Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
1.
Int Arch Occup Environ Health ; 96(7): 1029-1037, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37243737

RESUMO

OBJECTIVE: Welding fume exposure is inevitable of welding workers and poses a severe hazard to their health since welding is a necessary industrial process. Thus, preclinical diagnostic symptoms of worker exposure are of great importance. The aim of this study was to screen serum differential metabolites of welding fume exposure based on UPLC-QTOF-MS/MS. METHODS: In 2019, 49 participants were recruited at a machinery manufacturing factory. The non-target metabolomics technique was used to clarify serum metabolic signatures in people exposed to welding fume. Differential metabolites were screened by OPLS-DA analysis and Student's t-test. The receiver operating characteristic curve evaluated the discriminatory power of differential metabolites. And the correlations between differential metabolites and metal concentrations in urine and whole blood were analyzed utilizing Pearson correlation analysis. RESULTS: Thirty metabolites were increased significantly, and 5 metabolites were decreased. The differential metabolites are mainly enriched in the metabolism of arachidonic acid, glycero phospholipid, linoleic acid, and thiamine. These results observed that lysophosphatidylcholine (20:1/0:0) and phosphatidylglycerol(PGF1α/16:0) had a tremendous anticipating power with relatively increased AUC values (AUC > 0.9), and they also presented a significant correlation of Mo concentrations in whole blood and Cu concentrations in urine, respectively. CONCLUSION: The serum metabolism was changed significantly after exposure to welding fume. Lysophosphatidylcholine (20:1/0:0) and phosphatidylglycerol (PGF1α/16:0) may be a potential biological mediator and biomarker for laborers exposure to welding fume.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Soldagem , Humanos , Poluentes Ocupacionais do Ar/análise , Lisofosfatidilcolinas/análise , Espectrometria de Massas em Tandem , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Metaboloma , Exposição por Inalação/análise
2.
Crit Care Med ; 50(2): e199-e208, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34259447

RESUMO

OBJECTIVES: Cardiac arrest and subsequent resuscitation have been shown to deplete plasma phospholipids. This depletion of phospholipids in circulating plasma may contribute to organ damage postresuscitation. Our aim was to identify the diminishment of essential phospholipids in postresuscitation plasma and develop a novel therapeutic approach of supplementing these depleted phospholipids that are required to prevent organ dysfunction postcardiac arrest, which may lead to improved survival. DESIGN: Clinical case control study followed by translational laboratory study. SETTING: Research institution. PATIENTS/SUBJECTS: Adult cardiac arrest patients and male Sprague-Dawley rats. INTERVENTIONS: Resuscitated rats after 10-minute asphyxial cardiac arrest were randomized to be treated with lysophosphatidylcholine specie or vehicle. MEASUREMENTS AND MAIN RESULTS: We first performed a phospholipid survey on human cardiac arrest and control plasma. Using mass spectrometry analysis followed by multivariable regression analyses, we found that plasma lysophosphatidylcholine levels were an independent discriminator of cardiac arrest. We also found that decreased plasma lysophosphatidylcholine was associated with poor patient outcomes. A similar association was observed in our rat model, with significantly greater depletion of plasma lysophosphatidylcholine with increased cardiac arrest time, suggesting an association of lysophosphatidylcholine levels with injury severity. Using a 10-minute cardiac arrest rat model, we tested supplementation of depleted lysophosphatidylcholine species, lysophosphatidylcholine(18:1), and lysophosphatidylcholine(22:6), which resulted in significantly increased survival compared with control. Furthermore, the survived rats treated with these lysophosphatidylcholine species exhibited significantly improved brain function. However, supplementing lysophosphatidylcholine(18:0), which did not decrease in the plasma after 10-minute cardiac arrest, had no beneficial effect. CONCLUSIONS: Our data suggest that decreased plasma lysophosphatidylcholine is a major contributor to mortality and brain damage postcardiac arrest, and its supplementation may be a novel therapeutic approach.


Assuntos
Parada Cardíaca/metabolismo , Lisofosfatidilcolinas/análise , Programas de Rastreamento/normas , Fosfolipídeos/análise , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Parada Cardíaca/sangue , Parada Cardíaca/complicações , Humanos , Lisofosfatidilcolinas/sangue , Masculino , Programas de Rastreamento/métodos , Programas de Rastreamento/estatística & dados numéricos , Fosfolipídeos/sangue , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença
3.
Cancer Sci ; 112(10): 4292-4302, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34328656

RESUMO

The altered levels of phospholipids (PLs) and lysophospholipids (LPLs) in prostate cancer (CaP) and benign tissues in our previous findings prompted us to explore PLs and LPLs as potential biomarkers for CaP. Urinary lipidomics has attracted increasing attention in clinical diagnostics and prognostics for CaP. In this study, 31 prostate tissues obtained from radical prostatectomy were assessed using high-resolution matrix-assisted laser desorption/ionization imaging mass spectrometry (HR-MALDI-IMS). Urine samples were collected after digital rectal examination (DRE), and urinary lipids were extracted using the acidified Bligh-Dyer method. The discovery set comprised 75 patients with CaP and 44 with benign prostatic hyperplasia (BPH) at Kyoto University Hospital; the validation set comprised 74 patients with CaP and 59 with BPH at Osaka University Hospital. Urinary lipidomic screening was performed using MALDI time-of-flight MS (MALDI-TOF/MS). The levels of urinary lysophosphatidylcholine (LPC) and phosphatidylcholines (PCs) were compared between the CaP and BPH groups. The (PC [34:2] + PC [34:1])/LPC (16:0) ratio was significantly higher (P < .001) in CaP tissues than in benign epithelial tissues. The urinary PCs/LPC ratio was significantly higher (P < .001) in the CaP group than in the BPH group in the discovery and validation sets.


Assuntos
Biomarcadores Tumorais/urina , Lisofosfatidilcolinas/urina , Fosfatidilcolinas/urina , Hiperplasia Prostática/urina , Neoplasias da Próstata/urina , Idoso , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/sangue , Humanos , Lisofosfatidilcolinas/análise , Lisofosfolipídeos/urina , Masculino , Fosfatidilcolinas/análise , Antígeno Prostático Específico/sangue , Hiperplasia Prostática/patologia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/química , Neoplasias da Próstata/patologia , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
4.
Reprod Biomed Online ; 43(5): 810-819, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34538753

RESUMO

RESEARCH QUESTION: Which metabolites are altered in the peritoneal cavity of women with endometriosis? Could the mouse endometriosis model simulate these alterations? DESIGN: Thirteen women with endometriosis and seven women with other benign gynaecological diseases, who underwent laparoscopic surgery, were included in this study. None had received hormonal therapy for 3 months before surgery. For the animal experiments, six and five mice were included in the endometriosis and control groups, respectively. Peritoneal fluid from the patients and peritoneal lavage fluid from the mice was collected and analysed. Non-targeted metabolomics via liquid chromatography with tandem mass spectrometry was used to identify the altered metabolites in the peritoneal fluid of endometriosis patients and mouse models. MetaboAnalyst 4.0 was used to visualize the data. RESULTS: Several metabolites in the peritoneal cavity were significantly altered in both humans and mice with endometriosis. Concentrations of lysophosphatidylcholine (LysopC) (P=0.017 in patients and P=0.041 in the mouse model) and derivatives of phosphoethanolamine (1-arachidonoyl-sn-glycero-3-phosphoethanolamine in patients, P=0.027; 1-oleoyl-sn-glycero-3-phosphoethanolamine in patients, P=0.0086; and phosphorylethanolamine in the mouse model, P=0.0027) were significantly up-regulated in both, whereas concentrations of acylcarnitines (l-palmitoylcarnitine, P=0.047; and stearoylcarnitine, P=0.029) and kynurenine (P=0.045) were significantly increased only in humans. The human and mouse samples shared three altered enriched metabolite sets. CONCLUSIONS: Women with endometriosis show an altered metabolic state in the abdominal cavity. The endometriosis mouse model shared half of the significantly altered metabolite sets found in the abdominal cavity of humans.


Assuntos
Líquido Ascítico/metabolismo , Endometriose/metabolismo , Metaboloma , Adulto , Animais , Líquido Ascítico/química , Modelos Animais de Doenças , Endometriose/cirurgia , Etanolaminas/análise , Etanolaminas/metabolismo , Feminino , Humanos , Laparoscopia , Lisofosfatidilcolinas/análise , Lisofosfatidilcolinas/metabolismo , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Lavagem Peritoneal , Peritônio/metabolismo
5.
J Inherit Metab Dis ; 44(5): 1174-1185, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33855724

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is the most common leukodystrophy. Despite intensive research in recent years, it remains unclear, what drives the different clinical disease courses. Due to this missing pathophysiological link, therapy for the childhood cerebral disease course of X-ALD (CCALD) remains symptomatic; the allogenic hematopoietic stem cell transplantation or hematopoietic stem-cell gene therapy is an option for early disease stages. The inclusion of dried blood spot (DBS) C26:0-lysophosphatidylcholine to newborn screening in an increasing number of countries is leading to an increasing number of X-ALD patients diagnosed at risk for CCALD. Current follow-up in asymptomatic boys with X-ALD requires repetitive cerebral MRIs under sedation. A reliable and easily accessible biomarker that predicts CCALD would therefore be of great value. Here we report the application of targeted metabolomics by AbsoluteIDQ p180-Kit from Biocrates to search for suitable biomarkers in X-ALD. LysoPC a C20:3 and lysoPC a C20:4 were identified as metabolites that indicate neuroinflammation after induction of experimental autoimmune encephalitis in the serum of Abcd1tm1Kds mice. Analysis of serum from X-ALD patients also revealed different concentrations of these lipids at different disease stages. Further studies in a larger cohort of X-ALD patient sera are needed to prove the diagnostic value of these lipids for use as early biomarkers for neuroinflammation in CCALD patients.


Assuntos
Adrenoleucodistrofia/diagnóstico , Lisofosfatidilcolinas/análise , Metabolômica/métodos , Triagem Neonatal/métodos , Doenças Neuroinflamatórias/etiologia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/complicações , Adrenoleucodistrofia/fisiopatologia , Animais , Biomarcadores/sangue , Teste em Amostras de Sangue Seco , Encefalomielite Autoimune Experimental/sangue , Feminino , Humanos , Recém-Nascido , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/sangue , Fosfolipídeos
6.
Anal Bioanal Chem ; 413(10): 2735-2745, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33078250

RESUMO

Ischemic stroke is one of the major causes of death and permanent disability in the world. However, the molecular mechanisms surrounding tissue damage are complex and further studies are needed to gain insights necessary for development of treatment. Prophylactic treatment by administration of cytosine-guanine (CpG) oligodeoxynucleotides has been shown to provide neuroprotection against anticipated ischemic injury. CpG binds to Toll-like receptor 9 (TLR9) causing initialization of an inflammatory response that limits visible ischemic damages upon subsequent stroke. Here, we use nanospray desorption electrospray ionization (nano-DESI) mass spectrometry imaging (MSI) to characterize molecular effects of CpG preconditioning prior to middle cerebral artery occlusion (MCAO) and reperfusion. By doping the nano-DESI solvent with appropriate internal standards, we can study and compare distributions of phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) in the ischemic hemisphere of the brain despite the large changes in alkali metal abundances. Our results show that CpG preconditioning not only reduces the infarct size but it also decreases the degradation of PC and accumulation of LPC species, which indicates reduced cell membrane breakdown and overall ischemic damage. Our findings show that molecular mechanisms of PC degradation are intact despite CpG preconditioning but that these are limited due to the initialized inflammatory response.


Assuntos
Química Encefálica , Encéfalo/patologia , Infarto da Artéria Cerebral Média/terapia , Lisofosfatidilcolinas/análise , Oligodesoxirribonucleotídeos/uso terapêutico , Animais , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/patologia , Masculino , Espectrometria de Massas , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/administração & dosagem
7.
Int J Med Sci ; 17(17): 2790-2798, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162806

RESUMO

Background: Chronic venous disease (CVD) is a prevalent lower limb venous pathology that especially affects women, who also show an increased risk of this disease during pregnancy. Studies have shown significant structural changes in the placentas of women with CVD and several markers of tissue damage have been also described. Patients and Methods: To try to understand the different placental pathologies, research efforts have focused on examining metabolomic profiles as indicators of the repercussions of these vascular disorders. This study examines changes produced in the metabolomic profiles of chorionic villi in the placentas of women with CVD. In a study population of 12 pregnant women, 6 with and 6 without CVD, we compared through mass spectroscopy coupled to ultra-high performance liquid chromatography (UHPLC-MS), 240 metabolites in chorionic villus samples. Results: This study is the first to detect in the placental villi of pregnant women with CVD, modifications in lysophosphatidylcholines and amino acids along with diminished levels of other lipids such as triglycerides, sphingomyelins, and non-esterified omega 9 fatty acids, suggesting a role of these abnormalities in the pathogenesis of CVD. Conclusions: Our findings are a starting point for future studies designed to examine the impacts of CVD on maternal and fetal well-being.


Assuntos
Vilosidades Coriônicas/patologia , Lisofosfatidilcolinas/análise , Complicações Cardiovasculares na Gravidez/patologia , Insuficiência Venosa/patologia , Adulto , Estudos de Casos e Controles , Doença Crônica , Feminino , Voluntários Saudáveis , Humanos , Lipidômica , Lisofosfatidilcolinas/metabolismo , Gravidez
8.
Differentiation ; 105: 27-32, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30554008

RESUMO

Horse serum is commonly used as an additive to support the maintenance of hematopoietic progenitor cells in culture. However, the wide variability in the performance of different lots calls for parallel testing of multiple batches over extended periods of culture. Identification of the serum components that determine hematopoietic support would therefore save considerable time and effort and would help to standardize culture procedures. We report here that the ability of horse serum to support the self-renewal of multipotent murine hematopoietic progenitor FDCP-Mix cells is correlated to the concentration of specific fatty acid products of phospholipase A2 and more closely to the spectrum of eicosanoids generated by their further processing through cyclooxygenase and lipoxygenase pathways. Supportive sera have low levels of lysophosphatidylcholine and inflammatory eicosanoids. This links known markers of inflammation, infection and platelet activation to the ability of serum to maintain progenitor cells in an undifferentiated state, providing a means for prospective identification of suitable sera as well as quality control of the production process.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/efeitos dos fármacos , Fosfolipases A2/análise , Soro/química , Animais , Eicosanoides/análise , Eicosanoides/farmacologia , Células-Tronco Hematopoéticas/citologia , Cavalos , Lipídeos/análise , Lipídeos/farmacologia , Lipoxigenase/metabolismo , Lisofosfatidilcolinas/análise , Lisofosfatidilcolinas/farmacologia , Espectrometria de Massas , Camundongos , Fosfolipases A2/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Soro/metabolismo
9.
Int J Mol Sci ; 21(22)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266469

RESUMO

Cardiovascular disease (CVD) is the major cause of death in patients with type-2 diabetes mellitus (T2DM), although the factors that accelerate atherosclerosis in these patients are poorly understood. The identification of the altered quantity and quality of lipoproteins, closely related to atherogenesis, is limited in routine to a pattern of high triglycerides and low HDL-cholesterol (HDL-C) and in research as dysfunctional HDLs. We used the emerging NMR-based lipidomic technology to investigate compositional features of the HDLs of healthy individuals with normal coronary arteries, drug-naïve; recently diagnosed T2DM patients with normal coronary arteries; and patients with recent acute coronary syndrome. Patients with T2DM and normal serum lipid profiles even at diagnosis presented significant lipid alterations in HDL, characterized by higher triglycerides, lysophosphatidylcholine and saturated fatty acids; and lower cholesterol, phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, plasmalogens and polyunsaturated fatty acids, an atherogenic pattern that may be involved in the pathogenesis of atherosclerosis. These changes are qualitatively similar to those found, more profoundly, in normolipidemic patients with established Coronary Heart Disease (CHD). We also conclude that NMR-based lipidomics offer a novel holistic exploratory approach for identifying and quantifying lipid species in biological matrixes in physiological processes and disease states or in disease biomarker discovery.


Assuntos
Aterosclerose/sangue , Diabetes Mellitus Tipo 2/sangue , Lipidômica , Lipoproteínas HDL/química , Idoso , HDL-Colesterol/análise , Doença das Coronárias/sangue , Ácidos Graxos/análise , Feminino , Humanos , Lisofosfatidilcolinas/análise , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fosfatidilcolinas/análise , Fosfatidiletanolaminas/análise , Esfingomielinas/análise , Triglicerídeos/análise
10.
N Engl J Med ; 374(6): 555-61, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26863356

RESUMO

Antigen-driven selection has been implicated in the pathogenesis of monoclonal gammopathies. Patients with Gaucher's disease have an increased risk of monoclonal gammopathies. Here we show that the clonal immunoglobulin in patients with Gaucher's disease and in mouse models of Gaucher's disease-associated gammopathy is reactive against lyso-glucosylceramide (LGL1), which is markedly elevated in these patients and mice. Clonal immunoglobulin in 33% of sporadic human monoclonal gammopathies is also specific for the lysolipids LGL1 and lysophosphatidylcholine (LPC). Substrate reduction ameliorates Gaucher's disease-associated gammopathy in mice. Thus, long-term immune activation by lysolipids may underlie both Gaucher's disease-associated gammopathies and some sporadic monoclonal gammopathies.


Assuntos
Doença de Gaucher/imunologia , Glucosilceramidas/imunologia , Imunoglobulinas/imunologia , Lisofosfatidilcolinas/imunologia , Mieloma Múltiplo/imunologia , Paraproteinemias/imunologia , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Doença de Gaucher/complicações , Glucosilceramidas/análise , Humanos , Lisofosfatidilcolinas/análise , Camundongos
11.
Anal Chem ; 91(5): 3389-3396, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30689358

RESUMO

Lipid quantification is the ultimate goal in lipidomics studies challenged by the availability of standard compounds. A novel strategy for targeted lipidomics based on LC-MS/MS parameters prediction and multivariate statistical analysis was developed for the quantitation of lysophosphatidylcholines (LPCs) in this study. Multiple linear regression models were established with the acyl chain length and number of double bonds after the prediction correlation coefficients ( R2pred) were evaluated. Then related analytical parameters including collision energy, declustering potential, retention time, and response factor were successfully predicted for any given LPC. With this "model-prediction" strategy, sensitivity, accuracy, and coverage of targeted lipidomics were improved significantly, and 60 LPCs were determined simultaneously in plasma for the first time. An integrated evaluation method for multi-indexes, logistic regression-ROC analysis was also proposed after biomarkers were identified by Student's t test, univariate ROC curve, and PLS-DA. Then the developed workflow was successfully used to discover and evaluate multi-LPCs indexes (a set of LPCs biomarkers with the best discriminating ability) for differentiating lung, breast, colorectal, and gastric cancer from controls, and among different types of cancer. Finally, the multi-LPCs index for lung cancer was compared with the plasma before and after treatment to test its utility. The novel targeted lipidomics methodology for LPCs was expected to provide a new insight into quantitative lipidomics and further clinical application.


Assuntos
Biomarcadores Tumorais/análise , Lipidômica , Lisofosfatidilcolinas/análise , Biomarcadores Tumorais/metabolismo , Cromatografia Líquida , Humanos , Lisofosfatidilcolinas/metabolismo , Estrutura Molecular , Análise Multivariada , Espectrometria de Massas em Tandem
12.
Cell Physiol Biochem ; 45(2): 614-624, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29402770

RESUMO

BACKGROUND/AIMS: Impaired birth outcomes, like low birth weight, have consistently been associated with increased disease susceptibility to hypertension in later life. Alterations in the maternal or fetal metabolism might impact on fetal growth and influence birth outcomes. Discerning associations between the maternal and fetal metabolome and surrogate parameters of fetal growth could give new insight into the complex relationship between intrauterine conditions, birth outcomes, and later life disease susceptibility. METHODS: Using flow injection tandem mass spectrometry, targeted metabolomics was performed in serum samples obtained from 226 mother/child pairs at delivery. Associations between neonatal birth weight and concentrations of 163 maternal and fetal metabolites were analyzed. RESULTS: After FDR adjustment using the Benjamini-Hochberg procedure lysophosphatidylcholines (LPC) 14: 0, 16: 1, and 18: 1 were strongly positively correlated with birth weight. In a stepwise linear regression model corrected for established confounding factors of birth weight, LPC 16: 1 showed the strongest independent association with birth weight (CI: 93.63 - 168.94; P = 6.94×10-11 ). The association with birth weight was stronger than classical confounding factors such as offspring sex (CI: -258.81- -61.32; P = 0.002) and maternal smoking during pregnancy (CI: -298.74 - -29.51; P = 0.017). CONCLUSIONS: After correction for multiple testing and adjustment for potential confounders, LPC 16: 1 showed a very strong and independent association with birth weight. The underlying molecular mechanisms linking fetal LPCs with birth weight need to be addressed in future studies.


Assuntos
Peso ao Nascer , Sangue Fetal/metabolismo , Lisofosfatidilcolinas/análise , Adulto , Feminino , Humanos , Recém-Nascido , Modelos Lineares , Lisofosfatidilcolinas/química , Masculino , Metabolômica , Gravidez , Fatores Sexuais , Fumar , Espectrometria de Massas em Tandem
13.
Rapid Commun Mass Spectrom ; 32(9): 721-729, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29484723

RESUMO

RATIONALE: Stroke is a leading cause of disability worldwide. Understanding the recovery process post-stroke is essential; however, longer-term recovery studies are lacking. In vivo positron emission tomography (PET) can image biological recovery processes, but is limited by spatial resolution and its targeted nature. Untargeted mass spectrometry imaging offers high spatial resolution, providing an ideal ex vivo tool for brain recovery imaging. METHODS: Magnetic resonance imaging (MRI) was used to image a rat brain 48 h after ischaemic stroke to locate the infarcted regions of the brain. PET was carried out 3 months post-stroke using the tracers [18 F]DPA-714 for TSPO and [18 F]IAM6067 for sigma-1 receptors to image neuroinflammation and neurodegeneration, respectively. The rat brain was flash-frozen immediately after PET scanning, and sectioned for matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) imaging. RESULTS: Three months post-stroke, PET imaging shows minimal detection of neurodegeneration and neuroinflammation, indicating that the brain has stabilised. However, MALDI-MS images reveal distinct differences in lipid distributions (e.g. phosphatidylcholine and sphingomyelin) between the scar and the healthy brain, suggesting that recovery processes are still in play. It is currently not known if the altered lipids in the scar will change on a longer time scale, or if they are stabilised products of the brain post-stroke. CONCLUSIONS: The data demonstrates the ability to combine MALD-MS with in vivo PET to image different aspects of stroke recovery.


Assuntos
Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Lisofosfatidilcolinas/análise , Imageamento por Ressonância Magnética/métodos , Fosfatidilcolinas/análise , Pirazóis , Pirimidinas , Ratos Wistar , Esfingomielinas/análise , Acidente Vascular Cerebral/patologia , Fatores de Tempo
14.
Anal Chem ; 89(3): 1477-1485, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-27991764

RESUMO

A combined lipidomics and transcriptomics analysis was performed on mouse myeloma SP2/0, Chinese hamster ovary (CHO), and human embryonic kidney (HEK) cells in order to compare widely used mammalian expression systems. Initial thin layer chromatography (TLC) analysis indicated that phosphatidylethanolamine (PE) and phosphatidylcholine (PC) were the major lipid components in all cell lines with lower amounts of sphingomyelin (SM) in SP2/0 compared to CHO and HEK, which was subsequently confirmed and expanded upon following mass spectrometry (MS) analysis. HEK contained 4-10-fold higher amounts of lyso phosphatidylethanolamine (LPE) and 2-4-fold higher amounts of lyso phosphatidylcholine (LPC) compared to SP2/0 and CHO cell lines. C18:1 followed by C16:1 were the main contributors to the difference in both LPE and LPC levels. Alternatively, the SP2/0 cell line exhibited 30-65-fold lower amounts of SM principally in the amount of 16:0. By mapping the transcriptomics data to KEGG pathways, we found expression levels of secretory phospholipase A2 (sPLA2), lysophospholipid acyltransferase (LPEAT), lysophosphatidylcholine acyltransferase (LPCAT), and lysophospholipase (LYPLA) can contribute to the differences in LPE and LPC. Sphingomyelin synthases (SMS) and sphingomyelin phosphodiesterase (SMase) enzymes may play roles in SM differences across the three cell lines. The results of this study provide insights that will aid the understanding of the physiological and secretory differences across recombinant protein production systems.


Assuntos
Cromatografia em Camada Fina , Lisofosfatidilcolinas/análise , Lisofosfolipídeos/análise , Esfingomielinas/análise , Transcriptoma , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Células HEK293 , Humanos , Espectrometria de Massas , Camundongos , Diester Fosfórico Hidrolases/genética , Análise de Componente Principal , RNA Mensageiro/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética
15.
BMC Plant Biol ; 17(1): 203, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141586

RESUMO

BACKGROUND: γ-rays are high-energy radiation that cause a range of random injuries to plant cells. Most studies on this issue have focused on γ-ray-induced nucleotide damage and the production of reactive oxygen species in cells, so little is known about the glycerolipid metabolism during γ-rays induced membrane injury. Using an ESI-MS/MS-based lipidomic method, we analysed the lipidome changes in wild-type and phospholipase D (PLD)δ- and α1-deficient Arabidopsis after γ-ray treatment. The aim of this study was to investigate the role of PLD-mediated glycerolipid metabolism in γ-ray-induced membrane injury. RESULTS: The ion leakage of Arabidopsis leaves after 2885-Gy γ-ray treatment was less than 10%. High does γ-ray treatment could induce the accumulation of intracellular reactive oxygen species (ROS). Inhibition of PLDα1 caused severe lipid degradation under γ-ray treatment. γ-ray-induced glycerolipid degradation mostly happened in chloroplastidic lipids, rather than extraplastidic ones. The levels of lysophosphatidylcholine (lysoPC) and lysophosphatidylethanolamine (lysoPE) were maintained in the WS ecotypes during γ-ray treatments, while increased significantly in the Col ecotype treated with 1100 Gy. After 210- and 1100-Gy γ-ray treatments, the level of lysophosphatidylglycerol (lysoPG) decreased significantly in the four genotypes of Arabidopsis. CONCLUSIONS: γ-ray-induced membrane injury may occur via an indirect mechanism. The degradation of distinct lipids is not synchronous, and that interconversions among lipids can occur. During γ-ray-induced membrane injury, the degradation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) may be mediated by PLDζ1 or phospholipase A1. The degradation of phosphatidylglycerol was not mediated by PLA, PLDδ or PLDα1, but by phospholipase C or other PLDs. γ-rays can decrease the double-bond index and increase the acyl chain length in membrane lipids, which may make membranes more rigid and further cause injury in membranes.


Assuntos
Membrana Celular/efeitos da radiação , Raios gama , Lipídeos de Membrana/análise , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Membrana Celular/química , Relação Dose-Resposta à Radiação , Lipídeos , Lisofosfatidilcolinas/análise , Lisofosfatidilcolinas/metabolismo , Lisofosfolipídeos/análise , Lisofosfolipídeos/metabolismo , Lipídeos de Membrana/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo
16.
Mol Genet Metab ; 122(4): 209-215, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29089175

RESUMO

X-linked adrenoleukodystrophy (ALD) is the most common leukodystrophy with a birth incidence of 1:14,700 live births. The disease is caused by mutations in ABCD1 and characterized by very long-chain fatty acids (VLCFA) accumulation. In childhood, male patients are at high-risk to develop adrenal insufficiency and/or cerebral demyelination. Timely diagnosis is essential. Untreated adrenal insufficiency can be life-threatening and hematopoietic stem cell transplantation is curative for cerebral ALD provided the procedure is performed in an early stage of the disease. For this reason, ALD is being added to an increasing number of newborn screening programs. ALD newborn screening involves the quantification of C26:0-lysoPC in dried blood spots which requires a dedicated method. C26:0-carnitine, that was recently identified as a potential new biomarker for ALD, has the advantage that it can be added as one more analyte to the routine analysis of amino acids and acylcarnitines already in use. The first objective of this study was a comparison of the sensitivity of C26:0-carnitine and C26:0-lysoPC in dried blood spots from control and ALD newborns both in a case-control study and in newborns included in the New York State screening program. While C26:0-lysoPC was elevated in all ALD newborns, C26:0-carnitine was elevated only in 83%. Therefore, C26:0-carnitine is not a suitable biomarker to use in ALD newborn screen. In women with ALD, plasma VLCFA analysis results in a false negative result in approximately 15-20% of cases. The second objective of this study was to compare plasma VLCFA analysis with C26:0-carnitine and C26:0-lysoPC in dried blood spots of women with ALD. Our results show that C26:0-lysoPC was elevated in dried blood spots from all women with ALD, including from those with normal plasma C26:0 levels. This shows that C26:0-lysoPC is a better and more accurate biomarker for ALD than plasma VLCFA levels. We recommend that C26:0-lysoPC be added to the routine biochemical array of diagnostic tests for peroxisomal disorders.


Assuntos
Adrenoleucodistrofia/diagnóstico , Carnitina/análise , Teste em Amostras de Sangue Seco/métodos , Ácidos Graxos/sangue , Lisofosfatidilcolinas/análise , Triagem Neonatal/métodos , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/complicações , Adrenoleucodistrofia/fisiopatologia , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos de Coortes , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Humanos , Recém-Nascido , Masculino , Países Baixos , New York , Sensibilidade e Especificidade
17.
J Pediatr Gastroenterol Nutr ; 62(4): 618-26, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26465792

RESUMO

BACKGROUND: Choline depletion is seen in cystic fibrosis (CF) and pancreatic insufficiency in spite of enzyme treatment and may result in liver, fatty acid, and muscle abnormalities. This study evaluated the efficacy and safety of an easily absorbed choline-rich structured lipid (LYM-X-SORB™ [LXS]) to improve choline status. METHODS: Children with CF and pancreatic insufficiency were randomized to LXS or placebo in a 12-month double blind trial. Dietary choline intake, plasma cholines, plasma and fecal phospholipids, coefficient of fat absorption, pulmonary function, growth status, body composition, and safety measures were assessed. Magnetic resonance spectroscopy for calf muscle choline and liver fat were assessed in a subgroup and compared with a healthy comparison group matched for age, sex, and body size. RESULTS: A total of 110 subjects were enrolled (age 10.4 ±â€Š3.0 years). Baseline dietary choline, 88% recommended, increased 3-fold in the LXS group. Plasma choline, betaine, and dimethylglycine increased in the LXS but not placebo (P = 0.007). Plasma lysophosphatidylcholine and phosphatidylcholine increased, and fecal phosphatidylcholine/phosphatidylethanolamine ratio decreased (P ≤ 0.05) in LXS only, accompanied by a 6% coefficient of fat absorption increase (P = 0.001). Children with CF had higher liver fat than healthy children and depleted calf muscle choline at baseline. Muscle choline concentration increased in LXS and was associated with improvement in plasma choline status. No relevant changes in safety measures were evident. CONCLUSIONS: LXS had improved choline intake, plasma choline status, and muscle choline stores compared with placebo group. The choline-rich supplement was safe, accepted by participants, and improved choline status in children with CF.


Assuntos
Fenômenos Fisiológicos da Nutrição do Adolescente , Fenômenos Fisiológicos da Nutrição Infantil , Colina/uso terapêutico , Fibrose Cística/dietoterapia , Gorduras na Dieta , Suplementos Nutricionais , Lisofosfatidilcolinas/uso terapêutico , Estado Nutricional , Adolescente , Criança , Pré-Escolar , Colina/efeitos adversos , Colina/análise , Colina/sangue , Deficiência de Colina/etiologia , Deficiência de Colina/prevenção & controle , Fibrose Cística/sangue , Fibrose Cística/metabolismo , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/análise , Gorduras na Dieta/metabolismo , Suplementos Nutricionais/efeitos adversos , Suplementos Nutricionais/análise , Método Duplo-Cego , Feminino , Humanos , Absorção Intestinal , Perna (Membro) , Metabolismo dos Lipídeos , Fígado/metabolismo , Lisofosfatidilcolinas/efeitos adversos , Lisofosfatidilcolinas/análise , Lisofosfatidilcolinas/metabolismo , Masculino , Músculo Esquelético/metabolismo , Aceitação pelo Paciente de Cuidados de Saúde
18.
Lipids Health Dis ; 15(1): 134, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27558696

RESUMO

Atherogenic modified low- density lipoprotein (LDL) induces pronounced accumulation of cholesterol and lipids in the arterial wall, while native LDL seems to lack such capability. Therefore, modified LDL appears to be a major causative agent in the pathogenesis of atherosclerosis. Possible modifications of LDL particles include changes in size and density, desialylation, oxidation and acquisition of negative charge. Total LDL isolated from pooled plasma of patients with coronary atherosclerosis, as well as from healthy subjects contains two distinct subfractions: normally sialylated LDL and desialylated LDL, which can be isolated by binding to a lectin affinity column. We called the desialylated LDL subfraction circulating modified LDL (cmLDL). In this study, we focused on lipid composition of LDL particles, analysing the total LDL preparation and two LDL subfractions: cmLDL and native LDL. The composition of LDL was studied using thin-layer chromatography. We found that cmLDL subfraction had decreased levels of free and esterified cholesterol, triglycerides, phospholipids (except for lysophosphatidylcholine) and sphingomyelin in comparison to native LDL. On the other hand, levels of mono-, and diglycerides, lysophosphatidylcholine and free fatty acids were higher in cmLDL than in native LDL. Our study demonstrated that lipid composition of cmLDL from atherosclerotic patients was altered in comparison to healthy subjects. In particular, phospholipid content was decreased, and free fatty acids levels were increased in cmLDL. This strengthens the hypothesis of multiple modification of LDL particles in the bloodstream and underscores the clinical importance of desialylated LDL as a possible marker of atherosclerosis progression.


Assuntos
Doença da Artéria Coronariana/sangue , Lipoproteínas LDL/sangue , Lipoproteínas LDL/química , Adulto , Estudos de Casos e Controles , Colesterol/análise , Colesterol/sangue , Ésteres do Colesterol/análise , Ésteres do Colesterol/sangue , Feminino , Humanos , Lipoproteínas LDL/análise , Lisofosfatidilcolinas/análise , Masculino , Pessoa de Meia-Idade , Fosfatidilcolinas/análise , Fosfatidiletanolaminas/análise , Esfingomielinas/análise
19.
Anal Bioanal Chem ; 407(3): 991-1002, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25352274

RESUMO

The comprehensive approach for the lipidomic characterization of human breast cancer and surrounding normal tissues is based on hydrophilic interaction liquid chromatography (HILIC)-electrospray ionization mass spectrometry (ESI-MS) quantitation of polar lipid classes of total lipid extracts followed by multivariate data analysis using unsupervised principal component analysis (PCA) and supervised orthogonal partial least square (OPLS). This analytical methodology is applied for the detailed lipidomic characterization of ten patients with the goal to find the statistically relevant differences between tumor and normal tissues. This strategy is selected for better visualization of differences, because the breast cancer tissue is compared with the surrounding healthy tissue of the same patient, therefore changes in the lipidome are caused predominantly by the tumor growth. A large increase of total concentrations for several lipid classes is observed, including phosphatidylinositols, phosphatidylethanolamines, phosphatidylcholines, and lysophosphatidylcholines. Concentrations of individual lipid species inside the abovementioned classes are also changed, and in some cases, these differences are statistically significant. PCA and OPLS analyses enable a clear differentiation of tumor and normal tissues based on changes of their lipidome. A notable decrease of relative abundances of ether and vinylether (plasmalogen) lipid species is detected for phosphatidylethanolamines, but no difference is apparent for phosphatidylcholines.


Assuntos
Neoplasias da Mama/metabolismo , Cromatografia Líquida/métodos , Lipídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Neoplasias da Mama/patologia , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Lisofosfatidilcolinas/análise , Análise Multivariada , Fosfatidilcolinas/análise , Fosfatidiletanolaminas/análise , Fosfatidilinositóis/análise , Fosfolipídeos/análise , Fosfolipídeos/química , Análise de Componente Principal , Valores de Referência
20.
J Proteome Res ; 13(3): 1438-49, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24498988

RESUMO

Mesenchymal stem cells (MSCs) have been used in a wide range of research and clinical studies because MSCs do not have any ethical issues and have the advantage of low carcinogenicity due to their limited proliferation. However, because only a small number of MSCs can be obtained from the bone marrow, ex vivo amplification is inevitably required. For that reason, this study was conducted to acquire the metabolic information to examine and control the changes in the activities and differentiation potency of MSCs during the ex vivo culture process. Endogenous metabolites of human bone-marrow-derived clonal MSCs (hcMSCs) during cellular senescence were profiled by ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/QTOFMS). To select significant metabolites, we used the linear mixed effects model having fixed effects for batch and time (passage) and random effects for metabolites, determining the mean using a t test and the standard deviation using an F test. We used structural analysis with representative standards and spectrum patterns with different collision energies to distinctly identify eight metabolites with altered expression during senescence as types of lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), such as LPC 16:0 and LPE 22:4. The present study revealed changes in endogenous metabolites and mechanisms due to senescence.


Assuntos
Senescência Celular/fisiologia , Lisofosfatidilcolinas/análise , Lisofosfolipídeos/análise , Células-Tronco Mesenquimais/química , Células da Medula Óssea/química , Células da Medula Óssea/citologia , Diferenciação Celular , Células Cultivadas , Células Clonais , Humanos , Lisofosfatidilcolinas/metabolismo , Lisofosfolipídeos/metabolismo , Masculino , Espectrometria de Massas/métodos , Células-Tronco Mesenquimais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA