Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
1.
Bull Exp Biol Med ; 164(2): 247-251, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29177902

RESUMO

Culturing of bone marrow cells in serum-free RPMI-1640 medium for 24 h was accompanied by a decrease in the rate of [3H]-thymidine incorporation into DNA. Addition of native apolipoprotein A-I (apoA-I) or plasma LDL and HDL to the culture medium increased this parameter. In contrast to native apoA-I, its modified form decelerated DNA synthesis in bone marrow cells. A similar inhibitory effect of modified protein was observed in cultures of human embryonic kidney cells (HEK293) and in rapidly proliferating mouse macrophage cell line ANA-1. The only exclusion was human myeloid cell line U937: neither native nor modified apoA-I affected DNA synthesis in these cells. Thus, the regulatory effects of apoA-I are tissue-specific; this protein can produce either stimulatory or inhibitory effect on DNA biosynthesis in cells depending on its conformation.


Assuntos
Apolipoproteína A-I/farmacologia , DNA/biossíntese , Lipoproteínas HDL/farmacologia , Lipoproteínas LDL/farmacologia , Lipoproteínas VLDL/farmacologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Linhagem Celular , DNA/agonistas , DNA/antagonistas & inibidores , Células HEK293 , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Especificidade de Órgãos , Ratos , Ratos Wistar , Timidina/metabolismo , Trítio , Células U937
2.
Nutr Metab Cardiovasc Dis ; 26(7): 614-622, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27052924

RESUMO

We recently observed that free fatty acids impair the stimulation of glucose transport into cardiomyocytes in response to either insulin or metabolic stress. In vivo, fatty acids for the myocardium are mostly obtained from triglyceride-rich lipoproteins (chylomicrons and Very Low-Density Lipoproteins). We therefore determined whether exposure of cardiac myocytes to VLDL resulted in impaired basal and stimulated glucose transport. Primary adult rat cardiac myocytes were chronically exposed to VLDL before glucose uptake was measured in response to insulin or metabolic stress, provoked by the mitochondrial ATP synthase inhibitor oligomycin. Exposure of cardiac myocytes to VLDL reduced both insulin-and oligomycin-stimulated glucose uptake. The reduction of glucose uptake was associated with a moderately reduced tyrosine phosphorylation of the insulin receptor. No reduction of the phosphorylation of the downstream effectors of insulin signaling Akt and AS160 was however observed. Similarly only a modest reduction of the activating phosphorylation of the AMP-activated kinase (AMPK) was observed in response to oligomycin. Similar to our previous observations with free fatty acids, inhibition of fatty acid oxidation restored oligomycin-stimulated glucose uptake. In conclusions, VLDL-derived fatty acids impair stimulated glucose transport in cardiac myocytes by a mechanism that seems to be mediated by a fatty acid oxidation intermediate. Thus, in the clinical context of the metabolic syndrome high VLDL may contribute to enhancement of ischemic injury by reduction of metabolic stress-stimulated glucose uptake.


Assuntos
Desoxiglucose/metabolismo , Lipoproteínas VLDL/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Colesterol/metabolismo , Relação Dose-Resposta a Droga , Ácidos Graxos não Esterificados/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Insulina/farmacologia , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Oligomicinas/farmacologia , Oxirredução , Fosforilação , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Receptor de Insulina/efeitos dos fármacos , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tirosina , Desacopladores/farmacologia
3.
J Nat Med ; 78(1): 180-190, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37973705

RESUMO

An acylated flavonol glycoside, trans-tiliroside (1), is found in certain parts of different herbs, including the seeds of Rosa canina (Rosaceae). Previous studies on compound 1 have focused on triglyceride (TG) metabolism, including its anti-obesity and intracellular TG reduction effects. In the present study, the effects of compound 1 on cholesterol (CHO) metabolism were investigated using human hepatocellular carcinoma-derived HepG2 cells and mice. Compound 1 decreased CHO secretion in HepG2 cells, which was enhanced by mevalonate in a concentration-dependent manner and decreased the secretion of apoprotein B (apoB)-100, a marker of very low-density lipoprotein (VLDL). Compound 1 also inhibited the activity of microsomal triglyceride transfer proteins, which mediate VLDL formation from cholesterol and triglycerides in the liver. In vivo, compound 1 inhibited the accumulation of Triton WR-1339-induced TG in the blood of fasted mice and maintained low levels of apoB-100. These results suggest that compound 1 inhibits the secretion of CHO as VLDL from the liver and has the potential for use for the prevention of dyslipidemia.


Assuntos
Lipoproteínas VLDL , Neoplasias Hepáticas , Camundongos , Humanos , Animais , Lipoproteínas VLDL/metabolismo , Lipoproteínas VLDL/farmacologia , Apolipoproteínas B/metabolismo , Células Hep G2 , Fígado/metabolismo , Triglicerídeos , Colesterol , Lipoproteínas LDL/metabolismo
4.
Mol Cell Biochem ; 383(1-2): 21-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23852455

RESUMO

Hyperglycemia- and oxidative stress-induced modification of circulating lipoproteins is being increasingly recognized as an important pathogenetic factor for diabetic cardiovascular damages. This study was designed to investigate the impact of modified very low-density lipoprotein and high-density lipoprotein on phagocyte adhesion to endothelial cells and the involvement of scavenger receptor class B type 1 (SR-BI) in this process. Native lipoproteins were isolated by density gradient ultracentrifugation and in vitro glycoxidative or oxidative modification was performed in the presence of glucose or sodium hypochlorite, respectively. One hour co-incubation experiments with lipoproteins, freshly prepared polymorphonuclear leukocytes (PMN), and venous endothelial cells (HUVEC) were performed in the presence or absence of different scavenger receptors and signal transduction inhibitors. PMN adhesion to HUVEC was quantified fluorimetrically. We demonstrated that oxidized and glycoxidized lipoproteins promote adhesion of PMN to HUVEC from 1.5- to 2.5-fold with oxidized lipoproteins having the greatest effect. Treatment with the highly specific SR-BI inhibitor, BLT-1 produced substantial reduction of lipoprotein-induced adhesion to endothelial cells. Native and modified lipoproteins recruited extracellular signal-regulated kinase (ERK 1/2), p38 mitogen-activated protein kinase, and Janus kinase 2 as downstream signaling pathways for adhesion. From this study, it could be concluded that modification of lipoproteins plays a crucial role in atherosclerotic progression and SR-BI may be considered as a potential therapeutic target for the prevention of diabetic cardiovascular complications.


Assuntos
Células Endoteliais da Veia Umbilical Humana/citologia , Lipoproteínas HDL/farmacologia , Lipoproteínas VLDL/farmacologia , Fagócitos/citologia , Receptores Depuradores Classe B/metabolismo , Biomarcadores/metabolismo , Butadienos/farmacologia , Adesão Celular/efeitos dos fármacos , Ciclopentanos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Imidazóis/farmacologia , Janus Quinase 2/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/citologia , Nitrilas/farmacologia , Fagócitos/efeitos dos fármacos , Fagócitos/metabolismo , Piridinas/farmacologia , Tiossemicarbazonas/farmacologia , Tirfostinas/farmacologia
5.
Arterioscler Thromb Vasc Biol ; 32(12): 2919-28, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23023367

RESUMO

OBJECTIVE: Hypertriglyceridemia is an important risk factor for cardiovascular disease. Elevated plasma very low-density lipoprotein (VLDL) puts insulin-resistant patients at risk for atherosclerosis. VLDL readily induces macrophage lipid accumulation and inflammatory responses, for which targeted therapeutic strategies remain elusive. We examined the ability of VLDL to induce macrophage foam cells and the inflammatory response and sought to define the cell signaling cascades involved. We further examined the potential of peroxisome proliferator-activated receptor (PPAR) δ activation to attenuate both VLDL-stimulated lipid accumulation and cytokine expression. METHODS AND RESULTS: THP-1 macrophages exposed to VLDL displayed significant triglyceride accumulation, which was attenuated by PPARδ activation. PPARδ agonists stimulated a transcriptional program resulting in inhibition of lipoprotein lipase activity, activation of fatty acid uptake, and enhanced ß-oxidation. VLDL-treated macrophages significantly increased the expression of activator protein 1 associated cytokines interleukin-1ß, macrophage inflammatory protein 1α, and intercellular adhesion molecule-1. VLDL treatment significantly increased the phosphorylation of both extracellular signal-related kinase 1 and 2 and p38. VLDL reduced AKT phosphorylation as well as its downstream effector forkhead box protein O1, concomitant with increased nuclear forkhead box protein O1. Cells treated with PPARδ agonists were completely resistant to VLDL-induced expression of inflammatory cytokines, mediated by normalization of mitogen-activated protein kinase (MAPK)(erk) and AKT/forkhead box protein O1 signaling. CONCLUSIONS: The combined PPARδ-mediated reductions of lipid accumulation and inflammatory cytokine expression suggest a novel macrophage-targeted therapeutic option in treating atherosclerosis.


Assuntos
Células Espumosas/metabolismo , Células Espumosas/patologia , Inflamação/induzido quimicamente , Lipoproteínas VLDL/efeitos adversos , Macrófagos/metabolismo , Macrófagos/patologia , PPAR delta/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Ácidos Graxos/metabolismo , Células Espumosas/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Inflamação/patologia , Ligantes , Lipoproteínas VLDL/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , PPAR delta/agonistas , Transdução de Sinais/efeitos dos fármacos , Triglicerídeos/metabolismo
6.
J Mol Endocrinol ; 70(4)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779781

RESUMO

Aldosterone is considered to be a link between hypertension and obesity; obese individuals have high serum levels of very low-density lipoprotein (VLDL). VLDL has been shown to induce aldosterone production in multiple adrenal zona glomerulosa models, mediated in part by phospholipase D (PLD). PLD is an enzyme that hydrolyzes phosphatidylcholine to produce phosphatidic acid (PA), a lipid second messenger that can also be dephosphorylated by lipin to yield diacylglycerol (DAG), yet another lipid signal. However, it is unclear which of the two lipid second messengers, PA or DAG, underlies PLD's mediation of aldosterone production. We hypothesized that the key signal produced by PLD (indirectly) is DAG such that PLD mediates VLDL-induced aldosterone production via lipin-mediated metabolism of PA to DAG. To assess the role of lipin in VLDL-induced aldosterone production, lipin-1 was overexpressed (using an adenovirus) or inhibited (using propranolol) in HAC15 cells followed by treatment with or without VLDL. Lipin-1 overexpression enhanced the VLDL-stimulated increase in CYP11B2 expression (by 75%), and lipin-1 inhibition decreased the VLDL-stimulated increase in CYP11B2 expression (by 66%). Similarly, the VLDL-stimulated increase in aldosterone production was enhanced by lipin-1 overexpression (182%) and was decreased by lipin inhibition (80%). Our results are suggestive of DAG being the key lipid signal since manipulating lipin-1 levels/activity affects VLDL-stimulated steroidogenic gene expression and ultimately, aldosterone production. Our study warrants further investigation into VLDL-stimulated steroidogenic signaling pathways which may lead to the identification of novel therapeutic targets, such as lipin-1 and its downstream pathways, to potentially treat obesity-associated hypertension.


Assuntos
Aldosterona , Fosfolipase D , Humanos , Aldosterona/metabolismo , Fosfolipase D/genética , Fosfolipase D/metabolismo , Fosfolipase D/farmacologia , Células Cultivadas , Lipoproteínas VLDL/metabolismo , Lipoproteínas VLDL/farmacologia , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Lipoproteínas LDL
7.
Biochim Biophys Acta ; 1813(6): 1254-60, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21515313

RESUMO

Tissue factor pathway inhibitor 2 (TFPI2) is a serine protease inhibitor critical for the regulation of extracellular matrix remodeling and atherosclerotic plaque stability. Previously, we demonstrated that TFPI2 expression is increased in monocytes from patients with familial combined hyperlipidemia (FCH). To gain insight into the molecular mechanisms responsible for this upregulation, we examined TFPI2 expression in THP-1 macrophages exposed to lipoproteins and thrombin. Our results showed that TFPI2 expression was not affected by treatment with very low density lipoproteins (VLDL), but was induced by thrombin (10 U/ml) in THP-1 (1.9-fold increase, p<0.001) and human monocyte-derived macrophages (2.3-fold increase, p<0.005). The specificity of the inductive effect was demonstrated by preincubation with the thrombin inhibitors hirudin and PPACK, which ablated thrombin effects. TFPI2 induction was prevented by pre-incubation with MEK1/2 and JNK inhibitors, but not by the EGF receptor antagonist AG1478. In the presence of parthenolide, an inhibitor of NFκB, but not of SR-11302, a selective AP-1 inhibitor, thrombin-mediated TFPI2 induction was blunted. Our results also show that thrombin treatment increased ERK1/2, JNK and IκBα phosphorylation. Finally, we ruled out the possibility that TFPI2 induction by thrombin was mediated by COX-2, as preincubation with a selective COX-2 inhibitor did not prevent the inductive effect. In conclusion, thrombin induces TFPI2 expression by a mechanism involving ERK1/2 and JNK phosphorylation, leading finally to NFkB activation. In the context of atherosclerosis, thrombin-induced macrophage TFPI2 expression could represent a means of avoiding excessive activation of matrix metalloproteases at sites of inflammation.


Assuntos
Glicoproteínas/metabolismo , Macrófagos/efeitos dos fármacos , Trombina/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Antracenos/farmacologia , Antitrombinas/farmacologia , Western Blotting , Butadienos/farmacologia , Linhagem Celular , Células Cultivadas , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Expressão Gênica/efeitos dos fármacos , Glicoproteínas/genética , Hirudinas/farmacologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipoproteínas VLDL/farmacologia , Macrófagos/citologia , Macrófagos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Nitrilas/farmacologia , Nitrobenzenos/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Fatores de Tempo
8.
Cell Tissue Res ; 348(1): 71-80, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22331364

RESUMO

Diabetic dyslipidemia is characterized by increased circulatory very-low-density lipoprotein (VLDL) levels. Aldosterone, apart from its role in fluid and electrolyte homeostasis, has also been implicated in insulin resistance and myocardial fibrosis. The impact of VLDL as a potential risk factor for aldosterone-mediated cardiovascular injury in diabetes mellitus, however, remains to be investigated. We have therefore studied native and modified VLDL-mediated steroidogenesis and its underlying molecular mechanisms in human adrenocortical carcinoma cells, NCI H295R. Native VLDL (natVLDL), isolated from healthy volunteers, was subjected to in vitro modification with glucose (200 mmol/l) or sodium hypochlorite (1.5 mmol/l) for preparation of glycoxidized and oxidized VLDL, respectively. VLDL treatment induced steroidogenesis in both a concentration- and time-dependent manner. Native and glycoxidized VLDL (50 µg/ml) were almost two-fold more potent in adrenocortical aldosterone release than angiotensin II (100 nmol/l). These forms of VLDL significantly augmented transcriptional regulation of aldosterone synthase (Cyp11B2), partially through scavenger receptor class B type I, as evident from the effect of BLT-1. In contrast to glycoxidized VLDL, oxidized VLDL significantly attenuated the stimulatory effect of natVLDL on adrenocortical hormone synthesis. Moreover, treatment with specific pharmacological inhibitors (H89, U0126, AG490) provided supporting evidence that VLDL, irrespective of modification, presumably recruited PKA, ERK1/2 and Jak-2 for steroid hormone release through modulation of Cyp11B2 mRNA level. In conclusion, this study demonstrates a novel insight into intracellular mechanism of VLDL-mediated aldosterone synthesis through transcriptional regulation of steroidogenic acute regulatory protein (StAR) and Cyp11B2 expression in human adrenocortical carcinoma cell line.


Assuntos
Córtex Suprarrenal/citologia , Córtex Suprarrenal/enzimologia , Citocromo P-450 CYP11B2/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Lipoproteínas VLDL/farmacologia , Transdução de Sinais/genética , Transcrição Gênica/efeitos dos fármacos , Córtex Suprarrenal/metabolismo , Aldosterona/metabolismo , Antígenos CD36/metabolismo , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citocromo P-450 CYP11B2/metabolismo , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Janus Quinase 2/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
9.
Mol Cell Biochem ; 370(1-2): 103-13, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22911512

RESUMO

In type 2 diabetes, pancreatic ß-cells cannot secret enough insulin compensate for insulin resistance, which are often accompanied by abnormality in lipid metabolism such as hypertriglyceridemia. It is reported that oxidative stress is involved in pancreatic ß-cell dysfunction. However, molecular mechanisms linking between excessive generations of reactive oxygen species (ROS) and ß-cell dysfunction and apoptosis induced by high levels of very low-density lipoprotein (VLDL) are poorly understood. In this study, we test the hypothesis that NADPH oxidase 2 (NOX2)-derived ROS may play a key role in dysfunction and apoptosis of pancreatic ß-cell induced by VLDL. Our results show that the ApoCIII transgenic mice displayed increased serum TG levels, enhanced generation of ROS and impaired insulin content in pancreatic ß-cells. In vitro, the treatment of pancreatic NIT-1 cells with 1 mg/ml VLDL for 12 h stimulated NOX2-derived ROS generation, decreased expression and secretion of insulin. Furthermore, we found that VLDL induced dysfunction and apoptosis of pancreatic ß-cells through JNK and p53 pathways, which were rescued by siRNA-mediated NOX2 reduction. In conclusion, our data demonstrate a critical role of NOX2-derived ROS in dysfunction and apoptosis through JNK and p53 pathways in pancreatic ß-cells induced by VLDL.


Assuntos
Apoptose/efeitos dos fármacos , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/patologia , Lipoproteínas VLDL/farmacologia , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Transgênicos , NADPH Oxidase 2 , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triglicerídeos/sangue , Proteína Supressora de Tumor p53/metabolismo
10.
Biomed Res Int ; 2022: 7659765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132078

RESUMO

Background: The present study aimed to evaluate the effect of nanocurcumin and curcumin on liver transaminases, lipid profile, oxidant and antioxidant system, and pathophysiological changes in aluminium phosphide (ALP) induced hepatoxicity. Material and Methods. In this experimental study, thirty-six male Wistar rats were randomly divided into six groups curcumin (Cur), nanocurcumin (Nanocur), ALP, ALP+Cur, and ALP+Nanocur. All treatments were performed by oral gavage for seven days. After treatment, animals were sacrificed, and liver and blood samples were taken. Serum levels of aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (AP), total bilirubin, cholesterol, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL) were measured by photometric methods. Total antioxidant capacity (TAC) and malondialdehyde (MDA) as parameters of oxidative stress and mRNA expression of the nonenzyme protein including Sirtuin 1 (STR1), Forkhead box protein O1 (FOXO1) and protein O3 (FOXO3), catalase (CAT), and glutathione peroxidase (GPX) as the enzyme protein in homogenized tissues have been investigated. A histologist analyzed liver tissue sections after staining with hematoxylin-eosin. Results: In the aluminium phosphide group, there was a significant increase in MDA, ALT, AST, and AP and total bilirubin, cholesterol, triglyceride, LDL, and VLDL; AST, ALT, total bilirubin, LDL, VLDL, cholesterol, and MDA were significantly decreased; and HDL and TAC were significantly increased compared to ALP (P < 0.05). In the ALP+Nanocur group, ALT, AST, ALP, total bilirubin, cholesterol, LDL, VLDL, triglyceride, and MDA were significantly decreased and HDL and TAC were increased significantly (P < 0.05). The effect of nanocurcumin on controlling serum levels of LDL, VLDL, triglyceride, and MDA in ALP-poisoned rats was significantly more than curcumin (P < 0.05). The ALP group had significant changes in genes SIRT1, FOXO1a, FOXO3a, CAT, and GPX compared to healthy controls (P < 0.05). Nanocurcumin mice expressed more SIRT1, FOXO1a, CAT, and GPX genes than controls, and curcumin-treated mice expressed more SIRT1 and FOXO1a genes (P < 0.05). Histopathological findings also indicated a more significant protective effect of nanocurcumin relative to curcumin against ALP-induced hepatotoxicity. Conclusion: Nanocurcumin significantly protects the liver against aluminum phosphide toxicity. It is suggested that nanocurcumin-based drugs be developed to reduce the toxic effects of ALP in poisoned patients.


Assuntos
Antioxidantes , Curcumina , Alanina Transaminase/metabolismo , Fosfatase Alcalina/metabolismo , Compostos de Alumínio , Animais , Antioxidantes/farmacologia , Aspartato Aminotransferases , Bilirrubina/metabolismo , Catalase/metabolismo , LDL-Colesterol/metabolismo , Curcumina/metabolismo , Curcumina/farmacologia , Amarelo de Eosina-(YS)/metabolismo , Proteína Forkhead Box O1/metabolismo , Glutationa Peroxidase/metabolismo , Hematoxilina/metabolismo , Lipoproteínas HDL , Lipoproteínas VLDL/metabolismo , Lipoproteínas VLDL/farmacologia , Fígado/patologia , Masculino , Malondialdeído/metabolismo , Camundongos , Oxidantes/metabolismo , Estresse Oxidativo , Fosfinas , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Sirtuína 1/metabolismo , Triglicerídeos/metabolismo
11.
J Lipid Res ; 52(9): 1733-41, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21743035

RESUMO

Expression of apoE in adipocytes has been shown to have an important role in modulating adipocyte triglyceride (TG) metabolism and gene expression that is independent of circulating and extracellular apoE. The impact of adipocyte expression of common human apoE isoforms was evaluated using adipocytes harvested from human apoE2, -3, and -4 knock-in mice. Expression of the apoE2 isoform was associated with an increase in adipocyte apoE gene expression and apoE synthesis. Newly synthesized apoE2 was unstable in adipocytes and demonstrated increased degradation and decreased secretion. ApoE2-expressing mice were hyperlipidemic, and had increased size of gonadal fat pads and of adipocytes, compared with apoE3 mice. In isolated cells, however, expression of the apoE2 isoform produced defective lipogenesis and increased TG hydrolysis. Incubation of adipose tissue with apoE3-containing TG-rich lipoproteins resulted in a significant increase in TG in adipose tissue from apoE3 and -E4 mice, but not apoE2 mice. Reduced capacity to internalize FFA as lipogenic substrate contributed to defective lipogenesis. Newly synthesized apoE2 is unstable in adipocytes and results in decreased adipocyte TG synthesis and defective FA uptake. These changes recapitulate those observed in apoE knockout adipocytes and have implications for understanding metabolic disturbances in humans expressing the E2 isoform.


Assuntos
Adipócitos/metabolismo , Apolipoproteína E2/metabolismo , Lipogênese/fisiologia , Isoformas de Proteínas/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Apolipoproteína E2/genética , Células Cultivadas , Ácidos Graxos/metabolismo , Técnicas de Introdução de Genes , Humanos , Lipoproteínas VLDL/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/genética , Técnicas de Cultura de Tecidos
12.
Biol Reprod ; 84(4): 816-25, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21148104

RESUMO

To investigate the regulation of lipid uptake into the eel oocyte in more detail, effects of 11-ketotestosterone (11-KT) and lipid transporters (lipoproteins) were determined in vitro. Ovarian explants from previtellogenic Japanese eels (Anguilla japonica) were incubated for 28 days with 11-KT and/or with very low density lipoproteins (Vldl), low density lipoproteins (Ldl), or high density lipoproteins (Hdl) purified from eel plasma. The androgen 11-KT induced notable increases in oocyte diameter, which were accompanied by the appearance of vacuoles rather than lipid. Ldl and Hdl increased oocyte diameters, whereas Vldl did not. However, coincubation of 11-KT and Vldl, but not of Ldl or Hdl, resulted in dramatic increases in oocyte size and lipid droplet surface area. Effects of both 11-KT (oocyte size) and Vldl (lipid droplet surface area) were dose-dependent between 1 and 100 ng/ml and between 0.5 and 5 mg/ml, respectively. Interestingly, abnormal oocyte cytology under conditions of coculture with 11-KT and Vldl could essentially be prevented if Vldl concentrations were high enough (≥ 5 mg Vldl/ml medium). Unlike 11-KT, estradiol-17beta had no effect on oocyte diameter or lipid droplet surface area. We conclude that Vldl is a key transporter of neutral lipids that accumulate into the eel oocyte during oogenesis and that Vldl-dependent lipid uptake is stimulated by the androgen 11-KT.


Assuntos
Androgênios/metabolismo , Anguilla/crescimento & desenvolvimento , Anguilla/metabolismo , Lipoproteínas VLDL/metabolismo , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Androgênios/administração & dosagem , Androgênios/farmacologia , Animais , Estradiol/farmacologia , Feminino , Técnicas In Vitro , Lipoproteínas/metabolismo , Lipoproteínas/farmacologia , Lipoproteínas VLDL/administração & dosagem , Lipoproteínas VLDL/farmacologia , Masculino , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Testosterona/administração & dosagem , Testosterona/análogos & derivados , Testosterona/farmacologia
13.
Arterioscler Thromb Vasc Biol ; 30(11): 2242-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20829510

RESUMO

OBJECTIVE: To examine the direct effect of apolipoprotein CIII (apoCIII) on adipokine expressions that are involved in obesity, insulin resistance, or metabolic syndrome. METHODS AND RESULTS: ApoCIII in triglyceride-rich lipoproteins is elevated in patients with obesity, insulin resistance, or metabolic syndrome. Its level is also associated with proinflammatory adipokines. Fully differentiated mouse 3T3L1 adipocytes were incubated with apoCIII. ApoCIII activated nuclear factor κB of 3T3L1 adipocytes and induced the expression of monocyte chemoattractant protein (MCP) 1 and interleukin (IL) 6. ApoCIII also activated extracellular signal-regulated kinase and p38. Mitogen-activated protein kinase kinase (MEK)-1 inhibitor PD98059, but not p38 inhibitor SB203580, inhibited apoCIII-induced upregulation of MCP-1 and IL-6. Previously, it was shown that apoCIII activates proinflammatory signals through toll-like receptor (TLR) 2. TLR2-blocking antibody abolished activation of nuclear factor κB and extracellular signal-regulated kinase induced by apoCIII and inhibited apoCIII-induced upregulation of MCP-1 and IL-6. ApoCIII also reduced adiponectin expression of 3T3L1 adipocytes, which was recovered by TLR2-blocking antibody. ApoCIII induced the expression of MCP-1 and IL-6 in TLR2-overexpressed human embryonic kidney 293 cells but not wild-type human embryonic kidney 293 cells without TLR2. ApoCIII induced the expression of MCP-1 and IL-6 and decreased adiponectin expression in white adipose tissue of wild-type mice but not of TLR2-deficient mice in vivo. CONCLUSIONS: ApoCIII may activate extracellular signal-regulated kinase and nuclear factor kB through TLR2 and induce proinflammatory adipokine expression in vitro and in vivo. Thus, apoCIII links dyslipidemia to inflammation in adipocytes, which, in turn, may contribute to atherosclerosis.


Assuntos
Adipócitos/metabolismo , Apolipoproteína C-III/farmacologia , Quimiocina CCL2/metabolismo , Interleucina-6/metabolismo , Lipoproteínas VLDL/farmacologia , Receptor 2 Toll-Like/metabolismo , Adipócitos/efeitos dos fármacos , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , NF-kappa B/metabolismo
14.
Mem Inst Oswaldo Cruz ; 106(8): 986-92, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22241121

RESUMO

In this study, we evaluated whether human serum and lipoproteins, especially high-density lipoprotein (HDL), affected serum amyloid A (SAA)-induced cytokine release. We verified the effects of SAA on THP-1 cells in serum-free medium compared to medium containing human serum or lipoprotein-deficient serum. SAA-induced tumour necrosis factor-alpha (TNF-α) production was higher in the medium containing lipoprotein-deficient serum than in the medium containing normal human serum. The addition of HDL inhibited the SAA-induced TNF-α release in a dose-dependent manner. This inhibitory effect was specific for HDL and was not affected by low-density lipoprotein or very low-density lipoprotein. In human peripheral blood mononuclear cells, the inhibitory effect of HDL on TNF-α production induced by SAA was less pronounced. However, this effect was significant when HDL was added to lipoprotein-deficient medium. In addition, a similar inhibitory effect was observed for interleukin-1 beta release. These findings confirm the important role of HDL and support our previous hypothesis that HDL inhibits the effects of SAA during SAA transport in the bloodstream. Moreover, the HDL-induced reduction in the proinflammatory activity of SAA emphasizes the involvement of SAA in diseases, such as atherosclerosis, that are characterized by low levels of HDL.


Assuntos
Interleucina-1beta/biossíntese , Leucócitos Mononucleares/metabolismo , Lipoproteínas HDL/farmacologia , Proteína Amiloide A Sérica/antagonistas & inibidores , Fator de Necrose Tumoral alfa/biossíntese , Meios de Cultura Livres de Soro , Humanos , Interleucina-1beta/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Lipoproteínas LDL/farmacologia , Lipoproteínas VLDL/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Proteína Amiloide A Sérica/farmacologia
15.
J Cell Biol ; 70(1): 20-32, 1976 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-180032

RESUMO

Rat serum very low density lipoprotein (VLDL) inhibits initiation of DNA synthesis in fetal rat hepatocyte cultures; cells engaged in synthesizing DNA resist inhibition. VLDL action is specific and apparently blocks prereplicative protein synthesis. These and other results, from studies of altered blood VLDL levels and [3H] thymidine incorporation into isolated liver nuclei in 70% hepatectomized normal and mutant hyperlipoproteinemic rats, as well as from infusion studies with a "mitogenic" hormone solution, suggest that hepatic VLDL metabolism is linked to the suppression of hepatocyte proliferation.


Assuntos
Proteínas Sanguíneas , DNA/biossíntese , Lipoproteínas VLDL/farmacologia , Fígado/citologia , Aminoácidos/farmacologia , Animais , Arginina/metabolismo , Proteínas Sanguíneas/análise , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Glucagon/farmacologia , Heparina/farmacologia , Hepatectomia , Hiperlipidemias/metabolismo , Lipoproteínas/sangue , Fígado/metabolismo , Biossíntese de Proteínas , Ratos , Timidina/metabolismo , Tri-Iodotironina/farmacologia
16.
Science ; 264(5160): 850-2, 1994 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-8171342

RESUMO

Apolipoprotein E4 (apoE4), one of the three common isoforms of apoE, has been implicated in Alzheimer's disease. The effects of apoE on neuronal growth were determined in cultures of dorsal root ganglion neurons. In the presence of beta-migrating very low density lipoproteins (beta-VLDL), apoE3 increased neurite outgrowth, whereas apoE4 decreased outgrowth. The effects of apoE3 or apoE4 in the presence of beta-VLDL were prevented by incubation with a monoclonal antibody to apoE or by reductive methylation of apoE, both of which block the ability of apoE to interact with lipoprotein receptors. The data suggest that receptor-mediated binding or internalization (or both) of apoE-enriched beta-VLDL leads to isoform-specific differences in interactions with cellular proteins that affect neurite outgrowth.


Assuntos
Apolipoproteínas E/farmacologia , Neuritos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Apolipoproteína E3 , Apolipoproteína E4 , Apolipoproteínas E/metabolismo , Células Cultivadas , Meios de Cultura Livres de Soro , Feto , Gânglios Espinais , Lipoproteínas VLDL/farmacologia , Neuritos/ultraestrutura , Neurônios/citologia , Coelhos , Receptores de LDL/metabolismo
17.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 31(1): 55-9, 2009 Feb.
Artigo em Zh | MEDLINE | ID: mdl-19317061

RESUMO

OBJECTIVE: To investigate the effects of very low-density lipoprotein (VLDL) on cellular lipid accumulation and the expression of monocyte chemoattractant protein-1 (MCP-1) in human mesangial cells. METHODS: An established stable human mesangial cell line (HMCL) was used in all experiments. VLDL-induced cellular lipid deposition was visualized by Oil Red O staining and analyzed quantitatively by standard enzymatic procedures. MCP-1 mRNA and protein expression levels in treated HMCLs were determined by real-time quantitative RT-PCR and enzyme-linked immunosorbent assay, respectively. For adhesion study, HMCLs were treated with VLDL for 12 hours, followed by a one-hour incubation with THP-1 cells. RESULTS: VLDL induced cellular lipid accumulation in HMCLs in a time- (0-24 h) and dose- (0-200 microg/ml) dependent manner, and the principal component of accumulated lipid is triglyceride. In HMCLs, MCP-1 mRNA expression was promoted by VLDL in a time- (0-6 h) and dose- (0-100 microg/ml) dependent manner, and VLDL also enhanced MCP-1 secretion in a dose-dependent manner. Such an effect was accompanied by increased adhesion of monocytes to HMCLs. CONCLUSIONS: VLDL can induce cellular triglyceride accumulation and upregulate the expression of MCP-1 in human mesangial cells. Hence, VLDL may be involved in the pathogenesis of lipid-mediated renal injury.


Assuntos
Quimiocina CCL2/metabolismo , Lipoproteínas VLDL/toxicidade , Células Mesangiais/metabolismo , Triglicerídeos/metabolismo , Linhagem Celular , Quimiocina CCL2/genética , Humanos , Lipoproteínas VLDL/farmacologia , Células Mesangiais/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
J Clin Invest ; 86(3): 696-702, 1990 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-2394827

RESUMO

Endotoxemia stimulates many physiologic responses including disturbances in lipid metabolism. We hypothesized that this lipemia may be part of a defensive mechanism by which the body combats the toxic effects of circulating endotoxin. We tested the effects of mixtures of endotoxin, lipoproteins, and lipoprotein-free plasma and determined the ability of varying concentrations of human very low density lipoproteins (VLDL) and chylomicrons, as well as low density lipoproteins (LDL) and high density lipoproteins (HDL), and of the synthetic lipid emulsion SOYACAL to prevent endotoxin-induced death in mice. This study demonstrates that the triglyceride-rich VLDL and chylomicrons, as well as cholesterol-rich LDL and HDL, and cholesterol-free SOYACAL can protect against endotoxin-induced death. Protection required small amounts of lipoprotein-free plasma, and depended on the incubation time and the concentration of lipoprotein lipid. Despite stringent techniques to prevent exogenous endotoxin contamination eight of ten duplicate VLDL preparations contained endotoxin (5,755 +/- 3,514 ng endotoxin/mg triglyceride, mean +/- SEM) making the isolation of endotoxin-free VLDL difficult. In contrast, simultaneous preparations of LDL and HDL were relatively free of endotoxin contamination (3 +/- 3 and 320 +/- 319 ng/mg total cholesterol, respectively), suggesting that the contamination of VLDL occurs in vivo and not during the isolation procedure. These observations suggest a possible role for increased triglyceride-rich lipoproteins in the host's defense against endotoxemia and infection.


Assuntos
Quilomícrons/farmacologia , Endotoxinas/toxicidade , Lipoproteínas VLDL/farmacologia , Animais , Emulsões , Endotoxinas/análise , Humanos , Lipoproteínas/análise , Camundongos , Camundongos Endogâmicos C57BL , Óleo de Soja/farmacologia
19.
J Clin Invest ; 88(6): 2059-66, 1991 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1752964

RESUMO

Plasma net cholesteryl ester (CE) transfer and optimum cholesteryl ester transfer protein (CETP) activity were determined in primary hypertriglyceridemic (n = 11) and normolipidemic (n = 15) individuals. The hypertriglyceridemic group demonstrated threefold greater net CE transfer leading to enhanced accumulation of CE in VLDL. This increased net transfer was not accompanied by a change in CETP activity. In normolipidemia, but not in hypertriglyceridemia, net CE transfer correlated with VLDL triglyceride (r = 0.92, P less than 0.001). In contrast, net CE transfer in hypertriglyceridemia, but not in normolipidemia, correlated with CETP activity (r = 0.73, P less than 0.01). Correction of hypertriglyceridemia with bezafibrate reduced net CE transfer towards normal and restored the correlation with VLDL triglyceride (r = 0.90, P less than 0.005) while suppressing the correlation with CETP activity. That net CE transfer depends on VLDL concentration was confirmed by an increase of net CE transfer in normolipidemic plasma supplemented with purified VLDL. Supplementation of purified CETP to normolipidemic plasma did not stimulate net CE transfer. In contrast, net CE transfer was enhanced by addition of CETP to both plasma supplemented with VLDL and hypertriglyceridemic plasma. Thus, in normal subjects, VLDL concentration determines the rate of net CE transfer. CETP becomes rate limiting as VLDL concentration increases, i.e., in hypertriglyceridemia.


Assuntos
Ésteres do Colesterol/metabolismo , Glicoproteínas , Hipertrigliceridemia/metabolismo , Adulto , Bezafibrato/farmacologia , Transporte Biológico , Proteínas de Transporte/farmacologia , Proteínas de Transferência de Ésteres de Colesterol , Humanos , Lipoproteínas HDL/farmacologia , Lipoproteínas LDL/farmacologia , Lipoproteínas VLDL/sangue , Lipoproteínas VLDL/farmacologia , Triglicerídeos/sangue
20.
J Clin Invest ; 78(2): 389-97, 1986 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-3734098

RESUMO

Rabbit aortic endothelial cells (RAEC) were grown on micropore filters in a new device. This system allowed in situ measurement of transendothelial electrical resistance (TEER). The monolayers demonstrated a TEER of 14 +/- 1 omega X cm2 at confluence. No difference was seen in the transport of low density lipoproteins (LDL) across endothelial cell monolayers obtained from normal or Watanabe heritable hyperlipidemic rabbits, indicating that the LDL receptor was not involved in the LDL transport. TEER was inversely correlated with 22Na transport (r2 = 0.93, P = less than 0.001) but not with 125I-LDL transport. The amount of LDL transported at 15 degrees C or across glutaraldehyde-fixed monolayers was half that of the controls at 37 degrees C. Preincubation of the monolayers with rabbit beta-migrating very low density lipoproteins (beta-VLDL) increased cholesterol content by 65%, and the transport of albumin and LDL doubled without a change in TEER. Removal of beta-VLDL from the culture medium resulted in the return of cellular cholesterol content and LDL transport to control values. We conclude that preincubation of RAEC with beta-VLDL resulted in an increased permeability to LDL and albumin, and that beta-VLDL may promote increased transendothelial transport of macromolecules in cholesterol-fed rabbits.


Assuntos
Condutividade Elétrica , Endotélio/efeitos dos fármacos , Lipoproteínas VLDL/farmacologia , Albuminas/metabolismo , Animais , Aorta , Transporte Biológico/efeitos dos fármacos , Células Cultivadas , Endotélio/metabolismo , Endotélio/ultraestrutura , Humanos , Lipoproteínas LDL/metabolismo , Substâncias Macromoleculares , Microscopia Eletrônica , Coelhos , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA