has been made available in the public resource Expression Atlas.
Assuntos
Neoplasias Colorretais , Proteômica , Humanos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas Sanguíneas , Isomerases de Dissulfetos de ProteínasRESUMO
Oxidative protein folding occurs in the endoplasmic reticulum (ER) to generate disulfide bonds, and the by-product is hydrogen peroxide (H2 O2 ). However, the relationship between oxidative protein folding and senescence remains uncharacterized. Here, we find that the protein disulfide isomerase (PDI), a key oxidoreductase that catalyzes oxidative protein folding, accumulated in aged human mesenchymal stem cells (hMSCs) and deletion of PDI alleviated hMSCs senescence. Mechanistically, knocking out PDI slows the rate of oxidative protein folding and decreases the leakage of ER-derived H2 O2 into the nucleus, thereby decreasing the expression of SERPINE1, which was identified as a key driver of cell senescence. Furthermore, we show that depletion of PDI alleviated senescence in various cell models of aging. Our findings reveal a previously unrecognized role of oxidative protein folding in promoting cell aging, providing a potential target for aging and aging-related disease intervention.
Assuntos
Isomerases de Dissulfetos de Proteínas , Dobramento de Proteína , Humanos , Idoso , Oxirredução , Isomerases de Dissulfetos de Proteínas/genética , Retículo Endoplasmático/metabolismo , Estresse OxidativoRESUMO
Dysregulated T cell activation underpins the immunopathology of rheumatoid arthritis (RA), yet the machineries that orchestrate T cell effector program remain incompletely understood. Herein, we leveraged bulk and single-cell RNA sequencing data from RA patients and validated protein disulfide isomerase family A member 3 (PDIA3) as a potential therapeutic target. PDIA3 is remarkably upregulated in pathogenic CD4 T cells derived from RA patients and positively correlates with C-reactive protein level and disease activity score 28. Pharmacological inhibition or genetic ablation of PDIA3 alleviates RA-associated articular pathology and autoimmune responses. Mechanistically, T cell receptor signaling triggers intracellular calcium flux to activate NFAT1, a process that is further potentiated by Wnt5a under RA settings. Activated NFAT1 then directly binds to the Pdia3 promoter to enhance the expression of PDIA3, which complexes with STAT1 or PKM2 to facilitate their nuclear import for transcribing T helper 1 (Th1) and Th17 lineage-related genes, respectively. This non-canonical regulatory mechanism likely occurs under pathological conditions, as PDIA3 could only be highly induced following aberrant external stimuli. Together, our data support that targeting PDIA3 is a vital strategy to mitigate autoimmune diseases, such as RA, in clinical settings.
Assuntos
Artrite Reumatoide , Isomerases de Dissulfetos de Proteínas , Fator de Transcrição STAT1 , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Humanos , Artrite Reumatoide/metabolismo , Camundongos , Animais , Fator de Transcrição STAT1/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Transporte Ativo do Núcleo Celular , Proteínas de Transporte/metabolismo , Transdução de Sinais , Proteínas de Ligação a Hormônio da Tireoide , Fatores de Transcrição NFATC/metabolismo , Ativação Linfocitária , Hormônios Tireóideos/metabolismo , Regulação da Expressão Gênica , Células Th17/metabolismo , Células Th17/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Modelos Animais de Doenças , Piruvato QuinaseRESUMO
Although oxaliplatin (OXA) is widely used in the frontline treatment of colorectal cancer (CRC), CRC recurrence is commonly observed due to OXA resistance. OXA resistance is associated with a number of factors, including abnormal regulation of pyroptosis. It is therefore important to elucidate the abnormal regulatory mechanism underlying pyroptosis. Here, we identified that the circular RNA circPDIA3 played an important role in chemoresistance in CRC. CircPDIA3 could induce chemoresistance in CRC by inhibiting pyroptosis both in vitro and in vivo. Mechanistically, RIP, RNA pull-down and co-IP assays revealed that circPDIA3 directly bonded to the GSDME-C domain, subsequently enhanced the autoinhibitory effect of the GSDME-C domain through blocking the GSDME-C domain palmitoylation by ZDHHC3 and ZDHHC17, thereby restraining pyroptosis. Additionally, it was found that the circPDIA3/miR-449a/XBP1 positive feedback loop increased the expression of circPDIA3 to induce chemoresistance. Furthermore, our clinical data and patient-derived tumor xenograft (PDX) models supported the positive association of circPDIA3 with development of chemoresistance in CRC patients. Taken together, our findings demonstrated that circPDIA3 could promote chemoresistance by amplifying the autoinhibitory effect of the GSDME-C domain through inhibition of the GSDME-C domain palmitoylation in CRC. This study provides novel insights into the mechanism of circRNA in regulating pyroptosis and providing a potential therapeutic target for reversing chemoresistance of CRC.
Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Lipoilação , MicroRNAs , Piroptose , RNA Circular , Animais , Humanos , Camundongos , Aciltransferases/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lipoilação/efeitos dos fármacos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Oxaliplatina/farmacologia , Piroptose/efeitos dos fármacos , RNA Circular/genética , RNA Circular/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismoRESUMO
In bacteria, disulfide bonds contribute to the folding and stability of proteins important for processes in the cellular envelope. In Escherichia coli, disulfide bond formation is catalyzed by DsbA and DsbB enzymes. DsbA is a periplasmic protein that catalyzes disulfide bond formation in substrate proteins, while DsbB is an inner membrane protein that transfers electrons from DsbA to quinones, thereby regenerating the DsbA active state. Actinobacteria including mycobacteria use an alternative enzyme named VKOR, which performs the same function as DsbB. Disulfide bond formation enzymes, DsbA and DsbB/VKOR, represent novel drug targets because their inhibition could simultaneously affect the folding of several cell envelope proteins including virulence factors, proteins involved in outer membrane biogenesis, cell division, and antibiotic resistance. We have previously developed a cell-based and target-based assay to identify molecules that inhibit the DsbB and VKOR in pathogenic bacteria, using E. coli cells expressing a periplasmic ß-Galactosidase sensor (ß-Galdbs), which is only active when disulfide bond formation is inhibited. Here, we report the construction of plasmids that allows fine-tuning of the expression of the ß-Galdbs sensor and can be mobilized into other gram-negative organisms. As an example, when expressed in Pseudomonas aeruginosa UCBPP-PA14, which harbors two DsbB homologs, ß-Galdbs behaves similarly as in E. coli, and the biosensor responds to the inhibition of the two DsbB proteins. Thus, these ß-Galdbs reporter plasmids provide a basis to identify novel inhibitors of DsbA and DsbB/VKOR in multidrug-resistant gram-negative pathogens and to further study oxidative protein folding in diverse gram-negative bacteria. IMPORTANCE: Disulfide bonds contribute to the folding and stability of proteins in the bacterial cell envelope. Disulfide bond-forming enzymes represent new drug targets against multidrug-resistant bacteria because inactivation of this process would simultaneously affect several proteins in the cell envelope, including virulence factors, toxins, proteins involved in outer membrane biogenesis, cell division, and antibiotic resistance. Identifying the enzymes involved in disulfide bond formation in gram-negative pathogens as well as their inhibitors can contribute to the much-needed antibacterial innovation. In this work, we developed sensors of disulfide bond formation for gram-negative bacteria. These tools will enable the study of disulfide bond formation and the identification of inhibitors for this crucial process in diverse gram-negative pathogens.
Assuntos
Proteínas de Bactérias , Escherichia coli , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Fatores de Virulência/metabolismo , Dissulfetos/química , OxirreduçãoRESUMO
Ferroptosis is a recently identified form of regulated cell death, characterized by excessive iron-dependent lipid peroxidation. Recent studies have demonstrated that protein disulfide isomerase (PDI) is an important mediator of chemically induced ferroptosis and also a new target for protection against ferroptosis-associated cell death. In the present study, we identified that 4-hydroxyestrone (4-OH-E1), a metabolic derivative of endogenous estrogen, is a potent small-molecule inhibitor of PDI, and can strongly protect against chemically induced ferroptotic cell death in the estrogen receptor-negative MDA-MB-231 human breast cancer cells. Pull-down and CETSA assays demonstrated that 4-OH-E1 can directly bind to PDI both in vitro and in intact cells. Computational modeling analysis revealed that 4-OH-E1 forms two hydrogen bonds with PDI His256, which is essential for its binding interaction and thus inhibition of PDI's catalytic activity. Additionally, PDI knockdown attenuates the protective effect of 4-OH-E1 as well as cystamine (a known PDI inhibitor) against chemically induced ferroptosis in human breast cancer cells. Importantly, inhibition of PDI by 4-OH-E1 and cystamine or PDI knockdown by siRNAs each markedly reduces iNOS activity and NO accumulation, which has recently been demonstrated to play an important role in erastin-induced ferroptosis. In conclusion, this study demonstrates that 4-OH-E1 is a novel inhibitor of PDI and can strongly inhibit ferroptosis in human breast cancer cells in an estrogen receptor-independent manner. The mechanistic understanding gained from the present study may also aid in understanding the estrogen receptor-independent cytoprotective actions of endogenous estrogen metabolites in many noncancer cell types.
Assuntos
Neoplasias da Mama , Hidroxiestronas , Piperazinas , Isomerases de Dissulfetos de Proteínas , Humanos , Feminino , Isomerases de Dissulfetos de Proteínas/química , Neoplasias da Mama/tratamento farmacológico , Cistamina , Morte Celular , Estrogênios , Receptores de EstrogênioRESUMO
BACKGROUND: Despite radiotherapy ability to significantly improve treatment outcomes and survival in triple-negative breast cancer (TNBC) patients, acquired resistance to radiotherapy poses a serious clinical challenge. Protein disulfide isomerase exists in endoplasmic reticulum and plays an important role in promoting protein folding and post-translational modification. However, little is known about the role of protein disulfide isomerase family member 4 (PDIA4) in TNBC, especially in the context of radiotherapy resistance. METHODS: We detected the presence of PDIA4 in TNBC tissues and paracancerous tissues, then examined the proliferation and apoptosis of TNBC cells with/without radiotherapy. As part of the validation process, xenograft tumor mouse model was used. Mass spectrometry and western blot analysis were used to identify PDIA4-mediated molecular signaling pathway. RESULTS: Based on paired clinical specimens of TNBC patients, we found that PDIA4 expression was significantly higher in tumor tissues compared to adjacent normal tissues. In vitro, PDIA4 knockdown not only increased apoptosis of tumor cells with/without radiotherapy, but also decreased the ability of proliferation. In contrast, overexpression of PDIA4 induced the opposite effects on apoptosis and proliferation. According to Co-IP/MS results, PDIA4 prevented Tax1 binding protein 1 (TAX1BP1) degradation by binding to TAX1BP1, which inhibited c-Jun N-terminal kinase (JNK) activation. Moreover, PDIA4 knockdown suppressed tumor growth xenograft model in vivo, which was accompanied by an increase in apoptosis and promoted tumor growth inhibition after radiotherapy. CONCLUSIONS: The results of this study indicate that PDIA4 is an oncoprotein that promotes TNBC progression, and targeted therapy may represent a new and effective anti-tumor strategy, especially for patients with radiotherapy resistance.
Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/radioterapia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Carcinogênese , Transformação Celular Neoplásica , Família , Linhagem Celular Tumoral , Proliferação de CélulasRESUMO
Loss of AT-interacting domain-rich protein 1A (ARID1A) frequently occurs in human malignancies including lung cancer. The biological consequence of ARID1A mutation in lung cancer is not fully understood. This study was designed to determine the effect of ARID1A-depleted lung cancer cells on fibroblast activation. Conditioned media was collected from ARID1A-depleted lung cancer cells and employed to treat lung fibroblasts. The proliferation and migration of lung fibroblasts were investigated. The secretory genes were profiled in lung cancer cells upon ARID1A knockdown. Antibody-based neutralization was utilized to confirm their role in mediating the cross-talk between lung cancer cells and fibroblasts. NOD-SCID-IL2RgammaC-null (NSG) mice received tumor tissues from patients with ARID1A-mutated lung cancer to establish patient-derived xenograft (PDX) models. Notably, ARID1A-depleted lung cancer cells promoted the proliferation and migration of lung fibroblasts. Mechanistically, ARID1A depletion augmented the expression and secretion of prolyl 4-hydroxylase beta (P4HB) in lung cancer cells, which induced the activation of lung fibroblasts through the ß-catenin signaling pathway. P4HB-activated lung fibroblasts promoted the proliferation, invasion, and chemoresistance in lung cancer cells. Neutralizing P4HB hampered the tumor growth and increased cisplatin cytotoxic efficacy in two PDX models. Serum P4HB levels were higher in ARID1A-mutated lung cancer patients than in healthy controls. Moreover, increased serum levels of P4HB were significantly associated with lung cancer metastasis. Together, our work indicates a pivotal role for P4HB in orchestrating the cross-talk between ARID1A-mutated cancer cells and cancer-associated fibroblasts during lung cancer progression. P4HB may represent a promising target for improving lung cancer treatment.