Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.177
Filtrar
1.
Cell ; 180(5): 956-967.e17, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32084332

RESUMO

Mechanotransduction, the conversion of mechanical stimuli into electrical signals, is a fundamental process underlying essential physiological functions such as touch and pain sensing, hearing, and proprioception. Although the mechanisms for some of these functions have been identified, the molecules essential to the sense of pain have remained elusive. Here we report identification of TACAN (Tmem120A), an ion channel involved in sensing mechanical pain. TACAN is expressed in a subset of nociceptors, and its heterologous expression increases mechanically evoked currents in cell lines. Purification and reconstitution of TACAN in synthetic lipids generates a functional ion channel. Finally, a nociceptor-specific inducible knockout of TACAN decreases the mechanosensitivity of nociceptors and reduces behavioral responses to painful mechanical stimuli but not to thermal or touch stimuli. We propose that TACAN is an ion channel that contributes to sensing mechanical pain.


Assuntos
Canais Iônicos/fisiologia , Mecanotransdução Celular/genética , Nociceptores/metabolismo , Dor/genética , Tato/genética , Animais , Regulação da Expressão Gênica/genética , Humanos , Canais Iônicos/genética , Lipídeos/genética , Camundongos , Camundongos Knockout , Dor/fisiopatologia , Técnicas de Patch-Clamp , Estresse Mecânico , Tato/fisiologia
2.
Cell ; 181(3): 716-727.e11, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32259488

RESUMO

Human cells are able to sense and adapt to variations in oxygen levels. Historically, much research in this field has focused on hypoxia-inducible factor (HIF) signaling and reactive oxygen species (ROS). Here, we perform genome-wide CRISPR growth screens at 21%, 5%, and 1% oxygen to systematically identify gene knockouts with relative fitness defects in high oxygen (213 genes) or low oxygen (109 genes), most without known connection to HIF or ROS. Knockouts of many mitochondrial pathways thought to be essential, including complex I and enzymes in Fe-S biosynthesis, grow relatively well at low oxygen and thus are buffered by hypoxia. In contrast, in certain cell types, knockout of lipid biosynthetic and peroxisomal genes causes fitness defects only in low oxygen. Our resource nominates genetic diseases whose severity may be modulated by oxygen and links hundreds of genes to oxygen homeostasis.


Assuntos
Metabolismo dos Lipídeos/genética , Mitocôndrias/genética , Oxigênio/metabolismo , Transcriptoma/genética , Hipóxia Celular , Testes Genéticos/métodos , Estudo de Associação Genômica Ampla/métodos , Células HEK293 , Humanos , Hipóxia/metabolismo , Células K562 , Metabolismo dos Lipídeos/fisiologia , Lipídeos/genética , Lipídeos/fisiologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
3.
Annu Rev Biochem ; 87: 1029-1060, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29709200

RESUMO

Over the past three decades, studies of ancient biomolecules-particularly ancient DNA, proteins, and lipids-have revolutionized our understanding of evolutionary history. Though initially fraught with many challenges, today the field stands on firm foundations. Researchers now successfully retrieve nucleotide and amino acid sequences, as well as lipid signatures, from progressively older samples, originating from geographic areas and depositional environments that, until recently, were regarded as hostile to long-term preservation of biomolecules. Sampling frequencies and the spatial and temporal scope of studies have also increased markedly, and with them the size and quality of the data sets generated. This progress has been made possible by continuous technical innovations in analytical methods, enhanced criteria for the selection of ancient samples, integrated experimental methods, and advanced computational approaches. Here, we discuss the history and current state of ancient biomolecule research, its applications to evolutionary inference, and future directions for this young and exciting field.


Assuntos
DNA Antigo , Evolução Molecular , Animais , Evolução Biológica , Extinção Biológica , Fósseis , Genômica , Humanos , Lipídeos/genética , Paleontologia , Filogenia , Proteínas/genética , Proteômica
4.
Annu Rev Cell Dev Biol ; 34: 217-238, 2018 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-30113887

RESUMO

Uncovering the mechanisms that underlie the biogenesis and maintenance of eukaryotic organelles is a vibrant and essential area of biological research. In comparison, little attention has been paid to the process of compartmentalization in bacteria and archaea. This lack of attention is in part due to the common misconception that organelles are a unique evolutionary invention of the "complex" eukaryotic cell and are absent from the "primitive" bacterial and archaeal cells. Comparisons across the tree of life are further complicated by the nebulous criteria used to designate subcellular structures as organelles. Here, with the aid of a unified definition of a membrane-bounded organelle, we present some of the recent findings in the study of lipid-bounded organelles in bacteria and archaea.


Assuntos
Archaea/genética , Bactérias/genética , Compartimento Celular/genética , Organelas/genética , Membrana Celular/química , Membrana Celular/genética , Lipídeos/química , Lipídeos/genética , Organelas/química
5.
Hum Mol Genet ; 33(7): 583-593, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38142287

RESUMO

To control genetic background and early life milieu in genome-wide DNA methylation analysis for blood lipids, we recruited Chinese discordant monozygotic twins to explore the relationships between DNA methylations and total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). 132 monozygotic (MZ) twins were included with discordant lipid levels and completed data. A linear mixed model was conducted in Epigenome-wide association study (EWAS). Generalized estimating equation model was for gene expression analysis. We conducted Weighted correlation network analysis (WGCNA) to build co-methylated interconnected network. Additional Qingdao citizens were recruited for validation. Inference about Causation through Examination of Familial Confounding (ICE FALCON) was used to infer the possible direction of these relationships. A total of 476 top CpGs reached suggestively significant level (P < 10-4), of which, 192 CpGs were significantly associated with TG (FDR < 0.05). They were used to build interconnected network and highlight crucial genes from WGCNA. Finally, four CpGs in GATA4 were validated as risk factors for TC; six CpGs at ITFG2-AS1 were negatively associated with TG; two CpGs in PLXND1 played protective roles in HDL-C. ICE FALCON indicated abnormal TC was regarded as the consequence of DNA methylation in CpGs at GATA4, rather than vice versa. Four CpGs in ITFG2-AS1 were both causes and consequences of modified TG levels. Our results indicated that DNA methylation levels of 12 CpGs in GATA4, ITFG2-AS1, and PLXND1 were relevant to TC, TG, and HDL-C, respectively, which might provide new epigenetic insights into potential clinical treatment of dyslipidemia.


Assuntos
Epigênese Genética , Gêmeos Monozigóticos , Humanos , Epigênese Genética/genética , Gêmeos Monozigóticos/genética , Metilação de DNA/genética , Lipídeos/genética , Triglicerídeos/genética , LDL-Colesterol/genética , China
6.
Am J Hum Genet ; 110(10): 1704-1717, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802043

RESUMO

Long non-coding RNAs (lncRNAs) are known to perform important regulatory functions in lipid metabolism. Large-scale whole-genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess more associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with measurement of blood lipids and lipoproteins (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare-variant aggregate association tests using the STAAR (variant-set test for association using annotation information) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare-coding variants in nearby protein-coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a ±500-kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally independent of common regulatory variation and rare protein-coding variation at the same loci. We replicated 34 out of 61 (56%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNAs.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Estudo de Associação Genômica Ampla , Medicina de Precisão , Sequenciamento Completo do Genoma/métodos , Lipídeos/genética , Polimorfismo de Nucleotídeo Único/genética
7.
Am J Hum Genet ; 109(8): 1366-1387, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931049

RESUMO

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Cromatina/genética , Genômica , Humanos , Lipídeos/genética , Polimorfismo de Nucleotídeo Único/genética
8.
Nature ; 567(7747): 187-193, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814737

RESUMO

Dysregulation of lipid homeostasis is a precipitating event in the pathogenesis and progression of hepatosteatosis and metabolic syndrome. These conditions are highly prevalent in developed societies and currently have limited options for diagnostic and therapeutic intervention. Here, using a proteomic and lipidomic-wide systems genetic approach, we interrogated lipid regulatory networks in 107 genetically distinct mouse strains to reveal key insights into the control and network structure of mammalian lipid metabolism. These include the identification of plasma lipid signatures that predict pathological lipid abundance in the liver of mice and humans, defining subcellular localization and functionality of lipid-related proteins, and revealing functional protein and genetic variants that are predicted to modulate lipid abundance. Trans-omic analyses using these datasets facilitated the identification and validation of PSMD9 as a previously unknown lipid regulatory protein. Collectively, our study serves as a rich resource for probing mammalian lipid metabolism and provides opportunities for the discovery of therapeutic agents and biomarkers in the setting of hepatic lipotoxicity.


Assuntos
Metabolismo dos Lipídeos/genética , Lipídeos/análise , Lipídeos/genética , Proteômica , Animais , Células HEK293 , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/sangue , Lipídeos/classificação , Fígado/química , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Obesidade/genética , Obesidade/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042820

RESUMO

RNA is a ubiquitous biomolecule that can serve as both catalyst and information carrier. Understanding how RNA bioactivity is controlled is crucial for elucidating its physiological roles and potential applications in synthetic biology. Here, we show that lipid membranes can act as RNA organization platforms, introducing a mechanism for riboregulation. The activity of R3C ribozyme can be modified by the presence of lipid membranes, with direct RNA-lipid interactions dependent on RNA nucleotide content, base pairing, and length. In particular, the presence of guanine in short RNAs is crucial for RNA-lipid interactions, and G-quadruplex formation further promotes lipid binding. Lastly, by artificially modifying the R3C substrate sequence to enhance membrane binding, we generated a lipid-sensitive ribozyme reaction with riboswitch-like behavior. These findings introduce RNA-lipid interactions as a tool for developing synthetic riboswitches and RNA-based lipid biosensors and bear significant implications for RNA world scenarios for the origin of life.


Assuntos
Lipídeos/fisiologia , Lipídeos de Membrana/metabolismo , RNA/metabolismo , Pareamento de Bases/genética , Sequência de Bases/genética , Sítios de Ligação/genética , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Engenharia Genética/métodos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/genética , Lipídeos de Membrana/fisiologia , Conformação de Ácido Nucleico , RNA/química , RNA Catalítico/química , RNA Catalítico/metabolismo , Riboswitch/genética
10.
Plant Cell ; 33(8): 2637-2661, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34124761

RESUMO

Increasing evidence suggests that posttranscriptional regulation is a key player in the transition between mature pollen and the progamic phase (from pollination to fertilization). Nonetheless, the actors in this messenger RNA (mRNA)-based gene expression reprogramming are poorly understood. We demonstrate that the evolutionarily conserved RNA-binding protein LARP6C is necessary for the transition from dry pollen to pollen tubes and the guided growth of pollen tubes towards the ovule in Arabidopsis thaliana. In dry pollen, LARP6C binds to transcripts encoding proteins that function in lipid synthesis and homeostasis, vesicular trafficking, and polarized cell growth. LARP6C also forms cytoplasmic granules that contain the poly(A) binding protein and possibly represent storage sites for translationally silent mRNAs. In pollen tubes, the loss of LARP6C negatively affects the quantities and distribution of storage lipids, as well as vesicular trafficking. In Nicotiana benthamiana leaf cells and in planta, analysis of reporter mRNAs designed from the LARP6C target MGD2 provided evidence that LARP6C can shift from a repressor to an activator of translation when the pollen grain enters the progamic phase. We propose that LARP6C orchestrates the timely posttranscriptional regulation of a subset of mRNAs in pollen during the transition from the quiescent to active state and along the progamic phase to promote male fertilization in plants.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Tubo Polínico/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regiões 5' não Traduzidas , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Sítios de Ligação , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos/biossíntese , Lipídeos/genética , Plantas Geneticamente Modificadas , Tubo Polínico/citologia , Tubo Polínico/crescimento & desenvolvimento , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Nicotiana/genética
11.
Lipids Health Dis ; 23(1): 202, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937739

RESUMO

BACKGROUND: Digestive system cancers represent a significant global health challenge and are attributed to a combination of demographic and lifestyle changes. Lipidomics has emerged as a pivotal area in cancer research, suggesting that alterations in lipid metabolism are closely linked to cancer development. However, the causal relationship between specific lipid profiles and digestive system cancer risk remains unclear. METHODS: Using a two-sample Mendelian randomization (MR) approach, we elucidated the causal relationships between lipidomic profiles and the risk of five types of digestive system cancer: stomach, liver, esophageal, pancreatic, and colorectal cancers. The aim of this study was to investigate the effect impact of developing lipid profiles on the risk of digestive system cancers utilizing data from public databases such as the GWAS Catalog and the UK Biobank. The inverse‒variance weighted (IVW) method and other strict MR methods were used to evaluate the potential causal links. In addition, we performed sensitivity analyses and reverse MR analyses to ensure the robustness of the results. RESULTS: Significant causal relationships were identified between certain lipidomic traits and the risk of developing digestive system cancers. Elevated sphingomyelin (d40:1) levels were associated with a reduced risk of developing gastric cancer (odds ratio (OR) = 0.68, P < 0.001), while elevated levels of phosphatidylcholine (16:1_20:4) increased the risk of developing esophageal cancer (OR = 1.31, P = 0.02). Conversely, phosphatidylcholine (18:2_0:0) had a protective effect against colorectal cancer (OR = 0.86, P = 0.036). The bidirectional analysis did not suggest reverse causality between cancer risk and lipid levels. Strict MR methods demonstrated the robustness of the above causal relationships. CONCLUSION: Our findings underscore the significant causal relationships between specific lipidomic traits and the risk of developing various digestive system cancers, highlighting the potential of lipid profiles in informing cancer prevention and treatment strategies. These results reinforce the value of MR in unraveling complex lipid-cancer interactions, offering new avenues for research and clinical application.


Assuntos
Neoplasias do Sistema Digestório , Análise da Randomização Mendeliana , Humanos , Neoplasias do Sistema Digestório/genética , Neoplasias do Sistema Digestório/epidemiologia , Neoplasias do Sistema Digestório/sangue , Estudo de Associação Genômica Ampla , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Lipídeos/genética , Fatores de Risco , Lipidômica , Predisposição Genética para Doença , Esfingomielinas/sangue , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/epidemiologia
12.
Lipids Health Dis ; 23(1): 229, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060932

RESUMO

BACKGROUND: Cardiovascular diseases (CVDs) comprise major causes of death worldwide, leading to extensive burden on populations and societies. Alterations in normal lipid profiles, i.e., dyslipidemia, comprise important risk factors for CVDs. However, there is lack of comprehensive evidence on the genetic contribution to dyslipidemia in highly admixed populations. The identification of single nucleotide polymorphisms (SNPs) linked to blood lipid traits in the Brazilian population was based on genome-wide associations using data from the São Paulo Health Survey with Focus on Nutrition (ISA-Nutrition). METHODS: A total of 667 unrelated individuals had genetic information on 330,656 SNPs available, and were genotyped with Axiom™ 2.0 Precision Medicine Research Array. Genetic associations were tested at the 10- 5 significance level for the following phenotypes: low-density lipoprotein cholesterol (LDL-c), very low-density lipoprotein cholesterol (VLDL-c), high-density lipoprotein cholesterol (HDL-c), HDL-c/LDL-c ratio, triglycerides (TGL), total cholesterol, and non-HDL-c. RESULTS: There were 19 significantly different SNPs associated with lipid traits, the majority of which corresponding to intron variants, especially in the genes FAM81A, ZFHX3, PTPRD, and POMC. Three variants (rs1562012, rs16972039, and rs73401081) and two variants (rs8025871 and rs2161683) were associated with two and three phenotypes, respectively. Among the subtypes, non-HDL-c had the highest proportion of associated variants. CONCLUSIONS: The results of the present genome-wide association study offer new insights into the genetic structure underlying lipid traits in underrepresented populations with high ancestry admixture. The associations were robust across multiple lipid phenotypes, and some of the phenotypes were associated with two or three variants. In addition, some variants were present in genes that encode ncRNAs, raising important questions regarding their role in lipid metabolism.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Brasil/epidemiologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Lipídeos/sangue , Lipídeos/genética , LDL-Colesterol/sangue , LDL-Colesterol/genética , Triglicerídeos/sangue , Triglicerídeos/genética , HDL-Colesterol/sangue , HDL-Colesterol/genética , Dislipidemias/genética , Dislipidemias/sangue , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/epidemiologia , Fenótipo
13.
Lipids Health Dis ; 23(1): 231, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080710

RESUMO

BACKGROUND: Diabetes mellitus is generally accompanied by dyslipidaemia, but inconsistent relationships between lipid profiles and diabetes are noted. Moreover, genetic variations in insertion/deletion (I/D) polymorphisms at angiotensin-converting enzyme gene (ACE) and T/C polymorphisms in the angiotensin type 1 receptor gene (AGTR1) are related to diabetes and lipid levels, but the associations are controversial. Thus, the current research aimed to explore the effects of ACE I/D, AGTR1 rs5182 and diabetes mellitus on serum lipid profiles in 385 Chinese participants with an average age of 75.01 years. METHODS: The ACE I/D variant was identified using the polymerase chain reaction (PCR) method, whereas the AGTR1 rs5182 polymorphism was identified using the PCR-based restriction fragment length polymorphism (PCR-RFLP) method and verified with DNA sequencing. Total cholesterol (TC), triglyceride (TG), apolipoprotein A (ApoA), apolipoprotein B (ApoB), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) levels were measured using routine methods, and the lipid ratios were calculated. RESULTS: ACE I/D, but not AGTR1 rs5182, was a predictor of TG/HDL-C for the whole study population. Both ACE I/D and AGTR1 rs5182 were predictors of HDL-C and LDL-C levels in females but not in males. Moreover, in females, diabetes mellitus and ACE I/D were identified as predictors of TG and TG/HDL-C, whereas AGTR1 rs5182 and diabetes mellitus were predictors of TG/HDL-C. Moreover, diabetes mellitus and the combination of ACE I/D and AGTR1 rs5182 variations were predictors of TG and TG/HDL-C exclusively in females. CONCLUSIONS: The results demonstrated the potential for gender-dependent interactions of ACE I/D, AGTR1 rs5182, and diabetes on lipid profiles. These findings may serve as an additional explanation for the inconsistent changes of blood lipids in individuals with diabetes mellitus, thereby offering a novel perspective for the clinical management of blood lipid levels in diabetic patients.


Assuntos
Peptidil Dipeptidase A , Receptor Tipo 1 de Angiotensina , Humanos , Masculino , Feminino , Idoso , Receptor Tipo 1 de Angiotensina/genética , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/sangue , Polimorfismo de Nucleotídeo Único , Lipídeos/sangue , Lipídeos/genética , Povo Asiático/genética , Triglicerídeos/sangue , Idoso de 80 Anos ou mais , HDL-Colesterol/sangue , HDL-Colesterol/genética , Diabetes Mellitus/genética , Diabetes Mellitus/sangue , Mutação INDEL , LDL-Colesterol/sangue , LDL-Colesterol/genética , Estudos de Associação Genética , China/epidemiologia , Predisposição Genética para Doença , População do Leste Asiático
14.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526687

RESUMO

Vertical sleeve gastrectomy (VSG) is one of the most effective and durable therapies for morbid obesity and its related complications. Although bile acids (BAs) have been implicated as downstream mediators of VSG, the specific mechanisms through which BA changes contribute to the metabolic effects of VSG remain poorly understood. Here, we confirm that high fat diet-fed global farnesoid X receptor (Fxr) knockout mice are resistant to the beneficial metabolic effects of VSG. However, the beneficial effects of VSG were retained in high fat diet-fed intestine- or liver-specific Fxr knockouts, and VSG did not result in Fxr activation in the liver or intestine of control mice. Instead, VSG decreased expression of positive hepatic Fxr target genes, including the bile salt export pump (Bsep) that delivers BAs to the biliary pathway. This reduced small intestine BA levels in mice, leading to lower intestinal fat absorption. These findings were verified in sterol 27-hydroxylase (Cyp27a1) knockout mice, which exhibited low intestinal BAs and fat absorption and did not show metabolic improvements following VSG. In addition, restoring small intestinal BA levels by dietary supplementation with taurocholic acid (TCA) partially blocked the beneficial effects of VSG. Altogether, these findings suggest that reductions in intestinal BAs and lipid absorption contribute to the metabolic benefits of VSG.


Assuntos
Colestanotriol 26-Mono-Oxigenase/genética , Gastrectomia/métodos , Obesidade Mórbida/cirurgia , Receptores Citoplasmáticos e Nucleares/genética , Animais , Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica/efeitos adversos , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Camundongos , Camundongos Knockout , Obesidade Mórbida/metabolismo , Obesidade Mórbida/fisiopatologia , Redução de Peso/genética
15.
Semin Cell Dev Biol ; 112: 137-144, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32807643

RESUMO

Microglia are universal sensors of alterations in CNS physiology. These cells integrate complex molecular signals and undergo comprehensive phenotypical remodeling to adapt inflammatory responses. In the last years, single-cell analyses have revealed that microglia exhibit diverse phenotypes during development, growth and disease. Emerging evidence suggests that such phenotype transitions are mediated by reprogramming of cell metabolism. Indeed, metabolic pathways are distinctively altered in activated microglia and are central nodes controlling microglial responses. Microglial lipid metabolism has been specifically involved in the control of microglial activation and effector functions, such as migration, phagocytosis and inflammatory signaling, and minor disturbances in microglial lipid handling associates with altered brain function in disorders featuring neuroinflammation. In this review, we explore new and relevant aspects of microglial metabolism in health and disease. We give special focus on how different branches of lipid metabolism, such as lipid sensing, synthesis and oxidation, integrate and control essential aspects of microglial biology, and how disturbances in these processes associate with aging and the pathogenesis of, for instance, multiple sclerosis and Alzheimer's disease. Finally, challenges and advances in microglial lipid research are discussed.


Assuntos
Encéfalo/imunologia , Imunidade Inata/genética , Metabolismo dos Lipídeos/imunologia , Doenças Neuroinflamatórias/imunologia , Encéfalo/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Lipídeos/imunologia , Microglia/imunologia , Microglia/metabolismo , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/patologia , Fagocitose/genética
16.
Semin Cell Dev Biol ; 112: 114-122, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32912639

RESUMO

Oligodendrocytes enwrap central nervous system axons with myelin, a lipid enriched highly organized multi-layer membrane structure that allows for fast long-distance saltatory conduction of neuronal impulses. Myelin has an extremely high lipid content (∼80 % of its dry weight) and a peculiar lipid composition, with a 2:2:1 cholesterol:phospholipid:glycolipid ratio. Inherited neurodegenerative diseases of the lipids (caused by mutations in lipogenic enzymes) often present oligodendrocyte and/or myelin defects which contribute to the overall disease pathophysiology. These phenomena triggered an increasing number of studies over the functions lipid exert to shape and maintain myelin, and brought to the finding that lipids are more than only structural building blocks. They act as signaling molecules to drive proliferation and differentiation of oligodendrocyte progenitor cells, as well as proliferation of premyelinating oligodendrocytes, and their maturation into myelinating ones. Here, we summarize key findings in these areas, while presenting the main related human diseases. Despite many advances in the field, various questions remain open which we briefly discuss. This article is part of a special issue entitled "Role of Lipids in CNS Cell Physiology and Pathology".


Assuntos
Membrana Celular/metabolismo , Metabolismo dos Lipídeos/genética , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Axônios/metabolismo , Axônios/fisiologia , Diferenciação Celular/genética , Membrana Celular/fisiologia , Sistema Nervoso Central , Humanos , Lipídeos/genética , Lipídeos/fisiologia , Oligodendroglia/fisiologia , Transdução de Sinais/genética
17.
Semin Cell Dev Biol ; 112: 69-81, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32962914

RESUMO

Lipids play an important role in the central nervous system (CNS). They contribute to the structural integrity and physical characteristics of cell and organelle membranes, act as bioactive signalling molecules, and are utilised as fuel sources for mitochondrial metabolism. The intricate homeostatic mechanisms underpinning lipid handling and metabolism across two major CNS cell types; neurons and astrocytes, are integral for cellular health and maintenance. Here, we explore the various roles of lipids in these two cell types. Given that changes in lipid metabolism have been identified in a number of neurodegenerative diseases, we also discuss changes in lipid handling and utilisation in the context of amyotrophic lateral sclerosis (ALS), in order to identify key cellular processes affected by the disease, and inform future areas of research.


Assuntos
Esclerose Lateral Amiotrófica/genética , Sistema Nervoso Central/patologia , Lipídeos/genética , Neurônios/metabolismo , Esclerose Lateral Amiotrófica/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Sistema Nervoso Central/metabolismo , Humanos , Mitocôndrias/metabolismo , Neurônios/patologia
18.
Semin Cell Dev Biol ; 112: 145-156, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33036880

RESUMO

Traumatic brain injury (TBI) is a neurological condition which affects a large number of individuals worldwide, across all ages. It can lead to major physical, cognitive and psychological impairment, and represents a considerable health cost burden. TBI is a heterogeneous condition and there has been intense effort over the last decade to identify better biomarkers, which would enable an optimum and personalized treatment. The brain is highly enriched in a variety of lipids, including fatty acids, glycerophospholipids, glycerolipids, sterols and sphingolipids. There is accumulating evidence in clinical studies in TBI patients and also in experimental models of TBI, that injury triggers a complex pattern of changes in various lipid classes. Such changes can be detected in blood (plasma/serum), cerebrospinal fluid and also in brain tissue. They provide new insights into the pathophysiology of TBI, and have biomarker potential. Here, we review the various changes reported and discuss the scope and value of these lipid focused studies within the TBI field.


Assuntos
Lesões Encefálicas Traumáticas/genética , Encéfalo/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Animais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Encéfalo/patologia , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/patologia , Ácidos Graxos/sangue , Ácidos Graxos/líquido cefalorraquidiano , Ácidos Graxos/metabolismo , Glicerofosfolipídeos/sangue , Glicerofosfolipídeos/líquido cefalorraquidiano , Glicerofosfolipídeos/metabolismo , Humanos , Lipídeos/sangue , Lipídeos/líquido cefalorraquidiano
19.
Semin Cell Dev Biol ; 112: 61-68, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32771376

RESUMO

Within the adult mammalian central nervous system, the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles houses neural stem cells (NSCs) that continue to produce neurons throughout life. Developmentally, the V-SVZ neurogenic niche arises during corticogenesis following the terminal differentiation of telencephalic radial glial cells (RGCs) into either adult neural stem cells (aNSCs) or ependymal cells. In mice, these two cellular populations form rosettes during the late embryonic and early postnatal period, with ependymal cells surrounding aNSCs. These aNSCs and ependymal cells serve a number of key purposes, including the generation of neurons throughout life (aNSCs), and acting as a barrier between the CSF and the parenchyma and promoting CSF bulk flow (ependymal cells). Interestingly, the development of this neurogenic niche, as well as its ongoing function, has been shown to be reliant on different aspects of lipid biology. In this review we discuss the developmental origins of the rodent V-SVZ neurogenic niche, and highlight research which has implicated a role for lipids in the physiology of this part of the brain. We also discuss the role of lipids in the maintenance of the V-SVZ niche, and discuss new research which has suggested that alterations to lipid biology could contribute to ependymal cell dysfunction in aging and disease.


Assuntos
Envelhecimento/genética , Epêndima/metabolismo , Lipídeos/genética , Células-Tronco Neurais/metabolismo , Envelhecimento/patologia , Animais , Proliferação de Células/genética , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Epêndima/crescimento & desenvolvimento , Epêndima/patologia , Humanos , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/metabolismo , Ventrículos Laterais/patologia , Camundongos , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Neurônios/metabolismo , Neurônios/patologia , Telencéfalo/metabolismo , Telencéfalo/patologia
20.
Semin Cell Dev Biol ; 112: 92-104, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33323321

RESUMO

Building evidence reveals the importance of maintaining lipid homeostasis for the health and function of neurons, and upper motor neurons (UMNs) are no exception. UMNs are critically important for the initiation and modulation of voluntary movement as they are responsible for conveying cerebral cortex' input to spinal cord targets. To maintain their unique cytoarchitecture with a prominent apical dendrite and a very long axon, UMNs require a stable cell membrane, a lipid bilayer. Lipids can act as building blocks for many biomolecules, and they also contribute to the production of energy. Therefore, UMNs require sustained control over the production, utilization and homeostasis of lipids. Perturbations of lipid homeostasis lead to UMN vulnerability and progressive degeneration in diseases such as hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS). Here, we discuss the importance of lipids, especially for UMNs.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Metabolismo dos Lipídeos/genética , Doença dos Neurônios Motores/metabolismo , Neurônios Motores/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Axônios/metabolismo , Axônios/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Dendritos/genética , Dendritos/metabolismo , Dendritos/patologia , Humanos , Lipídeos/genética , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/patologia , Neurônios Motores/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA