Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.570
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2403049121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38691587

RESUMO

Molecular chaperones assist in protein refolding by selectively binding to proteins in their nonnative states. Despite progress in creating artificial chaperones, these designs often have a limited range of substrates they can work with. In this paper, we present molecularly imprinted flexible polymer nanoparticles (nanoMIPs) designed as customizable biomimetic chaperones. We used model proteins such as cytochrome c, laccase, and lipase to screen polymeric monomers and identify the most effective formulations, offering tunable charge and hydrophobic properties. Utilizing a dispersed phase imprinting approach, we employed magnetic beads modified with destabilized whole-protein as solid-phase templates. This process involves medium exchange facilitated by magnetic pulldowns, resulting in the synthesis of nanoMIPs featuring imprinted sites that effectively mimic chaperone cavities. These nanoMIPs were able to selectively refold denatured enzymes, achieving up to 86.7% recovery of their activity, significantly outperforming control samples. Mechanistic studies confirmed that nanoMIPs preferentially bind denatured rather than native enzymes, mimicking natural chaperone interactions. Multifaceted analyses support the functionality of nanoMIPs, which emulate the protective roles of chaperones by selectively engaging with denatured proteins to inhibit aggregation and facilitate refolding. This approach shows promise for widespread use in protein recovery within biocatalysis and biomedicine.


Assuntos
Chaperonas Moleculares , Nanopartículas , Polímeros , Desnaturação Proteica , Nanopartículas/química , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Polímeros/química , Redobramento de Proteína , Dobramento de Proteína , Citocromos c/química , Citocromos c/metabolismo , Lacase/química , Lacase/metabolismo , Lipase/química , Lipase/metabolismo
2.
Small ; 20(24): e2311275, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38196019

RESUMO

Nanomaterials with biomimetic catalytic abilities have attracted significant attention. However, the stereoselectivity of natural enzymes determined by their unique configurations is difficult to imitate. In this work, a kind of chiral CuxCoyS-CuzS nanoflowers (L/D-Pen-NFs) is developed, using porous CuxCoyS nanoparticles (NPs) as stamens, CuzS sheets as petals, and chiral penicillamine as surface stabilizers. Compared to the natural laccase enzyme, L/D-Pen-NFs exhibit significant advantages in catalytic efficiency, stability against harsh environments, recyclability, and convenience in construction. Most importantly, they display high enantioselectivity toward chiral neurotransmitters, which is proved by L- and D-Pen-NFs' different catalytic efficiencies toward chiral enantiomers. L-Pen-NFs are more efficient in catalyzing the oxidation of L-epinephrine and L-dopamine compared with D-Pen-NFs. However, their catalytic efficiency in oxidizing L-norepinephrine and L-DOPA is lower than that of D-Pen-NFs. The reason for the difference in catalytic efficiency is the distinct binding affinities between CuxCoyS-CuzS nano-enantiomers and chiral molecules. This work can spur the development of chiral nanostructures with biomimetic functions.


Assuntos
Cobre , Catálise , Cobre/química , Estereoisomerismo , Nanoestruturas/química , Biomimética/métodos , Oxirredução , Lacase/química , Lacase/metabolismo
3.
Chembiochem ; 25(2): e202300627, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37947295

RESUMO

Antibiotics are micropollutants accumulating in our rivers and wastewaters, potentially leading to bacterial antibiotic resistance, a worldwide problem to which there is no current solution. Here, we have developed an environmentally friendly two-step process to transform the antibiotic rifampicin (RIF) into non-antimicrobial compounds. The process involves an enzymatic oxidation step by the bacterial CotA-laccase and a hydrogen peroxide bleaching step. NMR identified rifampicin quinone as the main product of the enzymatic oxidation. Growth of Escherichia coli strains in the presence of final degradation products (FP) and minimum inhibitory concentration (MIC) measurements confirmed that FP are non-anti-microbial compounds, and bioassays suggest that FP is not toxic to eukaryotic organisms. Moreover, competitive fitness assays between susceptible and RIF-resistant bacteria show that susceptible bacteria is strongly favoured in the presence of FP. Our results show that we have developed a robust and environmentally friendly process to effectively remediate rifampicin from antibiotic contaminated environments.


Assuntos
Peróxido de Hidrogênio , Lacase , Lacase/química , Peróxido de Hidrogênio/metabolismo , Rifampina/farmacologia , Rifampina/metabolismo , Escherichia coli/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo
4.
Chemistry ; 30(21): e202400269, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38329391

RESUMO

Recently, catalytic valorization of biomass-derived furans has received growing interest. 5-Aminomethyl-2-furancarboxylic acid (AMFC), a furan amino acid, holds great promise in the aeras of polymer and pharmaceutical, but its synthesis remains limited. In this work, we report a chemobiocatalytic route toward AMFC by combining laccase-TEMPO system and recombinant Escherichia coli (named E. coli_TAF) harboring ω-transaminase (TA), L-alanine dehydrogenase (L-AlaDH) and formate dehydrogenase (FDH), starting from 5-hydroxymethylfurfural (HMF). In the cascade, HMF is oxidized into 5-formyl-2-furancarboxylic acid (FFCA) by laccase-TEMPO system, and then the resulting intermediate is converted into AMFC by E. coli_TAF via transamination with cheap ammonium formate instead of costly organic amine donors, theoretically generating H2O and CO2 as by-products. The tandem process was run in a one-pot twostep manner, affording AMFC with approximately 81 % yield, together with 10 % 2,5-furandicarboxylic acid (FDCA) as by-product. In addition, the scale-up production of AMFC was demonstrated, with 0.41 g/L h productivity and 8.6 g/L titer. This work may pave the way for green manufacturing of the furan-containing amino acid.


Assuntos
Escherichia coli , Furaldeído/análogos & derivados , Lacase , Escherichia coli/metabolismo , Lacase/química , Aminoácidos , Furanos/química , Furaldeído/química , Furaldeído/metabolismo , Ácidos Dicarboxílicos/química
5.
Biopolymers ; 115(4): e23586, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38747448

RESUMO

Cellulose nanofibers, a sustainable and promising material with widespread applications, exhibit appreciable strength and excellent mechanical and physicochemical properties. The preparation of cellulosic nanofibers from food or agricultural residue is not sustainable. Therefore, this study was designed to use three halophytic plants (Cressa cretica, Phragmites karka, and Suaeda fruticosa) to extract cellulose for the subsequent conversion to cellulosic nanofibers composites. The other extracted biomass components including lignin, hemicellulose, and pectin were also utilized to obtain industrially valuable enzymes. The maximum pectinase (31.56 IU mL-1), xylanase (35.21 IU mL-1), and laccase (15.89 IU mL-1) were produced after the fermentation of extracted pectin, hemicellulose, and lignin from S. fruticosa, P. karka, and C. cretica, respectively. Cellulose was methylated (with a degree of substitution of 2.4) and subsequently converted into a composite using polyvinyl alcohol. Scanning electron microscopy and Fourier-transform infrared spectroscopy confirmed the successful synthesis of the composites. The composites made up of cellulose from C. cretica and S. fruticosa had a high tensile strength (21.5 and 15.2 MPa) and low biodegradability (47.58% and 44.56%, respectively) after dumping for 3 months in soil, as compared with the composite from P. karka (98.79% biodegradability and 4.9 MPa tensile strength). Moreover, all the composites exhibited antibacterial activity against gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae) and gram-positive bacteria (Staphylococcus aureus). Hence, this study emphasizes the possibility for various industrial applications of biomass from halophytic plants.


Assuntos
Celulose , Celulose/química , Plantas Tolerantes a Sal/química , Plantas Tolerantes a Sal/metabolismo , Lignina/química , Resistência à Tração , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Poligalacturonase/metabolismo , Poligalacturonase/química , Espectroscopia de Infravermelho com Transformada de Fourier , Lacase/metabolismo , Lacase/química , Nanofibras/química , Pectinas/química , Pectinas/isolamento & purificação , Pectinas/metabolismo , Chenopodiaceae/química , Chenopodiaceae/metabolismo , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/química
6.
Microb Cell Fact ; 23(1): 150, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790055

RESUMO

BACKGROUND: Azo dyes represent a common textile dye preferred for its high stability on fabrics in various harsh conditions. Although these dyes pose high-risk levels for all biological forms, fungal laccase is known as a green catalyst for its ability to oxidize numerous dyes. METHODS: Trichoderma isolates were identified and tested for laccase production. Laccase production was optimized using Plackett-Burman Design. Laccase molecular weight and the kinetic properties of the enzyme, including Km and Vmax, pH, temperature, and ionic strength, were detected. Azo dye removal efficiency by laccase enzyme was detected for Congo red, methylene blue, and methyl orange. RESULTS: Eight out of nine Trichoderma isolates were laccase producers. Laccase production efficiency was optimized by the superior strain T. harzianum PP389612, increasing production from 1.6 to 2.89 U/ml. In SDS-PAGE, purified laccases appear as a single protein band with a molecular weight of 41.00 kDa. Km and Vmax values were 146.12 µmol guaiacol and 3.82 µmol guaiacol/min. Its activity was stable in the pH range of 5-7, with an optimum temperature range of 40 to 50 °C, optimum ionic strength of 50 mM NaCl, and thermostability properties up to 90 °C. The decolorization efficiency of laccase was increased by increasing the time and reached its maximum after 72 h. The highest efficiency was achieved in Congo red decolorization, which reached 99% after 72 h, followed by methylene blue at 72%, while methyl orange decolorization efficiency was 68.5%. CONCLUSION: Trichoderma laccase can be used as an effective natural bio-agent for dye removal because it is stable and removes colors very well.


Assuntos
Compostos Azo , Corantes , Lacase , Temperatura , Lacase/metabolismo , Lacase/química , Lacase/isolamento & purificação , Compostos Azo/metabolismo , Corantes/metabolismo , Corantes/química , Cinética , Concentração de Íons de Hidrogênio , Vermelho Congo/metabolismo , Concentração Osmolar , Hypocreales/enzimologia , Hypocreales/metabolismo , Biodegradação Ambiental , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação
7.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 1-9, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430048

RESUMO

Production of a thermostable laccase from Pleurotus florida was reported for the first time, both in submerged and solid-state fermentation using agro-industrial residues. This enzyme was purified using ammonium sulphate precipitation (60-90%), Sephadex G-100 and DEAE column ion exchange chromatography, respectively. The laccase was purified to 21.49 fold with an apparent molecular weight of 66 kDa and had an optimal pH of 5 with temperature stability at 60°C. Metal ions such as Cu2+ (91.26 µmole/mL/min), Mg2+ (68.15 µmole/mL/min), and Fe2+ (1.73 µmole/mL/min) enhanced the laccase activity, but Fe2+ (1.73µmole/mL/min) inhibited the enzyme activity. The purified laccase had Km and Vmax of 16.68 mM and 26.73 µmole/mL/min for guaiacol as a substrate. The isolated enzyme was characterized by FT-IR which revealed bands at 3655.0 cm-1, 2894.7 cm-1, and 1151.7 cm-1 corresponding to primary amines, C-H stretch, and amide -III, respectively. The enzymatic bio bleaching of paddy straw pulp was found to be most effective which resulted in a lowering of kappa number and yellowness by 19.47% & 17.84% whereas an increase in brightness and whiteness by 41.92%. & -19.61%. Thus, this might be stated that the crude laccase from P. florida can be exploited to reduce the toxic waste load for managing environmental pollution and helps in enhancing the yield and quality of the paper.


Assuntos
Lacase , Pleurotus , Lacase/química , Espectroscopia de Infravermelho com Transformada de Fourier , Peso Molecular , Compostos de Sódio
8.
Environ Res ; 246: 118097, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176629

RESUMO

This study examined the use of modified multiwall carbon nanotubes (M-MWCNTs) with immobilized laccase (L@M-MWCNTs) for removing ciprofloxacin (Cip), carbamazepine (Cbz), diclofenac (Dcf), benzo[a]pyrene (Bap), and anthracene (Ant) from different water samples. The synthesized materials were characterized using an array of advanced analytical techniques. The physical immobilization of laccase onto M-MWCNTs was confirmed through Scanning electron microscope (SEM)-dispersive X-ray spectroscopy (EDS) analysis and Brunner-Emmet-Teller (BET) surface area measurements. The specific surface area of M-MWCNTs decreased by 65% upon laccase immobilization. There was also an increase in nitrogen content seen by EDS analysis asserting successful immobilization. The results of Boehm titration and Fourier transform infrared (FTIR) exhibited an increase in acidic functional groups after laccase immobilization. L@M-MWCNTs storage for two months maintained 77.8%, 61.6%, and 57.6% of its initial activity for 4 °C, 25 °C, and 35 °C, respectively. In contrast, the free laccase exhibited 55.3%, 37.5%, and 23.5% of its initial activity at 4 °C, 25 °C, and 35 °C, respectively. MWCNTs improved storability and widened the working temperature range of laccase. The optimum removal conditions of studied pollutants were pH 5, 25 °C, and 1.6 g/L of M-MWCNTs. These parameters led to >90% removal of the targeted pollutants for four treatment cycles of both synthetic water and spiked lake water. L@M-MWCNTs demonstrated consistent removal of >90% for up to five cycles even with spiked wastewater. The adsorption was endothermic and followed Langmuir isotherm. Oxidation, dehydrogenation, hydroxylation, and ring cleavage seem to be the dominant degradation mechanisms.


Assuntos
Poluentes Ambientais , Nanotubos de Carbono , Poluentes Químicos da Água , Águas Residuárias , Nanotubos de Carbono/química , Água , Lacase/química , Lacase/metabolismo , Lagos , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise , Cinética , Adsorção
9.
Environ Res ; 251(Pt 1): 118565, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431073

RESUMO

This study endeavors to develop cost-effective environmentally friendly technology for removing harmful residual pharmaceuticals from water and wastewater by utilizing the effective adsorption of pistachio shell (PS) biochar and the degradation potency of laccase immobilized on the biochar (L@PSAC). The carbonatization and activation of the shells were optimized regarding temperature, time, and NH4NO3/PS ratio. This step yielded an optimum PS biochar (PSAC) with the highest porosity and surface area treated at 700 °C for 3 h using an NH4NO3/PS ratio of 3% wt. The immobilization of laccase onto PSAC (L@PSAC) was at its best level at pH 5, 60 U/g, and 30 °C. The optimum L@PSAC maintained a high level of enzyme activity over two months. Almost a complete removal (>99%) of diclofenac, carbamazepine, and ciprofloxacin in Milli-Q (MQ) water and wastewater was achieved. Adsorption was responsible for >80% of the removal and the rest was facilitated by laccase degradation. L@PSAC maintained effective removal of pharmaceuticals of ≥60% for up to six treatment cycles underscoring the promising application of this material for wastewater treatment. These results indicate that activated carbon derived from the pistachio shell could potentially be utilized as a carrier and adsorbent to efficiently remove pharmaceutical compounds. This enzymatic physical elimination approach has the potential to be used on a large-scale.


Assuntos
Carvão Vegetal , Lacase , Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/química , Carvão Vegetal/química , Lacase/química , Purificação da Água/métodos , Adsorção , Pistacia/química , Preparações Farmacêuticas/química , Enzimas Imobilizadas/química , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Diclofenaco/química , Diclofenaco/isolamento & purificação , Carbamazepina/química , Carbamazepina/isolamento & purificação
10.
Biotechnol Lett ; 46(4): 559-569, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38748066

RESUMO

The effective recovery of the immobilized enzymes using magnetic carriers has led to growing interest in this technology. The objective of this research was to evaluate the efficiency of immobilized laccase on magnetized multiwall carbon nanotubes (m-MWCNTs) in terms of stability and reusability. Laccases were efficiently adsorbed onto magnetized multiwall carbon nanotubes (m-MWCNTs) synthesized using water. The concentration of 7 mg laccase/mL was found to be ideal for immobilization. The optimal activity of both free and immobilized laccases was observed at pH 5, while for the latter, the optimal temperature was shifted from 40 to 50 °C. Compared to the free laccase, the immobilized laccase exhibited a greater range of stability at more extreme temperatures. At the fourth cycle of reactions, the immobilized laccase exhibited more than 60% relative activity in terms of reusability. Based on the fourier-transform infrared spectroscopy (FTIR) peak at 2921 cm-1, saccharification of paddy straw using immobilized laccase verified lignin degradation. The easy recovery of the immobilized laccase on m-MWCNTs lends credence to its potential use in biomass hydrolysis.


Assuntos
Enzimas Imobilizadas , Lacase , Nanotubos de Carbono , Lacase/química , Lacase/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Nanotubos de Carbono/química , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Temperatura , Lignina/química , Lignina/metabolismo , Oryza/química
11.
Biodegradation ; 35(2): 155-171, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37428416

RESUMO

Tetracyclines are antibiotics considered emerging pollutants and currently, wastewater treatment plants are not able to remove them efficiently. Laccases are promising enzymes for bioremediation because they can oxidize a wide variety of substrates. The aim of this study was to evaluate the Botrytis aclada laccase for the oxidation of chlortetracycline and its isomers in the absence of a mediator molecule, at a pH range between 3.0 to 7.0, and to characterize the transformation products by LC-MS. Chlortetracycline and three isomers were detected in both, controls and reaction mixtures at 0 h and in controls after 48 h of incubation but in different proportions depending on pH. An additional isomer was also detected, but only in the presence of BaLac. Based on the transformation products identified in the enzymatic reactions and information from literature, we assembled a network of transformation pathways starting from chlortetracycline and its isomers. The spectrometric analysis of the products indicated the probable occurrence of oxygen insertion, dehydrogenation, demethylation and deamination reactions. Four new products were identified, and we also described a novel transformation product without the chloro group. We observed that increasing pH led to higher diversity of main products. This is the first study using the laccase from fungi Botrytis aclada to oxidate chlortetracycline and its isomers and it can be considered as an ecological alternative to be used in bioremediation processes such as wastewater.


Assuntos
Botrytis , Clortetraciclina , Espectrometria de Massa com Cromatografia Líquida , Lacase/química , Lacase/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Concentração de Íons de Hidrogênio , Oxirredução
12.
Chem Biodivers ; 21(6): e202302033, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38616167

RESUMO

To explore more potential fungicides with new scaffolds, thirty-seven norbornene carboxamide/sulfonamide derivatives were designed, synthesized, and assayed for inhibitory activity against six plant pathogenic fungi and oomycetes. The preliminary antifungal assay suggested that the title derivatives showed moderate to good antifungal activity against six plant pathogens. Especially, compound 6 e presented excellent in vitro antifungal activity against Sclerotinia sclerotiorum (EC50=0.71 mg/L), which was substantially stronger than pydiflumetofen. In vivo antifungal assay indicated 6 e displayed prominent protective and curative effects on rape leaves infected by S. sclerotiorum. The preliminary mechanism research displayed that 6 e could damage the surface morphology and inhibit the sclerotia formation of S. sclerotiorum. In addition, the in vitro enzyme inhibition bioassay indicated that 6 e displayed pronounced laccase inhibition activity (IC50=0.63 µM), much stronger than positive control cysteine. Molecular docking elucidated the binding modes between 6 e and laccase. The bioassay results and mechanism investigation demonstrated that this class of norbornene carboxamide/sulfonamide derivatives could be promising laccase inhibitors for novel fungicide development.


Assuntos
Lacase , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Norbornanos , Sulfonamidas , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Lacase/metabolismo , Lacase/antagonistas & inibidores , Lacase/química , Relação Estrutura-Atividade , Norbornanos/química , Norbornanos/farmacologia , Norbornanos/síntese química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Ascomicetos/efeitos dos fármacos , Estrutura Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Relação Dose-Resposta a Droga
13.
Mikrochim Acta ; 191(9): 544, 2024 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158765

RESUMO

As a kind of aminoglycoside antibiotics, kanamycin (KAN) is widely applied to animal husbandry and aquaculture. However, the abuse of KAN causes the large-scale discharge of it into rivers, lakes and groundwater, which threatens environmental safety and human health. Therefore, it is imperative to develop a method that is applicable to detect KAN in an efficient and accurate way. The colorimetric method based on enzymes provides a feasible solution for the detection of organic pollutants. However, the extensive application of natural enzymes is constrained by high cost and low stability. Herein, a polyoxometalate-based nanozyme, namely [H7SiW9V3O40(DPA)3]·4H2O (SiW9V3/DPA) (DPA = dipyridylamine), is synthesized. As a low-cost nanozyme with high stability compared to natural enzymes, SiW9V3/DPA performs well in laccase-mimicking activity. It can be used to induce chromogenic reaction between 2,4-dichlorophenol (2,4-DP) and 4-aminoantipyrine (4-AP), which generates red products. With the addition of KAN, the color fades. That is to say, KAN can be detected with colorimetric assay in the concentration range 0.1 to 100 µM with high selectivity and low limit of detection (LOD) of 6.28 µM. Moreover, SiW9V3/DPA is applied to KAN detection in lake and river water and milk with satisfactory results. To sum up, polyoxometalate-based nanozyme is expected to provide a promising solution to the detection of organic pollutants in the aquatic environment.


Assuntos
Colorimetria , Canamicina , Lacase , Compostos de Tungstênio , Colorimetria/métodos , Lacase/química , Lacase/metabolismo , Canamicina/análise , Compostos de Tungstênio/química , Limite de Detecção , Poluentes Químicos da Água/análise , Materiais Biomiméticos/química , Ampirona/química
14.
Bioprocess Biosyst Eng ; 47(4): 475-482, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480583

RESUMO

Use of white-rot fungi for enzyme-based bioremediation of wastewater is of high interest. These fungi produce considerable amounts of extracellular ligninolytic enzymes during solid-state fermentation on lignocellulosic materials such as straw and sawdust. We used pure sawdust colonized by Pleurotus ostreatus, Trametes versicolor, and Ganoderma lucidum for extraction of ligninolytic enzymes in aqueous suspension. Crude enzyme suspensions of the three fungi, with laccase activity range 12-43 U/L and manganese peroxidase activity range 5-55 U/L, were evaluated for degradation of 11 selected pharmaceuticals spiked at environmentally relevant concentrations. Sulfamethoxazole was removed significantly in all treatments. The crude enzyme suspension from P. ostreatus achieved degradation of wider range of pharmaceuticals when the enzyme activity was increased. Brief homogenization of the colonized sawdust was also observed to be favorable, resulting in significant reductions after a short exposure of 5 min. The highest reduction was observed for sulfamethoxazole which was reduced by 84% compared to an autoclaved control without enzyme activity and for trimethoprim which was reduced by 60%. The compounds metoprolol, lidocaine, and venlafaxine were reduced by approximately 30% compared to the control. Overall, this study confirmed the potential of low-cost lignocellulosic material as a substrate for production of enzymes from white-rot fungi. However, monitoring over time in bioreactors revealed a rapid decrease in enzymatic ligninolytic activity.


Assuntos
Pleurotus , Trametes , Lacase/química , Lignina/metabolismo , Fermentação , Sulfametoxazol/metabolismo , Preparações Farmacêuticas/metabolismo , Biodegradação Ambiental
15.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126090

RESUMO

Recently, prokaryotic laccases from lactic acid bacteria (LAB), which can degrade biogenic amines, were discovered. A laccase enzyme has been cloned from Oenococcus oeni, a very important LAB in winemaking, and it has been expressed in Escherichia coli. This enzyme has similar characteristics to those previously isolated from LAB as the ability to oxidize canonical substrates such as 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,6-dimethoxyphenol (2,6-DMP), and potassium ferrocyanide K4[Fe(CN6)], and non-conventional substrates as biogenic amines. However, it presents some distinctiveness, the most characteristic being its psychrophilic behaviour, not seen before among these enzymes. Psychrophilic enzymes capable of efficient catalysis at low temperatures are of great interest due to their potential applications in various biotechnological processes. In this study, we report the discovery and characterization of a new psychrophilic laccase, a multicopper oxidase (MCO), from the bacterium Oenococcus oeni. The psychrophilic laccase gene, designated as LcOe 229, was identified through the genomic analysis of O. oeni, a Gram-positive bacterium commonly found in wine fermentation. The gene was successfully cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. Biochemical characterization of the psychrophilic laccase revealed its optimal activity at low temperatures, with a peak at 10 °C. To our knowledge, this is the lowest optimum temperature described so far for laccases. Furthermore, the psychrophilic laccase demonstrated remarkable stability and activity at low pH (optimum pH 2.5 for ABTS), suggesting its potential for diverse biotechnological applications. The kinetic properties of LcOe 229 were determined, revealing a high catalytic efficiency (kcat/Km) for several substrates at low temperatures. This exceptional cold adaptation of LcOe 229 indicates its potential as a biocatalyst in cold environments or applications requiring low-temperature processes. The crystal structure of the psychrophilic laccase was determined using X-ray crystallography demonstrating structural features similar to other LAB laccases, such as an extended N-terminal and an extended C-terminal end, with the latter containing a disulphide bond. Also, the structure shows two Met residues at the entrance of the T1Cu site, common in LAB laccases, which we suggest could be involved in substrate binding, thus expanding the substrate-binding pocket for laccases. A structural comparison of LcOe 229 with Antarctic laccases has not revealed specific features assigned to cold-active laccases versus mesophilic. Thus, further investigation of this psychrophilic laccase and its engineering could lead to enhanced cold-active enzymes with improved properties for future biotechnological applications. Overall, the discovery of this novel psychrophilic laccase from O. oeni expands our understanding of cold-adapted enzymes and presents new opportunities for their industrial applications in cold environments.


Assuntos
Lacase , Oenococcus , Oenococcus/enzimologia , Oenococcus/genética , Lacase/metabolismo , Lacase/genética , Lacase/química , Especificidade por Substrato , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Sequência de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Clonagem Molecular , Cinética , Modelos Moleculares , Cristalografia por Raios X , Concentração de Íons de Hidrogênio
16.
J Environ Manage ; 351: 119503, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043312

RESUMO

Human health and the environment are negatively affected by endocrine-disrupting chemicals (EDCs), such as bisphenol A. Therefore, developing appropriate remediation methods is essential for efficiently removing phenolic compounds from aqueous solutions. Enzymatic biodegradation is a potential biotechnological approach for responsibly addressing water pollution. With its high catalytic efficiency and few by-products, laccase is an eco-friendly biocatalyst with significant promise for biodegradation. Herein, two novel supporting materials (NH2-PMMA and NH2-PMMA-Gr) were fabricated via the functionalization of poly(methylmethacrylate) (PMMA) polymer using ethylenediamine and reinforced with graphene followed by glutaraldehyde activation. NH2-PMMA and NH2-PMMA-Gr were utilized for laccase immobilization with an immobilization yield (IY%) of 78.3% and 82.5% and an activity yield (AY%) of 81.2% and 85.9%, respectively. Scanning electron microscope (SEM) and Fourier-transform infrared (FTIR) were used to study the characteristics of fabricated material supports. NH2-PMMA-Gr@laccase exhibited an optimal pH profile from 4.5 to 5.0, while NH2-PMMA@laccase exhibited optimum pH at 5.0 compared to a value of 4.0 for free form. A wider temperature ranges of 40-50 °C was noted for both immobilized laccases compared to a value of 40 °C for the free form. Additionally, it was reported that immobilized laccase outperformed free laccase in terms of substrate affinity and storage stability. NH2-PMMA@laccase and NH2-PMMA-Gr@laccase improved stability by up to 3.9 and 4.6-fold when stored for 30 days at 4 °C and preserved up to 80.5% and 86.7% of relative activity after ten cycles of reuse. Finally, the degradation of BPA was achieved using NH2-PMMA@laccase and NH2-PMMA-Gr@laccase. After five cycles, NH2-PMMA@laccase and NH2-PMMA-Gr@laccase showed that the residual degradation of BPA was 77% and 84.5% using 50 µm of BPA. This study introduces a novel, high-performance material for organic pollution remediation in wastewater that would inspire further progress.


Assuntos
Grafite , Nanoestruturas , Humanos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Lacase/química , Lacase/metabolismo , Polimetil Metacrilato , Concentração de Íons de Hidrogênio
17.
J Environ Manage ; 353: 120114, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280250

RESUMO

The laccase mediator system (LMS) with a broad substrate range has attracted much attention as an efficient approach for water remediation. However, the practical application of LMS is limited due to their high solubility, poor stability and low reusability. Herein, the bimetallic Cu/ZIFs encapsulated laccase was in-situ grown in poly(vinyl alcohol) (PVA) polymer matrix. The PVA-Lac@Cu/ZIFs hydrogel was formed via one freeze-thawing cycle, and its catalytic stability was significantly improved. The mediator was further co-immobilized on the hydrogel, and this hierarchically co-immobilized ABTS/PVA-Lac@Cu/ZIFs hydrogel could avoid the continuous oxidation reaction between laccase and redox mediators. The co-immobilized LMS biocatalyst was used to degrade malachite green (MG), and the degradation rate was up to 100 % within 4 h. More importantly, the LMS could be recycled synchronously from the dye solutions and reused to degrade MG multiple times. The degradation rate remained above 69.4 % after five cycles. Furthermore, the intermediate products were detected via liquid chromatography-mass spectrometry, and the potential degradation pathways were proposed. This study demonstrated the significant potential of utilizing the MOF nanocrystals and hydrogel as a carrier for co-immobilized LMS, and the effective reuse of both laccase and mediator was promising for laccase application in wastewater treatment.


Assuntos
Enzimas Imobilizadas , Lacase , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Lacase/química , Lacase/metabolismo , Hidrogéis/química , Corantes de Rosanilina/química
18.
Molecules ; 29(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38474502

RESUMO

Enzymes play an important role in numerous natural processes and are increasingly being utilized as environmentally friendly substitutes and alternatives to many common catalysts. Their essential advantages are high catalytic efficiency, substrate specificity, minimal formation of byproducts, and low energy demand. All of these benefits make enzymes highly desirable targets of academic research and industrial development. This review has the modest aim of briefly overviewing the classification, mechanism of action, basic kinetics and reaction condition effects that are common across all six enzyme classes. Special attention is devoted to immobilization strategies as the main tools to improve the resistance to environmental stress factors (temperature, pH and solvents) and prolong the catalytic lifecycle of these biocatalysts. The advantages and drawbacks of methods such as macromolecular crosslinking, solid scaffold carriers, entrapment, and surface modification (covalent and physical) are discussed and illustrated using numerous examples. Among the hundreds and possibly thousands of known and recently discovered enzymes, hydrolases and oxidoreductases are distinguished by their relative availability, stability, and wide use in synthetic applications, which include pharmaceutics, food and beverage treatments, environmental clean-up, and polymerizations. Two representatives of those groups-laccase (an oxidoreductase) and lipase (a hydrolase)-are discussed at length, including their structure, catalytic mechanism, and diverse usage. Objective representation of the current status and emerging trends are provided in the main conclusions.


Assuntos
Lacase , Lipase , Lipase/química , Lacase/química , Enzimas Imobilizadas/química , Catálise , Substâncias Macromoleculares
19.
Prep Biochem Biotechnol ; 54(4): 573-586, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37729443

RESUMO

Four laccase-producing bacteria were found in soil samples from the Similipal Biosphere Reserve in Odisha, according to the current study. The isolates (SLCB1 to SLCB4) were evaluated for their laccase-producing ability in LB broth supplemented with guaiacol. The ABTS assay was performed to assess the laccase activity. The bacterium Mammaliicoccus sciuri shows the highest laccase activity i.e., 0.5125 U/L at the optimized conditions of pH 5.5, temperature 32.5 °C, ABTS concentration of 0.75 µl with an incubation time of 9 d. Laccase activity of M. sciuri grown in Sawdust was significantly increased in comparison to that in other agro wastes. The partially purified laccase enzyme after ammonium sulfate precipitation and dialysis showed a molecular weight of ∼58.5 kDa as determined by SDS-PAGE. A decolorization efficiency of 66.67% was recorded for the dye crystal violet after 1 h treatment with dialyzed laccase enzyme compared with phenol red, brilliant blue, and methylene blue.


Assuntos
Benzotiazóis , Corantes , Lacase , Ácidos Sulfônicos , Corantes/química , Lacase/química , Violeta Genciana , Solo , Temperatura , Concentração de Íons de Hidrogênio
20.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338413

RESUMO

To fully harness the potential of laccase in the efficient decolorization and detoxification of single and mixed dyes with diverse chemical structures, we carried out a systematic study on the decolorization and detoxification of single and mixed dyes using a crude laccase preparation obtained from a white-rot fungus strain, Pleurotus eryngii. The crude laccase preparation showed efficient decolorization of azo, anthraquinone, triphenylmethane, and indigo dyes, and the reaction rate constants followed the order Remazol Brilliant Blue R > Bromophenol blue > Indigo carmine > New Coccine > Reactive Blue 4 > Reactive Black 5 > Acid Orange 7 > Methyl green. This laccase preparation exhibited notable tolerance to SO42- salts such as MnSO4, MgSO4, ZnSO4, Na2SO4, K2SO4, and CdSO4 during the decolorization of various types of dyes, but was significantly inhibited by Cl- salts. Additionally, this laccase preparation demonstrated strong tolerance to some organic solvents such as glycerol, ethylene glycol, propanediol, and butanediol. The crude laccase preparation demonstrated the efficient decolorization of dye mixtures, including azo + azo, azo + anthraquinone, azo + triphenylmethane, anthraquinone + indigo, anthraquinone + triphenylmethane, and indigo + triphenylmethane dyes. The decolorization kinetics of mixed dyes provided preliminary insight into the interactions between dyes in the decolorization process of mixed dyes, and the underlying reasons and mechanisms were discussed. Importantly, the crude laccase from Pleurotus eryngii showed efficient repeated-batch decolorization of single-, two-, and four-dye mixtures. This crude laccase demonstrated high stability and reusability in repeated-batch decolorization. Furthermore, this crude laccase was efficient in the detoxification of different types of single dyes and mixed dyes containing different types of dyes, and the phytotoxicity of decolorized dyes (single and mixed dyes) was significantly reduced. The crude laccase efficiently eliminated phytotoxicity associated with single and mixed dyes. Consequently, the crude laccase from Pleurotus eryngii offers significant potential for practical applications in the efficient decolorization and management of single and mixed dye pollutants with different chemical structures.


Assuntos
Corantes , Pleurotus , Compostos de Tritil , Corantes/química , Lacase/química , Índigo Carmim , Sais , Antraquinonas , Biodegradação Ambiental , Compostos Azo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA