Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
1.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691188

RESUMO

Analysis of single cell transcriptomics (scRNA-seq) data is typically performed after subsetting to highly variable genes (HVGs). Here, we show that Entropy Sorting provides an alternative mathematical framework for feature selection. On synthetic datasets, continuous Entropy Sort Feature Weighting (cESFW) outperforms HVG selection in distinguishing cell-state-specific genes. We apply cESFW to six merged scRNA-seq datasets spanning human early embryo development. Without smoothing or augmenting the raw counts matrices, cESFW generates a high-resolution embedding displaying coherent developmental progression from eight-cell to post-implantation stages and delineating 15 distinct cell states. The embedding highlights sequential lineage decisions during blastocyst development, while unsupervised clustering identifies branch point populations obscured in previous analyses. The first branching region, where morula cells become specified for inner cell mass or trophectoderm, includes cells previously asserted to lack a developmental trajectory. We quantify the relatedness of different pluripotent stem cell cultures to distinct embryo cell types and identify marker genes of naïve and primed pluripotency. Finally, by revealing genes with dynamic lineage-specific expression, we provide markers for staging progression from morula to blastocyst.


Assuntos
Linhagem da Célula , Embrião de Mamíferos , Desenvolvimento Embrionário , Entropia , Análise de Célula Única , Transcriptoma , Humanos , Transcriptoma/genética , Análise de Célula Única/métodos , Desenvolvimento Embrionário/genética , Embrião de Mamíferos/metabolismo , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento , Blastocisto/metabolismo , Blastocisto/citologia , Perfilação da Expressão Gênica , Mórula/metabolismo , Mórula/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia
2.
Nature ; 587(7834): 443-447, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32968278

RESUMO

Current understandings of cell specification in early mammalian pre-implantation development are based mainly on mouse studies. The first lineage differentiation event occurs at the morula stage, with outer cells initiating a trophectoderm (TE) placental progenitor program. The inner cell mass arises from inner cells during subsequent developmental stages and comprises precursor cells of the embryo proper and yolk sac1. Recent gene-expression analyses suggest that the mechanisms that regulate early lineage specification in the mouse may differ in other mammals, including human2-5 and cow6. Here we show the evolutionary conservation of a molecular cascade that initiates TE segregation in human, cow and mouse embryos. At the morula stage, outer cells acquire an apical-basal cell polarity, with expression of atypical protein kinase C (aPKC) at the contact-free domain, nuclear expression of Hippo signalling pathway effectors and restricted expression of TE-associated factors such as GATA3, which suggests initiation of a TE program. Furthermore, we demonstrate that inhibition of aPKC by small-molecule pharmacological modulation or Trim-Away protein depletion impairs TE initiation at the morula stage. Our comparative embryology analysis provides insights into early lineage specification and suggests that a similar mechanism initiates a TE program in human, cow and mouse embryos.


Assuntos
Evolução Biológica , Ectoderma/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transcrição Gênica , Trofoblastos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Massa Celular Interna do Blastocisto/citologia , Massa Celular Interna do Blastocisto/metabolismo , Bovinos , Linhagem da Célula , Polaridade Celular , Ectoderma/citologia , Embrião de Mamíferos/enzimologia , Feminino , Fator de Transcrição GATA3/metabolismo , Via de Sinalização Hippo , Humanos , Camundongos , Mórula/citologia , Mórula/enzimologia , Mórula/metabolismo , Placenta/citologia , Placenta/metabolismo , Gravidez , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Trofoblastos/citologia , Proteínas de Sinalização YAP , Saco Vitelino/citologia , Saco Vitelino/metabolismo
3.
FASEB J ; 33(11): 12541-12553, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31450981

RESUMO

Suppressor interacting 3a (Sin3a) is a scaffold component of the chromatin repressive complex Sin3/histone deacetylase (Hdac). Sin3a has been shown as a hub gene driving preimplantation development in both mice and humans. However, its precise functions during preimplantation development remain unclear. Here, we show that the embryos arrested at morula stage upon specific depletion of Sin3a in mouse early embryos. Given the reduced cell number in Sin3a-depleted embryos, blocked cell proliferation is observed, likely because of the increased level of Trp53 acetylation at lysine 379. Moreover, we found that Sin3a depletion reduces Cdx2 and Tir Na Nog (Nanog), suggesting a failure of the first cell fate decision. In addition, we noted a striking increase of genome-wide DNA methylation, likely attributed to the increased nuclear DNA methyltransferase 1 observed in Sin3a-depleted embryos. Notably, RNA sequencing analyses showed 717 genes are differentially expressed, and Gene Ontology analysis of down-regulated genes (e.g., Hdac1) revealed top enriched terms involving protein deacetylation. Consistently, we confirmed a significant decrease of Hdac1 mRNA and protein abundance. Importantly, the development and Trp53 acetylation in Sin3a-depleted embryos could be rescued by expression of Hdac1 but not Hdac2. In summary, our results indicate a vital role of Sin3a in safeguarding the developmental progression through the morula-to-blastocyst transition via Hdac1.-Zhao, P., Li, S., Wang, H., Dang, Y., Wang, L., Liu, T., Wang, S., Li, X., Zhang, K. Sin3a regulates the developmental progression through morula-to-blastocyst transition via Hdac1.


Assuntos
Blastocisto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histona Desacetilase 1/metabolismo , Mórula/metabolismo , Proteínas Repressoras/metabolismo , Animais , Blastocisto/citologia , Fator de Transcrição CDX2/genética , Fator de Transcrição CDX2/metabolismo , Feminino , Histona Desacetilase 1/genética , Camundongos , Mórula/citologia , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Proteínas Repressoras/genética , Complexo Correpressor Histona Desacetilase e Sin3 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
FASEB J ; 33(3): 4638-4652, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30673507

RESUMO

Aberrant epigenetic reprogramming is a major factor of developmental failure of cloned embryos. Histone H3 lysine 27 trimethylation (H3K27me3), a histone mark for transcriptional repression, plays important roles in mammalian embryonic development and induced pluripotent stem cell (iPSC) generation. The global loss of H3K27me3 marks may facilitate iPSC generation in mice and humans. However, the H3K27me3 level and its role in bovine somatic cell nuclear transfer (SCNT) reprogramming remain poorly understood. Here, we show that SCNT embryos exhibit global H3K27me3 hypermethylation from the 2- to 8-cell stage and that its removal by ectopically expressed H3K27me3 lysine demethylase (KDM)6A greatly improves nuclear reprogramming efficiency. In contrast, H3K27me3 reduction by H3K27me3 methylase enhancer of zeste 2 polycomb repressive complex knockdown or donor cell treatment with the enhancer of zeste 2 polycomb repressive complex-selective inhibitor GSK343 suppressed blastocyst formation by SCNT embryos. KDM6A overexpression enhanced the transcription of genes involved in cell adhesion and cellular metabolism and X-linked genes. Furthermore, we identified methyl-CpG-binding domain protein 3-like 2, which was reactivated by KDM6A, as a factor that is required for effective reprogramming in bovines. These results show that H3K27me3 functions as an epigenetic barrier and that KDM6A overexpression improves SCNT efficiency by facilitating transcriptional reprogramming.-Zhou, C., Wang, Y., Zhang, J., Su, J., An, Q., Liu, X., Zhang, M., Wang, Y., Liu, J., Zhang, Y. H3K27me3 is an epigenetic barrier while KDM6A overexpression improves nuclear reprogramming efficiency.


Assuntos
Bovinos/embriologia , Reprogramação Celular/genética , Código das Histonas/genética , Histona Desmetilases/fisiologia , Histonas/genética , Técnicas de Transferência Nuclear , Animais , Blastômeros/metabolismo , Bovinos/genética , Clonagem de Organismos , Desenvolvimento Embrionário/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Fertilização in vitro , Regulação da Expressão Gênica no Desenvolvimento , Histona Desmetilases/biossíntese , Histona Desmetilases/genética , Histonas/metabolismo , Metilação , Microinjeções , Mórula/citologia , Mórula/metabolismo , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Mensageiro/administração & dosagem , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Proteínas Repressoras/antagonistas & inibidores , Análise de Sequência de RNA
5.
Fish Shellfish Immunol ; 106: 967-974, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32919053

RESUMO

Toll-like receptors (TLRs) represent a well-known family of conserved pattern recognition receptors the importance of which, in non-self recognition, was demonstrated in both vertebrates and invertebrates. Tunicates represent the vertebrate sister group and, as invertebrates, they rely only on innate immunity for their defence. As regards TLRs, two transcripts have been described and characterised in the solitary species Ciona intestinalis, referred to as CiTLR1 and CiTLR2. Using the Ciona TLR nucleotide sequences, we mined our available transcriptome of the colonial ascidian Botryllus schlosseri looking for similar sequences. We were able to identify a sequence, with similarity to CiTLR2 and, through in silico transduction and subsequent sequence analysis, we studied the domain content of the putative protein. The sequence, called BsTLR1, has a TIR and a transmembrane domain, four LLR and two LRR-CT domains. It is actively transcribed by both phagocytes and morula cells, the two circulating immunocyte types. In addition, we analysed bstlr1 transcription in vivo and in vitro, in different phases of the Botryllus blastogenetic cycle and under various experimental conditions. Our data show that there is a change in gene expression and mRNA location, according to the blastogenetic phase. Furthermore, we used a commercial antibody raised against the ectodomain of hTLR5 to study the possible functional role of Botryllus TLR(s). We observed that anti-hTLR5 significantly decreased in vitro phagocytosis and morula cell degranulation, two typical responses to the recognition of nonself. Collectively, our data add new information on the mechanisms of nonself recognition in a colonial ascidian.


Assuntos
Receptores Toll-Like/imunologia , Urocordados/imunologia , Animais , Degranulação Celular , Hemócitos/imunologia , Mórula/citologia , Fagócitos/imunologia , Fagocitose , Leveduras
6.
Zygote ; 28(3): 191-195, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32192547

RESUMO

The objective of this study was to compare the rates of clinical pregnancy after the transfer of vitrified and thawed human embryos on days 3, 4 and 5 of embryonic development. In this retrospective study, the results of 148 embryo transfer cycles, using embryos frozen and thawed over the 3-year period between January 2016 and December 2018 at the Gülhane Training and Research Hospital Department of Gynecology and Obsterics Reproductive Medical Center of the University of Health Sciences, Ankara, Turkey were examined. Following embryo transfer - including 29 dissolved embryos frozen on day 3, 80 frozen on day 4, and 39 frozen on day 5 - results were examined in terms of clinical pregnancy rates. In this study, across all three groups, no significant differences were observed in terms of patient age, the number of oocytes collected, infertility reasons, the number of embryos dissolved, transfer day, or the number of embryos transferred. According to the transfer day, the rates of clinical pregnancy and ongoing pregnancy were significantly higher for embryos frozen on day 4 and transferred on day 5. Significantly higher rates of pregnancy and live birth were determined during in vitro fertilization (IVF) treatment with the freezing of human embryos on day 4 and the transfer of those embryos on day 5.


Assuntos
Criopreservação/métodos , Transferência Embrionária/métodos , Embrião de Mamíferos/embriologia , Fertilização in vitro/métodos , Vitrificação , Adulto , Coeficiente de Natalidade , Blastocisto/citologia , Técnicas de Cultura Embrionária/métodos , Embrião de Mamíferos/citologia , Feminino , Humanos , Infertilidade/terapia , Mórula/citologia , Oócitos/citologia , Gravidez , Taxa de Gravidez , Estudos Retrospectivos
7.
J Assist Reprod Genet ; 37(4): 945-952, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32072380

RESUMO

PURPOSE: This study aimed to investigate the clinical outcomes of morula stage transfer derived from post-thawed cleavage embryos undergoing overnight culture in frozen embryo transfer (FET) cycles. METHODS: We performed a retrospective study that included 392 FET cycles with 784 thawed embryos undergoing overnight culture between January 2014 and December 2018. Embryos were divided into three groups in terms of their status: 8-16 cells without morula (group I), one morula (group II), and two morulae (group III). The clinical outcomes of these cycles were then compared between the three groups. Logistic regression analysis was performed to control for confounders. RESULTS: Group III was associated with a significantly higher clinical pregnancy rate (odds ratio [OR] 2.35; 95% confidence interval [CI] 1.29-4.27; P = 0.005), implantation rate (OR 3.00; CI 1.75-5.16; P < 0.001), multiple pregnancy rate (OR 4.91; CI 2.11-11.40; P < 0.001), and live birth rate (OR 1.96; CI 1.10-3.49; P = 0.022) than group I. Group II had a higher live birth rate than group I after adjustment (OR 1.70; CI 1.04-2.79; P = 0.035). There was no difference in the rate of premature delivery when compared across the three groups after adjustment. CONCLUSION: The transfer of morula stage embryos following the overnight culture of post-thawed cleavage embryos led to an improvement in the clinical outcomes of FET cycles. It is important to reduce the number of morula embryos transferred in order to achieve a singleton pregnancy.


Assuntos
Fase de Clivagem do Zigoto/transplante , Transferência Embrionária , Fertilização in vitro , Mórula/transplante , Adulto , Coeficiente de Natalidade , Criopreservação , Implantação do Embrião/genética , Feminino , Humanos , Mórula/citologia , Indução da Ovulação , Gravidez , Taxa de Gravidez , Estudos Retrospectivos
8.
J Biol Chem ; 293(10): 3829-3838, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29358330

RESUMO

Derepression of chromatin-mediated transcriptional repression of paternal and maternal genomes is considered the first major step that initiates zygotic gene expression after fertilization. The histone variant H3.3 is present in both male and female gametes and is thought to be important for remodeling the paternal and maternal genomes for activation during both fertilization and embryogenesis. However, the underlying mechanisms remain poorly understood. Using our H3.3B-HA-tagged mouse model, engineered to report H3.3 expression in live animals and to distinguish different sources of H3.3 protein in embryos, we show here that sperm-derived H3.3 (sH3.3) protein is removed from the sperm genome shortly after fertilization and extruded from the zygotes via the second polar bodies (PBII) during embryogenesis. We also found that the maternal H3.3 (mH3.3) protein is incorporated into the paternal genome as early as 2 h postfertilization and is detectable in the paternal genome until the morula stage. Knockdown of maternal H3.3 resulted in compromised embryonic development both of fertilized embryos and of androgenetic haploid embryos. Furthermore, we report that mH3.3 depletion in oocytes impairs both activation of the Oct4 pluripotency marker gene and global de novo transcription from the paternal genome important for early embryonic development. Our results suggest that H3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis.


Assuntos
Blastocisto/metabolismo , Montagem e Desmontagem da Cromatina , Histonas/metabolismo , Herança Paterna , Ativação Transcricional , Animais , Blastocisto/citologia , Blastômeros/citologia , Blastômeros/metabolismo , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/antagonistas & inibidores , Histonas/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Mórula/citologia , Mórula/metabolismo , Fator 3 de Transcrição de Octâmero/química , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
9.
Reproduction ; 158(4): 303-312, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31408846

RESUMO

Supplementing interleukin-6 (IL6) to in vitro-produced bovine embryos increases inner cell mass (ICM) cell numbers in blastocysts. A series of studies were completed to further dissect this effect. Treatment with IL6 increased ICM cell numbers in early, regular and expanded blastocysts but had no effect on morulae total cell number. Treatment with IL6 for 30 min induced signal transducer and activator of transcription 3 (STAT3) phosphorylation and nuclear translocation in all blastomeres in early morulae and specifically within the ICM in blastocysts. Also, IL6 supplementation increased SOCS3 mRNA abundance, a STAT3-responsive gene, in blastocysts. Chemical inhibition of Janus kinase (JAK) activity from day 5 to day 8 prevented STAT3 activation and the IL6-induced ICM cell number increase. Global transcriptome analysis of blastocysts found that transcripts for IL6 and its receptor subunits (IL6R and IL6ST) were the most abundantly expressed IL6 family ligand and receptors. These results indicate that IL6 increases ICM cell numbers as the ICM lineage emerges at the early blastocyst stage through a STAT3-dependent mechanism. Also, IL6 appears to be the primary IL6 cytokine family member utilized by bovine blastocysts to control ICM cell numbers.


Assuntos
Massa Celular Interna do Blastocisto/citologia , Blastômeros/citologia , Interleucina-6/metabolismo , Janus Quinases/metabolismo , Mórula/citologia , Fator de Transcrição STAT3/metabolismo , Animais , Massa Celular Interna do Blastocisto/metabolismo , Blastômeros/metabolismo , Bovinos , Feminino , Mórula/metabolismo
10.
Reprod Biol Endocrinol ; 17(1): 87, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666062

RESUMO

BACKGROUND: Morulas with delayed growth sometimes coexist with blastocysts. There is still limited evidence regarding the optimal disposal of surplus morulas. With the advancement of vitrification, the freezing-thawing technique has been widely applied to zygotes with 2 pronuclei, as well as embryos at the cleavage and blastocyst stages. The freezing of morulas, however, has rarely been discussed. The purpose of this study was to investigate whether these poor-quality and slow-growing morulas are worthy of cryopreservation. METHODS: This is a retrospective, observational, proof-of-concept study. A total of 1033 day 5/6 surplus morulas were cryopreserved from January 2015 to December 2018. The study included 167 women undergoing 180 frozen embryo transfer cycles. After the morulas underwent freezing-thawing procedures, their development was monitored for an additional day. The primary outcome was the blastocyst formation rate. Secondary outcomes were clinical pregnancy rate, live birth rate and abortion rate. RESULTS: A total of 347 surplus morulas were thawed. All studied morulas showed delayed compaction (day 5, n = 329; day 6, n = 18) and were graded as having low (M1, n = 54), medium (M2, n = 138) or high (M3, n = 155) fragmentation. The post-thaw survival rate was 79.3%. After 1 day in extended culture, the blastocyst formation rate was 66.6%, and the top-quality blastocyst formation rate was 23.6%. The day 5 morulas graded as M1, M2, and M3 had blastocyst formation rates of 88.9, 74.0, and 52.8% (p < 0.001), respectively, and the top-quality blastocyst formation rates were 64.8, 25.2, and 9.0% (p < 0.001), respectively. The clinical pregnancy rate was 33.6%. CONCLUSIONS: The post-thaw blastocyst formation rate was satisfactory, with approximately one-half of heavily fragmented morulas (M3) developing into blastocysts. Most of the poor-quality morulas were worth to freeze, with the reasonable goal of obtaining pregnancy and live birth. This alternative strategy may be a feasible approach for coping with poor-quality surplus morulas in non-PGS (preimplantation genetic screening) cycles.


Assuntos
Blastocisto/fisiologia , Criopreservação/métodos , Mórula/fisiologia , Vitrificação , Adulto , Coeficiente de Natalidade , Blastocisto/citologia , Implantação do Embrião , Transferência Embrionária , Desenvolvimento Embrionário , Feminino , Humanos , Nascido Vivo , Mórula/citologia , Gravidez , Taxa de Gravidez , Estudos Retrospectivos
11.
Nature ; 500(7464): 593-7, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23892778

RESUMO

Mammalian pre-implantation development is a complex process involving dramatic changes in the transcriptional architecture. We report here a comprehensive analysis of transcriptome dynamics from oocyte to morula in both human and mouse embryos, using single-cell RNA sequencing. Based on single-nucleotide variants in human blastomere messenger RNAs and paternal-specific single-nucleotide polymorphisms, we identify novel stage-specific monoallelic expression patterns for a significant portion of polymorphic gene transcripts (25 to 53%). By weighted gene co-expression network analysis, we find that each developmental stage can be delineated concisely by a small number of functional modules of co-expressed genes. This result indicates a sequential order of transcriptional changes in pathways of cell cycle, gene regulation, translation and metabolism, acting in a step-wise fashion from cleavage to morula. Cross-species comparisons with mouse pre-implantation embryos reveal that the majority of human stage-specific modules (7 out of 9) are notably preserved, but developmental specificity and timing differ between human and mouse. Furthermore, we identify conserved key members (or hub genes) of the human and mouse networks. These genes represent novel candidates that are likely to be key in driving mammalian pre-implantation development. Together, the results provide a valuable resource to dissect gene regulatory mechanisms underlying progressive development of early mammalian embryos.


Assuntos
Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Análise de Sequência de RNA , Análise de Célula Única , Alelos , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Ciclo Celular/genética , Embrião de Mamíferos/citologia , Perfilação da Expressão Gênica , Humanos , Camundongos , Mórula/citologia , Mórula/metabolismo , Oócitos/citologia , Oócitos/metabolismo
12.
Nature ; 504(7479): 282-6, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24172903

RESUMO

Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3ß signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Animais , Blastocisto/citologia , Reprogramação Celular , Quimera/embriologia , Cromatina/metabolismo , Metilação de DNA , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Feminino , Camadas Germinativas/citologia , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Masculino , Camundongos , Mórula/citologia , Organogênese , Regiões Promotoras Genéticas/genética , Medicina Regenerativa , Reprodutibilidade dos Testes , Transdução de Sinais , Inativação do Cromossomo X
13.
Cryobiology ; 86: 89-94, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30472039

RESUMO

At refrigeration temperature, mouse embryos can retain their developmental ability for a couple of days. Previous research reports have focused on the effect of cool temperature on the development of 2-cell stage embryos, morulae or blastocysts and determined that the embryo still has the ability to produce offspring after about 48 h storage at refrigeration temperature. Here we examined whether refrigeration temperature affects the development of the eight-cell stage and if the stored eight-cell stage embryo can still be used as a host embryo for ES cell injection. Our results show that eight-cell stage embryos can develop into blastocysts and yield pups after cold storage for 24 and 48 h. After ES cell injection, stored eight-cell stage embryos can support ES cells developing to F0 pups. In summary, cool storage can preserve the developmental ability of eight-cell stage embryos for at least 48 h, allowing transportation of the embryos at refrigeration temperature between different labs and their subsequent use as host embryos for ES cell injection.


Assuntos
Blastocisto/citologia , Transferência Embrionária/métodos , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Mórula/citologia , Refrigeração/métodos , Animais , Temperatura Baixa , Criopreservação/métodos , Feminino , Masculino , Camundongos
14.
Proc Natl Acad Sci U S A ; 113(23): 6520-5, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27217570

RESUMO

In a primitive chordate model of natural chimerism, one chimeric partner is often eliminated in a process of allogeneic resorption. Here, we identify the cellular framework underlying loss of tolerance to one partner within a natural Botryllus schlosseri chimera. We show that the principal cell type mediating chimeric partner elimination is a cytotoxic morula cell (MC). Proinflammatory, developmental cell death programs render MCs cytotoxic and, in collaboration with activated phagocytes, eliminate chimeric partners during the "takeover" phase of blastogenic development. Among these genes, the proinflammatory cytokine IL-17 enhances cytotoxicity in allorecognition assays. Cellular transfer of FACS-purified MCs from allogeneic donors into recipients shows that the resorption response can be adoptively acquired. Transfer of 1 × 10(5) allogeneic MCs eliminated 33 of 78 (42%) recipient primary buds and 20 of 76 (20.5%) adult parental adult organisms (zooids) by 14 d whereas transfer of allogeneic cell populations lacking MCs had only minimal effects on recipient colonies. Furthermore, reactivity of transferred cells coincided with the onset of developmental-regulated cell death programs and disproportionately affected developing tissues within a chimera. Among chimeric partner "losers," severe developmental defects were observed in asexually propagating tissues, reflecting a pathologic switch in gene expression in developmental programs. These studies provide evidence that elimination of one partner in a chimera is an immune cell-based rejection that operates within histocompatible pairs and that maximal allogeneic responses involve the coordination of both phagocytic programs and the "arming" of cytotoxic cells.


Assuntos
Mórula/citologia , Urocordados/imunologia , Animais , Sequência de Bases , Morte Celular , Mórula/transplante , Quimeras de Transplante , Urocordados/citologia , Urocordados/genética
15.
Zygote ; 27(6): 386-391, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31412967

RESUMO

The complexity of predicting embryo development potential at the cleavage stages and the emergence of epigenetic risks during prolonged in vitro culture of pre-implantation embryos made it more advantageous to transfer embryos at the morula stage to the uterine cavity. The criteria for estimating embryos at this stage that allow prediction of cryopreservation outcomes have been poorly described. All day 4 embryos (n = 224) were graded 1, 2, 3, 4 or 5 according to blastomere compaction degree (BCD = 100, 75, 50, 25 or 0%, respectively) and the survival and blastocyst formation rate of these morulae were studied after cryopreservation. An inverse dependence was found between survival rate and BCD. Excluded fragments were characterized by low osmotic reaction during exposure to cryoprotective medium and, after freeze-thawing, they were destroyed. As damaged necrotic areas of the embryo can affect their further development rate we proposed blastomeres and biopsy fragments of incomplete compacted morula be removed before embryo cryopreservation. This step led to significant increase in the post-thawing survival rate up to 93.1 ± 4.1%, 75 ± 8.8% and blastocyst formation rate up to 85.2 ± 10.4%, 59.4 ± 5.2% in grade 2 and grade 3 embryos, respectively. There was no significant difference in grade 4 embryos. Therefore the removal of blastomeres and biopsy fragments in incomplete compacted morulae can improve cryopreservation outcomes of grade 2 and grade 3 embryos with BCD.


Assuntos
Blastocisto/fisiologia , Criopreservação/métodos , Desenvolvimento Embrionário/fisiologia , Congelamento , Mórula/fisiologia , Adulto , Animais , Blastocisto/citologia , Blastômeros/citologia , Blastômeros/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Crioprotetores/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Humanos , Mórula/citologia , Estudos Retrospectivos , Vitrificação
16.
J Biol Chem ; 292(33): 13784-13794, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28663368

RESUMO

Betaine (N,N,N-trimethylglycine) plays key roles in mouse eggs and preimplantation embryos first in a novel mechanism of cell volume regulation and second as a major methyl donor in blastocysts, but its origin is unknown. Here, we determined that endogenous betaine was present at low levels in germinal vesicle (GV) stage mouse oocytes before ovulation and reached high levels in the mature, ovulated egg. However, no betaine transport into oocytes was detected during meiotic maturation. Because betaine can be synthesized in mammalian cells via choline dehydrogenase (CHDH; EC 1.1.99.1), we assessed whether this enzyme was expressed and active. Chdh transcripts and CHDH protein were expressed in oocytes. No CHDH enzyme activity was detected in GV oocyte lysate, but CHDH became highly active during oocyte meiotic maturation. It was again inactive after fertilization. We then determined whether oocytes synthesized betaine and whether CHDH was required. Isolated maturing oocytes autonomously synthesized betaine in vitro in the presence of choline, whereas this failed to occur in Chdh-/- oocytes, directly demonstrating a requirement for CHDH for betaine accumulation in oocytes. Overall, betaine accumulation is a previously unsuspected physiological process during mouse oocyte meiotic maturation whose underlying mechanism is the transient activation of CHDH.


Assuntos
Betaína/metabolismo , Colina Desidrogenase/metabolismo , Oócitos/enzimologia , Oogênese , Regulação para Cima , Absorção Fisiológica , Animais , Blastocisto/citologia , Blastocisto/enzimologia , Blastocisto/metabolismo , Colina Desidrogenase/química , Colina Desidrogenase/genética , Cruzamentos Genéticos , Ativação Enzimática , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Maturação in Vitro de Oócitos , Meiose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mórula/citologia , Mórula/enzimologia , Mórula/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Trítio , Zigoto/citologia , Zigoto/enzimologia , Zigoto/metabolismo
17.
Mol Reprod Dev ; 85(7): 635-648, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29900695

RESUMO

Structural maintenance of chromosome flexible domain containing 1 (Smchd1) is a chromatin regulatory gene for which mutations are associated with facioscapulohumeral muscular dystrophy and arhinia. The contribution of oocyte- and zygote-expressed SMCHD1 to early development was examined in mice ( Mus musculus) using a small interfering RNA knockdown approach. Smchd1 knockdown compromised long-term embryo viability, with reduced embryo nuclear volumes at the morula stage, reduced blastocyst cell number, formation and hatching, and reduced viability to term. RNA sequencing analysis of Smchd1 knockdown morulae revealed aberrant increases in expression of a small number of trophectoderm (TE)-related genes and reduced expression of cell proliferation genes, including S-phase kinase-associated protein 2 ( Skp2). Smchd1 expression was elevated in embryos deficient for Caudal-type homeobox transcription factor 2 ( Cdx2, a key regulator of TE specification), indicating that Smchd1 is normally repressed by CDX2. These results indicate that Smchd1 plays an important role in the preimplantation embryo, regulating early gene expression and contributing to long-term embryo viability. These results extend the known functions of SMCHD1 to the preimplantation period and highlight important function for maternally expressed Smchd1 messenger RNA and protein.


Assuntos
Blastocisto/citologia , Proteínas Cromossômicas não Histona/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Mórula/citologia , Animais , Fator de Transcrição CDX2/genética , Proliferação de Células , Sobrevivência Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Embrião de Mamíferos/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Gravidez , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Quinases Associadas a Fase S/biossíntese
18.
Biol Cell ; 109(9): 323-338, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28681376

RESUMO

During pre-implantation development, the mammalian zygote transforms into the blastocyst, the structure that will implant the embryo in the maternal uterus. Consisting of a squamous epithelium enveloping a fluid-filled cavity and the inner cell mass, the blastocyst is sculpted by a succession of morphogenetic events. These deformations result from the changes in the forces and mechanical properties of the tissue composing the embryo. Here, I review the recent studies, which, for the first time, informed us on the mechanics of blastocyst morphogenesis.


Assuntos
Blastocisto/citologia , Morfogênese , Animais , Fenômenos Biomecânicos , Linhagem da Célula , Epitélio/metabolismo , Humanos , Mórula/citologia
19.
J Reprod Dev ; 64(2): 179-186, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29445069

RESUMO

The Snail gene family includes Snai1, Snai2, and Snai3 that encode zinc finger-containing transcriptional repressors in mammals. The expression and localization of SNAI1 and SNAI2 have been studied extensively during folliculogenesis, ovulation, luteinization, and embryogenesis in mice. However, the role of SNAI3 is unknown. In this study, we investigated the expression of SNAI3 during these processes. Our immunohistochemistry data showed that SNAI3 first appeared in oocytes by postnatal day (PD) 9. Following this, SNAI3 was found to be expressed consistently in theca and interstitial cells, along with oocytes. In gonadotropin-treated immature mice, the expression of SNAI3 did not change significantly during follicular development. The expression of SNAI3 was reduced during ovulation, after which it increased gradually during luteinization. Similar results were obtained from western blot analyses. Furthermore, real-time polymerase chain reaction (RT-PCR) analyses revealed varying mRNA levels of different Snail factors at a given time in gonadotropin-induced ovaries. During early embryo cleavage, SNAI3 was localized to the nucleus, except the nucleolus at the germinal vesicle and one-cell stages. From two- to eight-cell stages, SNAI3 was localized only to the nucleolus. Thereafter, SNAI3 was detected only in the cytoplasm, except during the blastocyst stage when it was localized to the nucleus of the trophectoderm and the inner cell mass. RT-PCR results showed that the expression of Snail superfamily genes was decreased during the blastocyst stage. From the eight-cell to morula stage, when compaction occurs that is a prerequisite for blastocyst formation, Snai3 mRNA was expressed at very low levels and was opposite to the highest expression level of the compaction-related gene, E-cadherin, at the eight-cell stage. Taken together, our results suggest that SNAI3 likely plays some roles during folliculogenesis, luteinization, and early embryonic development.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Oócitos/metabolismo , Ovário/metabolismo , Ovulação , Fatores de Transcrição da Família Snail/metabolismo , Zigoto/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Animais Recém-Nascidos , Blastocisto/citologia , Blastocisto/metabolismo , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Feminino , Imuno-Histoquímica , Luteinização , Camundongos , Microscopia Confocal , Mórula/citologia , Mórula/metabolismo , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Oogênese , Ovário/citologia , Ovário/crescimento & desenvolvimento , RNA Mensageiro/metabolismo , Fatores de Transcrição da Família Snail/genética , Células Tecais/citologia , Células Tecais/metabolismo , Zigoto/citologia , Zigoto/crescimento & desenvolvimento
20.
PLoS Genet ; 11(7): e1005304, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26132308

RESUMO

The organismal roles of the ubiquitously expressed class I PI3K isoform p110ß remain largely unknown. Using a new kinase-dead knockin mouse model that mimics constitutive pharmacological inactivation of p110ß, we document that full inactivation of p110ß leads to embryonic lethality in a substantial fraction of mice. Interestingly, the homozygous p110ß kinase-dead mice that survive into adulthood (maximum ~26% on a mixed genetic background) have no apparent phenotypes, other than subfertility in females and complete infertility in males. Systemic inhibition of p110ß results in a highly specific blockade in the maturation of spermatogonia to spermatocytes. p110ß was previously suggested to signal downstream of the c-kit tyrosine kinase receptor in germ cells to regulate their proliferation and survival. We now report that p110ß also plays a germ cell-extrinsic role in the Sertoli cells (SCs) that support the developing sperm, with p110ß inactivation dampening expression of the SC-specific Androgen Receptor (AR) target gene Rhox5, a homeobox gene critical for spermatogenesis. All extragonadal androgen-dependent functions remain unaffected by global p110ß inactivation. In line with a crucial role for p110ß in SCs, selective inactivation of p110ß in these cells results in male infertility. Our study is the first documentation of the involvement of a signalling enzyme, PI3K, in the regulation of AR activity during spermatogenesis. This developmental pathway may become active in prostate cancer where p110ß and AR have previously been reported to functionally interact.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Fertilidade/fisiologia , Infertilidade Masculina/genética , Receptores Androgênicos/metabolismo , Células de Sertoli/metabolismo , Animais , Blastocisto/citologia , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/genética , Feminino , Proteínas de Homeodomínio/genética , Infertilidade Feminina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mórula/citologia , Receptores Androgênicos/genética , Transdução de Sinais/genética , Espermatogênese/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA