RESUMO
Biochemistry of carbon assimilation in aerobic methylotrophs growing on reduced C1 compounds has been intensively studied due to the vital role of these microorganisms in nature. The biochemical pathways of carbon assimilation in methylotrophs growing on multi-carbon substrates are insufficiently explored. Here we elucidated the metabolic route of mannitol assimilation in the alphaproteobacterial facultative methylotroph Methylobrevis pamukkalensis PK2. Two key enzymes of mannitol metabolism, mannitol-2-dehydrogenase (MTD) and fructokinase (FruK), were obtained as His-tagged proteins by cloning and expression of mtd and fruK genes in Escherichia coli and characterized. Genomic analysis revealed that further transformation of fructose-6-phosphate proceeds via the Entner-Doudoroff pathway. During growth on mannitol + methanol mixture, the strain PK2 consumed both substrates simultaneously demonstrating independence of C1 and C6 metabolic pathways. Genome screening showed that genes for mannitol utilization enzymes are present in other alphaproteobacterial methylotrophs predominantly capable of living in association with plants. The capability to utilize a variety of carbohydrates (sorbitol, glucose, fructose, arabinose and xylose) suggests a broad adaptability of the strain PK2 to live in environments where availability of carbon substrate dynamically changes.
Assuntos
Frutoquinases , Manitol , Manitol/metabolismo , Frutoquinases/metabolismo , Frutoquinases/genética , Manitol Desidrogenases/metabolismo , Manitol Desidrogenases/genética , Frutosefosfatos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Redes e Vias Metabólicas/genética , Metanol/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimentoRESUMO
Although protein secretion was previously believed to be solely via ER/Golgi pathways, Golgi-independent secretion has now been described in both animals and plants. Secretion of the mannitol catabolic enzyme mannitol dehydrogenase (MTD) in response to the endogenous pathogen response signal salicylic acid (SA) was one of the first reports of unconventional protein secretion in plants. To begin assessing potential secretion-associated MTD protein interactors, we present here high-quality databases describing changes in MTD-interacting proteins following SA treatment of Arabidopsis thaliana cells expressing MTD.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Manitol Desidrogenases/genética , Manitol Desidrogenases/metabolismo , Plantas/metabolismo , Proteínas , Ácido Salicílico/farmacologiaRESUMO
GLUCONOBACTER FRATEURII: CHM 43 have D-mannitol dehydrogenase (quinoprotein glycerol dehydrogenase) and flavoprotein D-fructose dehydrogenase in the membranes. When the two enzymes are functional, D-mannitol is converted to 5-keto-D-fructose with 65% yield when cultivated on D-mannitol. 5-Keto-D-fructose production with almost 100% yield was realized with the resting cells. The method proposed here should give a smart strategy for 5-keto-D-fructose production.
Assuntos
Proteínas de Bactérias/metabolismo , Desidrogenases de Carboidrato/genética , Fermentação/genética , Frutose/análogos & derivados , Gluconobacter/enzimologia , Manitol Desidrogenases/metabolismo , Proteínas de Bactérias/genética , Desidrogenases de Carboidrato/metabolismo , Membrana Celular/enzimologia , Membrana Celular/genética , Frutose/biossíntese , Frutose/isolamento & purificação , Expressão Gênica , Gluconobacter/genética , Humanos , Concentração de Íons de Hidrogênio , Microbiologia Industrial , Manitol/metabolismo , Manitol Desidrogenases/genética , EstereoisomerismoRESUMO
BACKGROUND: MicroRNAs (miRNAs) are small noncoding RNAs of approximately 22 nucleotides, highly conserved among species, which modulate gene expression by cleaving messenger RNA target or inhibiting translation. MiRNAs are involved in the regulation of many processes including cell proliferation, differentiation, neurogenesis, angiogenesis, and apoptosis. Beef tenderness is an organoleptic characteristic of great influence in the acceptance of meat by consumers. Previous studies have shown that collagen level, marbling, apoptosis and proteolysis are among the many factors that affect beef tenderness. Considering that miRNAs can modulate gene expression, this study was designed to identify differentially expressed miRNAs that could be modulating biological processes involved with beef tenderness. RESULTS: Deep sequence analysis of miRNA libraries from longissimus thoracis muscle allowed the identification of 42 novel and 308 known miRNAs. Among the known miRNAs, seven were specifically expressed in skeletal muscle. Differential expression analysis between animals with high (H) and low (L) estimated breeding values for shear force (EBVSF) revealed bta-mir-182 and bta-mir-183 are up-regulated (q value < 0.05) in animals with L EBVSF, and bta-mir-338 is up-regulated in animals with H EBVSF. The number of bovine predicted targets for bta-mir-182, bta-mir-183 and bta-mir-338 were 811, 281 and 222, respectively, which correspond to 1204 unique target genes. Among these, four of them, MEF2C, MAP3K2, MTDH and TNRC6B were common targets of the three differentially expressed miRNAs. The functional analysis identified important pathways related to tenderness such as apoptosis and the calpain-calpastatin system. CONCLUSION: The results obtained indicate the importance of miRNAs in the regulatory mechanisms that influence muscle proteolysis and meat tenderness and contribute to our better understanding of the role of miRNAs in biological processes associated with beef tenderness.
Assuntos
Cruzamento , Bovinos/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Carne Vermelha , Animais , Apoptose , Proteínas de Ligação ao Cálcio/metabolismo , MAP Quinase Quinase Quinase 2/genética , MAP Quinase Quinase Quinase 2/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Manitol Desidrogenases/genética , Manitol Desidrogenases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismoRESUMO
The role of the two key enzymes of fatty acid (FA) synthesis, ATP-citrate lyase (Acl) and malic enzyme (Mae), was analyzed in the oleaginous yeast Yarrowia lipolytica. In most oleaginous yeasts, Acl and Mae are proposed to provide, respectively, acetyl-CoA and NADPH for FA synthesis. Acl was mainly studied at the biochemical level but no strain depleted for this enzyme was analyzed in oleaginous microorganisms. On the other hand the role of Mae in FA synthesis in Y. lipolytica remains unclear since it was proposed to be a mitochondrial NAD(H)-dependent enzyme and not a cytosolic NADP(H)-dependent enzyme. In this study, we analyzed for the first time strains inactivated for corresponding genes. Inactivation of ACL1 decreases FA synthesis by 60 to 80%, confirming its essential role in FA synthesis in Y. lipolytica. Conversely, inactivation of MAE1 has no effects on FA synthesis, except in a FA overaccumulating strain where it improves FA synthesis by 35%. This result definitively excludes Mae as a major key enzyme for FA synthesis in Y. lipolytica. During the analysis of both mutants, we observed a negative correlation between FA and mannitol level. As mannitol and FA pathways may compete for carbon storage, we inactivated YlSDR, encoding a mannitol dehydrogenase converting fructose and NADPH into mannitol and NADP+. The FA content of the resulting mutant was improved by 60% during growth on fructose, demonstrating that mannitol metabolism may modulate FA synthesis in Y. lipolytica.
Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Ácidos Graxos/metabolismo , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Malato Desidrogenase/metabolismo , Yarrowia/metabolismo , ATP Citrato (pro-S)-Liase/deficiência , ATP Citrato (pro-S)-Liase/genética , Acetilcoenzima A/metabolismo , Frutose/metabolismo , Proteínas Fúngicas/genética , Metabolismo dos Lipídeos/genética , Malato Desidrogenase/deficiência , Malato Desidrogenase/genética , Manitol/metabolismo , Manitol Desidrogenases/deficiência , Manitol Desidrogenases/genética , Manitol Desidrogenases/metabolismo , NADP/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Yarrowia/genéticaRESUMO
Gluconobacter (G.) oxydans is able to incompletely oxidize various sugars and polyols for the production of biotechnologically important compound. Recently, we have shown that the organism produces and accumulates mannitol as compatible solute under osmotic stress conditions. The present study describes the role of two cytoplasmic mannitol dehydrogenases for osmotolerance of G. oxydans. It was shown that Gox1432 is a NADP+-dependent mannitol dehydrogenase (EC 1.1.1.138), while Gox0849 uses NAD+ as cofactor (EC 1.1.1.67). The corresponding genes were deleted and the mutants were analyzed for growth under osmotic stress and non-stress conditions. A severe growth defect was detected for Δgox1432 when grown in high osmotic media, while the deletion of gox0849 had no effect when cells were exposed to 450 mM sucrose in the medium. Furthermore, the intracellular mannitol content was reduced in the mutant lacking the NADP+-dependent enzyme Gox1432 in comparison to the parental strain and the Δgox0849 mutant under stress conditions. In addition, transcriptional analysis revealed that Gox1432 is more important for mannitol production in G. oxydans than Gox0849 as the transcript abundance of gene gox1432 was 30-fold higher than of gox0849. In accordance, the activity of the NADH-dependent enzyme Gox0849 in the cell cytoplasm was 10-fold lower in comparison to the NADPH-dependent mannitol dehydrogenase Gox1432. Overexpression of gox1432 in the corresponding deletion mutant restored growth of the cells under osmotic stress, further strengthening the importance of the NADP+-dependent mannitol dehydrogenase for osmotolerance in G. oxydans. These findings provide detailed insights into the molecular mechanism of mannitol-mediated osmoprotection in G. oxydans and are helpful engineering strains with improved osmotolerance for biotechnological applications.
Assuntos
Gluconobacter oxydans/enzimologia , Gluconobacter oxydans/metabolismo , Manitol Desidrogenases/metabolismo , Manitol/metabolismo , Osmorregulação , Meios de Cultura/química , Deleção de Genes , Perfilação da Expressão Gênica , Teste de Complementação Genética , Gluconobacter oxydans/genética , Gluconobacter oxydans/crescimento & desenvolvimento , Manitol Desidrogenases/genética , Pressão Osmótica , Estresse FisiológicoRESUMO
Mannitol is a polyol that occurs in a wide range of living organisms, where it fulfills different physiological roles. In particular, mannitol can account for as much as 20 to 30% of the dry weight of brown algae and is likely to be an important source of carbon for marine heterotrophic bacteria. Zobellia galactanivorans (Flavobacteriia) is a model for the study of pathways involved in the degradation of seaweed carbohydrates. Annotation of its genome revealed the presence of genes potentially involved in mannitol catabolism, and we describe here the biochemical characterization of a recombinant mannitol-2-dehydrogenase (M2DH) and a fructokinase (FK). Among the observations, the M2DH of Z. galactanivorans was active as a monomer, did not require metal ions for catalysis, and featured a narrow substrate specificity. The FK characterized was active on fructose and mannose in the presence of a monocation, preferentially K(+). Furthermore, the genes coding for these two proteins were adjacent in the genome and were located directly downstream of three loci likely to encode an ATP binding cassette (ABC) transporter complex, suggesting organization into an operon. Gene expression analysis supported this hypothesis and showed the induction of these five genes after culture of Z. galactanivorans in the presence of mannitol as the sole source of carbon. This operon for mannitol catabolism was identified in only 6 genomes of Flavobacteriaceae among the 76 publicly available at the time of the analysis. It is not conserved in all Bacteroidetes; some species contain a predicted mannitol permease instead of a putative ABC transporter complex upstream of M2DH and FK ortholog genes.
Assuntos
Flavobacteriaceae/enzimologia , Flavobacteriaceae/metabolismo , Manitol/metabolismo , Redes e Vias Metabólicas/genética , Carbono/metabolismo , Ativadores de Enzimas/metabolismo , Flavobacteriaceae/genética , Frutoquinases/genética , Frutoquinases/metabolismo , Perfilação da Expressão Gênica , Ordem dos Genes , Íons/metabolismo , Manitol Desidrogenases/genética , Manitol Desidrogenases/metabolismo , Metais/metabolismo , Óperon , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por SubstratoRESUMO
BACKGROUND: Trastuzumab resistance is almost inevitable in the management of human epidermal growth factor receptor (HER) 2 positive breast cancer, in which phosphatase and tensin homolog deleted from chromosome 10 (PTEN) loss is implicated. Since metadherin (MTDH) promotes malignant phenotype of breast cancer, we sought to define whether MTDH promotes trastuzumab resistance by decreasing PTEN expression through an NFκB-dependent pathway. METHODS: The correlations between MTDH and PTEN expressions were analyzed both in HER2 positive breast cancer tissues and trastuzumab resistant SK-BR-3 (SK-BR-3/R) cells. Gene manipulations of MTDH and PTEN levels by knockdown or overexpression were utilized to elucidate molecular mechanisms of MTDH and PTEN implication in trastuzumab resistance. For in vivo studies, SK-BR-3 and SK-BR-3/R cells and modified derivatives were inoculated into nude mice alone or under trastuzumab exposure. Tumor volumes, histological examinations as well as Ki67 and PTEN expressions were revealed. RESULTS: Elevated MTDH expression indicated poor clinical benefit, shortened progression free survival time, and was negatively correlated with PTEN level both in HER2 positive breast cancer patients and SK-BR-3/R cells. MTDH knockdown restored PTEN expression and trastuzumab sensitivity in SK-BR-3/R cells, while MTDH overexpression prevented SK-BR-3 cell death under trastuzumab exposure, probably through IκBα inhibition and nuclear translocation of p65 which subsequently decreased PTEN expression. Synergized effect of PTEN regulation were observed upon MTDH and p65 co-transfection. Forced PTEN expression in SK-BR-3/R cells restored trastuzumab sensitivity. Furthermore, decreased tumor volume and Ki67 level as well as increased PTEN expression were observed after MTDH knockdown in subcutaneous breast cancer xenografts from SK-BR-3/R cells, while the opposite effect were found in grafts from MTDH overexpressing SK-BR-3 cells. CONCLUSIONS: MTDH overexpression confers trastuzumab resistance in HER2 positive breast cancer. MTDH mediates trastuzumab resistance, at least in part, by PTEN inhibition through an NFκB-dependent pathway, which may be utilized as a promising therapeutic target for HER2 positive breast cancer.
Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Manitol Desidrogenases/metabolismo , NF-kappa B/metabolismo , PTEN Fosfo-Hidrolase/genética , Receptor ErbB-2/metabolismo , Adulto , Idoso , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Manitol Desidrogenases/genética , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Receptor ErbB-2/genética , Transdução de Sinais/efeitos dos fármacos , Trastuzumab , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Proton translocation pathways of selected variants of the green fluorescent protein (GFP) and Pseudomonas fluorescens mannitol 2-dehydrogenase (PfM2DH) were investigated via an explicit solvent molecular dynamics-based analysis protocol that allows for direct quantitative relationship between a crystal structure and its time-averaged solute-solvent structure obtained from simulation. Our study of GFP is in good agreement with previous research suggesting that the proton released from the chromophore upon photoexcitation can diffuse through an extended internal hydrogen bonding network that allows for the proton to exit to bulk or be recaptured by the anionic chromophore. Conversely for PfM2DH, we identified the most probable ionization states of key residues along the proton escape channel from the catalytic site to bulk solvent, wherein the solute and high-density solvent crystal structures of binary and ternary complexes were properly reproduced. Furthermore, we proposed a plausible mechanism for this proton translocation process that is consistent with the state-dependent structural shifts observed in our analysis. The time-averaged structures generated from our analyses facilitate validation of MD simulation results and provide a comprehensive profile of the dynamic all-occupancy solvation network within and around a flexible solute, from which detailed hydrogen-bonding networks can be inferred. In this way, potential drawbacks arising from the elucidation of these networks by examination of static crystal structures or via alternate rigid-protein solvation analysis procedures can be overcome. Complementary studies aimed at the effective use of our methodology for alternate implementations (e.g., ligand design) are currently underway.
Assuntos
Proteínas de Fluorescência Verde/química , Manitol Desidrogenases/química , Simulação de Dinâmica Molecular , Movimento , Prótons , Solventes/química , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Manitol Desidrogenases/genética , Manitol Desidrogenases/metabolismo , Mutação , Estrutura Secundária de Proteína , Pseudomonas fluorescens/enzimologia , Fatores de TempoRESUMO
The active site of mannitol 2-dehydrogenase from Pseudomonas fluorescens (PfM2DH) is connected with bulk solvent through a narrow protein channel that shows structural resemblance to proton channels utilized by redox-driven proton pumps. A key element of the PfM2DH channel is the "mobile" Glu(292), which was seen crystallographically to adopt distinct positions up and down the channel. It was suggested that the "down â up" conformational change of Glu(292) could play a proton relay function in enzymatic catalysis, through direct proton shuttling by the Glu or because the channel is opened for water molecules forming a chain along which the protons flow. We report evidence from site-directed mutagenesis (Glu(292) â Ala) substantiated by data from molecular dynamics simulations that support a role for Glu(292) as a gate in a water chain (von Grotthuss-type) mechanism of proton translocation. Occupancy of the up and down position of Glu(292) is influenced by the bonding and charge state of the catalytic acid base Lys(295), suggesting that channel opening/closing motions of the Glu are synchronized to the reaction progress. Removal of gatekeeper control in the E292A mutant resulted in a selective, up to 120-fold slowing down of microscopic steps immediately preceding catalytic oxidation of mannitol, consistent with the notion that formation of the productive enzyme-NAD(+)-mannitol complex is promoted by a corresponding position change of Glu(292), which at physiological pH is associated with obligatory deprotonation of Lys(295) to solvent. These results underscore the important role of conformational dynamics in the proton transfer steps of alcohol dehydrogenase catalysis.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Manitol Desidrogenases/química , Manitol Desidrogenases/metabolismo , Pseudomonas fluorescens/enzimologia , Domínio Catalítico/fisiologia , Cristalografia , Ativação Enzimática/fisiologia , Ácido Glutâmico/química , Concentração de Íons de Hidrogênio , Manitol Desidrogenases/genética , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Prótons , Pseudomonas fluorescens/genética , Água/química , Água/metabolismoRESUMO
Yarrowia lipolytica short chain dehydrogenase/reductase (YlSDR) was expressed in Escherichia coli, purified and characterized in vitro. The substrate scope for YlSDR mediated oxidation was investigated with alcohols and unprotected carbohydrates spectrophotometrically, revealing a preference for secondary compared to primary alcohols. In reduction direction, YlSDR was highly active on ribulose and fructose, suggesting that the enzyme is a mannitol-2-dehydrogenase. In order to explore substrate tolerance especially for space-demanding, lipophilic protecting groups, 5-O-trityl-D-ribitol and 5-O-trityl-α,ß-D-ribose were investigated as substrates: YlSDR oxidized 5-O-trityl-D-ribitol and 5-O-trityl-α,ß-D-ribose and reduced the latter at the expense of NADP(H).
Assuntos
Ácido Graxo Sintases/metabolismo , NADH NADPH Oxirredutases/metabolismo , Pentoses/metabolismo , Ribitol/metabolismo , Yarrowia/enzimologia , Escherichia coli/metabolismo , Ácido Graxo Sintases/genética , Frutose/metabolismo , Cinética , Manitol Desidrogenases/genética , Manitol Desidrogenases/metabolismo , NADH NADPH Oxirredutases/genética , NADP/metabolismo , Oxirredução , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Ribose/metabolismo , Especificidade por SubstratoRESUMO
Knockout and complement mutants of mannitol-1-phosphate dehydrogenase (MPD) and mannitol dehydrogenase (MTD) were constructed to probe the roles of both enzymes in the mannitol metabolism and multi-stress tolerances of entomopathogenic fungus Beauveria bassiana. Compared with wild-type and complement mutants, ΔBbMPD lost 99.5% MPD activity for reducing fructose-6-phosphate to mannitol-1-phosphate while ΔBbMTD lost 78.9% MTD activity for oxidizing mannitol to fructose. Consequently, mannitol contents in mycelia and conidia decreased 68% and 83% for ΔBbMPD, and 16% and 38% for ΔBbMTD, accompanied by greatly enhanced trehalose accumulations due to 81-87% decrease in their neutral trehalase expression. Mannitol as mere carbon source in a nitrate-based minimal medium suppressed the colony growth of ΔBbMTD instead of ΔBbMPD, and delayed more conidial germination of ΔBbMTD than ΔBbMPD. Based on median lethal responses, conidial tolerances to H(2) O(2) oxidation, UV-B irradiation and heat stress at 45°C decreased 38%, 39% and 22% in ΔBbMPD, and 18%, 16% and 11% in ΔBbMTD respectively. Moreover, ΔBbMPD and ΔBbMTD lost 14% and 7% of their virulence against Spodoptera litura larvae respectively. Our findings highlight the primary roles of MPD and MTD in mannitol metabolism and their significant contributions to multi-stress tolerances and virulence influential on the biocontrol potential of B.bassiana.
Assuntos
Beauveria/enzimologia , Manitol Desidrogenases/metabolismo , Manitol/metabolismo , Estresse Fisiológico/fisiologia , Desidrogenase do Álcool de Açúcar/metabolismo , Animais , Beauveria/efeitos dos fármacos , Beauveria/patogenicidade , Beauveria/efeitos da radiação , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Teste de Complementação Genética , Peróxido de Hidrogênio/farmacologia , Manitol Desidrogenases/genética , Mutação , Micélio/metabolismo , Oxidantes/farmacologia , Spodoptera/microbiologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/metabolismo , Esporos Fúngicos/efeitos da radiação , Desidrogenase do Álcool de Açúcar/genética , Raios Ultravioleta , Virulência/genéticaRESUMO
BACKGROUND AND PURPOSE: Although the genetics of familial hemiplegic migraine are being unraveled, this is not the case for the prevalent types of migraine. However, a recent genome wide association study (GWAS) reported an association of the single nucleotide polymorphism (SNP) rs1835740 and migraine. The aim of this study is to evaluate the association of clinical characteristics in migraine with aura (MA) with the newly discovered minor allele A of rs1835740 at 8q22.1. METHODS: Participants were recruited from the Danish Headache Center and from specialist practices during the periods 1999-2002 and 2005-2006, and diagnosed according to the International Classification of Headache Disorders (ICHD-II) using a validated physician-conducted semi-structured interview. A large number of clinical characteristics were systematically determined. Caucasians of Danish ancestry diagnosed with MA and successfully genotyped for the SNP rs1835740 were included. Patients with hemiplegic migraine were excluded. Blood samples were collected for extraction of genomic DNA and genotyped for the common susceptibility variant rs1835740. RESULTS: Six hundred and ninety one successfully genotyped MA patients with substantial description of their clinical characteristics were included. Two hundred and fifty one were heterozygous and 40 were homozygote for the variant marker. Carriers of the rs1835740 variant showed a non-significant tendency towards having a higher frequency of aura symptoms and a non-significant tendency towards milder migraine headache characteristics and fewer accompanying symptoms. These tendencies were not increased in homozygote carriers. CONCLUSION: None of the clinical characteristics of MA were significantly influenced by the common susceptibility variant on 8q22.1.
Assuntos
Cromossomos Humanos Par 8/genética , Suscetibilidade a Doenças , Enxaqueca com Aura/genética , Enxaqueca com Aura/fisiopatologia , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carboxipeptidases/genética , Criança , Dinamarca , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Manitol Desidrogenases/genética , Pessoa de Meia-Idade , Medição da Dor , Fenótipo , Estudos Retrospectivos , Índice de Gravidade de Doença , Adulto JovemRESUMO
D-mannitol is widely used in the pharmaceutical and medical industries as an important precursor of antitumor drugs and immune stimulants. However, the cost of the current enzymatic process for D-mannitol synthesis is high, thus not suitable for commercialization. To address this issue, an efficient mannitol dehydrogenase LpGDH used for the conversion and a glucose dehydrogenase BaGDH used for NADH regeneration were screened, respectively. These two enzymes were co-expressed in Escherichia coli BL21(DE3) to construct a two-enzyme cascade catalytic reaction for the efficient synthesis of d-mannitol, with a conversion rate of 59.7% from D-fructose achieved. The regeneration of cofactor NADH was enhanced by increasing the copy number of Bagdh, and a recombinant strain E. coli BL21/pETDuet-Lpmdh-Bagdh-Bagdh was constructed to address the imbalance between cofactor amount and key enzyme expression level in the two-enzyme cascade catalytic reaction. An optimized whole cell transformation process was conducted under 30 â, initial pH 6.5, cell mass (OD600) 30, 100 g/L D-fructose substrate and an equivalent molar concentration of glucose. The highest yield of D-mannitol was 81.9 g/L with a molar conversion rate of 81.9% in 5 L fermenter under the optimal conversion conditions. This study provides a green and efficient biotransformation method for future large-scale production of D-mannitol, which is also of great importance for the production of other sugar alcohols.
Assuntos
Escherichia coli , Manitol , Escherichia coli/metabolismo , Frutose , Manitol/metabolismo , Manitol Desidrogenases/química , Manitol Desidrogenases/genética , Manitol Desidrogenases/metabolismo , NAD/metabolismoRESUMO
Directional preference in catalysis is often used to distinguish alcohol dehydrogenases from carbonyl reductases. However, the mechanistic basis underpinning this discrimination is weak. In mannitol 2-dehydrogenase from Pseudomonas fluorescens, stabilization of (partial) negative charge on the substrate oxyanion by the side chains of Asn-191 and Asn-300 is a key feature of catalysis in the direction of alcohol oxidation. We have disrupted this ability through individual and combined substitutions of the two asparagines by aspartic acid. Kinetic data and their thermodynamic analysis show that the internal equilibrium of enzyme-NADH-fructose and enzyme-NAD(+)-mannitol (K(int)) was altered dramatically (10(4)- to 10(5)-fold) from being balanced in the wild-type enzyme (K(int) ≈ 3) to favoring enzyme-NAD(+)-mannitol in the single site mutants, N191D and N300D. The change in K(int) reflects a selective slowing down of the mannitol oxidation rate, resulting because Asn --> Asp replacement (i) disfavors partial abstraction of alcohol proton by Lys-295 in a step preceding catalytic hydride transfer, and (ii) causes stabilization of a nonproductive enzyme-NAD(+)-mannitol complex. N191D and N300D appear to lose fructose binding affinity due to deprotonation of the respective Asp above apparent pK values of 5.3 ± 0.1 and 6.3 ± 0.2, respectively. The mutant incorporating both Asn-->Asp substitutions behaved as a slow "fructose reductase" at pH 5.2, lacking measurable activity for mannitol oxidation in the pH range 6.8-10. A mechanism is suggested in which polarization of the substrate carbonyl by a doubly protonated diad of Asp and Lys-295 facilitates NADH-dependent reduction of fructose by N191D and N300D under optimum pH conditions. Creation of an effectively "one-way" reductase by active-site redesign of a parent dehydrogenase has not been previously reported and holds promise in the development of carbonyl reductases for application in organic synthesis.
Assuntos
Substituição de Aminoácidos , Domínio Catalítico , Manitol Desidrogenases/química , Pseudomonas fluorescens/enzimologia , Concentração de Íons de Hidrogênio , Cinética , Manitol , Manitol Desidrogenases/genética , Mutação de Sentido Incorreto , Oxirredução , Pseudomonas fluorescens/genética , Especificidade por Substrato/genéticaRESUMO
The intracellular accumulation of organic compatible solutes functioning as osmoprotectants, such as polyols, is an important response mechanism of several plants to drought and salinity. In Olea europaea a mannitol transport system (OeMaT1) was previously characterized as a key player in plant response to salinity. In the present study, heterotrophic sink models, such as olive cell suspensions and fruit tissues, and source leaves were used for analytical, biochemical and molecular studies. The kinetic parameters of mannitol dehydrogenase (MTD) determined in cells growing in mannitol, at 25°C and pH 9.0, were as follows: K(m), 54.5 mM mannitol; and V(max), 0.47 µmol h⻹ mg⻹ protein. The corresponding cDNA was cloned and named OeMTD1. OeMTD1 expression was correlated with MTD activity, OeMaT1 expression and carrier-mediated mannitol transport in mannitol- and sucrose-grown cells. Furthermore, sucrose-grown cells displayed only residual OeMTD activity, even though high levels of OeMTD1 transcription were observed. There is evidence that OeMTD is regulated at both transcriptional and post-transcriptional levels. MTD activity and OeMTD1 expression were repressed after Na+, K+ and polyethylene glycol (PEG) treatments, in both mannitol- and sucrose-grown cells. In contrast, salt and drought significantly increased mannitol transport activity and OeMaT1 expression. Taken together, these studies support that olive trees cope with salinity and drought by coordinating mannitol transport with intracellular metabolism.
Assuntos
Manitol Desidrogenases/metabolismo , Manitol/metabolismo , Olea/enzimologia , Olea/fisiologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Clonagem Molecular , Secas , Manitol/farmacologia , Manitol Desidrogenases/genética , Dados de Sequência Molecular , Olea/efeitos dos fármacos , Olea/genética , Osmose/efeitos dos fármacos , Filogenia , Polietilenoglicóis/farmacologia , Cloreto de Potássio/farmacologia , Substâncias Protetoras/farmacologia , Sacarose/farmacologiaRESUMO
The presence of a mannitol cycle in fungi has been subject to discussion for many years. Recent studies have found no evidence for the presence of this cycle and its putative role in regenerating NADPH. However, all enzymes of the cycle could be measured in cultures of Aspergillus niger. In this study we have analyzed the localization of two enzymes from the pathway, mannitol dehydrogenase and mannitol-1-phosphate dehydrogenase, and the expression of their encoding genes in nonsporulating and sporulating cultures of A. niger. Northern analysis demonstrated that mpdA was expressed in both sporulating and nonsporulating mycelia, while expression of mtdA was expressed only in sporulating mycelium. More detailed studies using green fluorescent protein and dTomato fused to the promoters of mtdA and mpdA, respectively, demonstrated that expression of mpdA occurs in vegetative hyphae while mtdA expression occurs in conidiospores. Activity assays for MtdA and MpdA confirmed the expression data, indicating that streaming of these proteins is not likely to occur. These results confirm the absence of the putative mannitol cycle in A. niger as two of the enzymes of the cycle are not present in the same part of A. niger colonies. The results also demonstrate the existence of spore-specific genes and enzymes in A. niger.
Assuntos
Aspergillus niger/enzimologia , Aspergillus niger/crescimento & desenvolvimento , Proteínas Fúngicas/metabolismo , Regulação Enzimológica da Expressão Gênica , Manitol Desidrogenases/metabolismo , Desidrogenase do Álcool de Açúcar/metabolismo , Aspergillus niger/genética , Proteínas Fúngicas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Fúngica da Expressão Gênica , Hifas/enzimologia , Hifas/genética , Hifas/crescimento & desenvolvimento , Manitol/metabolismo , Manitol Desidrogenases/genética , Desidrogenase do Álcool de Açúcar/genéticaRESUMO
In order to redefine the mannitol pathway in the necrotrophic plant pathogen Botrytis cinerea, we used a targeted deletion strategy of genes encoding two proteins of mannitol metabolism, BcMTDH (B. cinerea mannitol dehydrogenase) and BcMPD (B. cinerea mannitol-1-phosphate dehydrogenase). Mobilization of mannitol and quantification of Bcmpd and Bcmtdh gene transcripts during development and osmotic stress confirmed a role for mannitol as a temporary and disposable carbon storage compound. In order to study metabolic fluxes, we followed conversion of labelled hexoses in wild-type and DeltaBcmpd and DeltaBcmtdh mutant strains by in vivo NMR spectroscopy. Our results revealed that glucose and fructose were metabolized via the BcMPD and BcMTDH pathways respectively. The existence of a novel mannitol phosphorylation pathway was also suggested by the NMR investigations. This last finding definitively challenged the existence of the originally postulated mannitol cycle in favour of two simultaneously expressed pathways. Finally, physiological and biochemical studies conducted on double deletion mutants (DeltaBcmpdDeltaBcmtdh) showed that mannitol was still produced despite a complete alteration of both mannitol biosynthesis pathways. This strongly suggests that one or several additional undescribed pathways could participate in mannitol metabolism in B. cinerea.
Assuntos
Botrytis/metabolismo , Manitol/metabolismo , Frutose/metabolismo , Glucose/metabolismo , Manitol Desidrogenases/genética , Manitol Desidrogenases/metabolismo , Redes e Vias Metabólicas , Mutagênese Sítio-Dirigida , Plantas/microbiologia , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismoRESUMO
Plant cells secrete a wide variety of defense-related proteins into the extracellular space or apoplast in response to pathogen attack. One of these, mannitol dehydrogenase (MTD), is normally a cytoplasmic enzyme whose primary role is the regulation of intracellular levels of the sugar alcohol mannitol in plants. Recent immunological and biochemical evidence, however, suggests that MTD is also secreted into the apoplast in response to pathogen attack, despite lacking a known peptide signal sequence for Golgi-mediated secretion. Because many plant pathogenic fungi secrete mannitol to overcome pathogen-induced generation of reactive oxygen species (ROS) by the plant, extracellular localization of MTD is hypothesized to have a defensive role of catabolizing pathogen-secreted mannitol. In the current study, LC/MS(E) was used to analyze proteins in the secretome of Apium graveolens (celery) following treatment with salicylic acid (SA), an endogenous elicitor of defense responses in plants. Levels of MTD in the secretome of SA-treated celery cell cultures were found to be induced at least 18-fold over secretome samples from cell cultures not exposed to SA. This value is in close agreement with published immunological and biochemical observations. Overall, this report provides the first mass spectrometry identification and quantification measurements supporting the hypothesis that MTD is secreted in response to simulated pathogen attack via a non-classical secretion mechanism. As demonstrated with MTD secretion, LC/MS(E) can be implemented as a discovery-driven MRM-based quantitative approach which can be used to reveal potential post-translational modifications, thus providing a new method in the area of gel-free and label-free proteomic analysis.
Assuntos
Apium/enzimologia , Cromatografia Líquida/métodos , Manitol Desidrogenases/química , Proteoma/análise , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Apium/efeitos dos fármacos , Técnicas de Cultura de Células , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Manitol Desidrogenases/genética , Manitol Desidrogenases/metabolismo , Dados de Sequência Molecular , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Ácido Salicílico/farmacologiaRESUMO
The mdh gene encodes mannitol dehydrogenase (MDH), which catalyzes the conversion of fructose into mannitol. The putative mdh gene of Candida magnoliae was isolated by PCR using the primers deduced from the N-terminal amino acid sequences of an intact MDH and its tryptic peptides, cloned in E. coli, and sequenced. The mdh gene consisted of 852 bp encoding for 283 amino acids. Analysis of the amino acid sequence revealed that MDH consisted of typical NADPH-dependent short chain dehydrogenases/reductases (SDRs). To develop a strong promoter to induce expression of the foreign genes in C. magnolia, the putative promoter was isolated. The reporter protein, GFP, was well-expressed under the control of the putative mdh promoter of 153 bp in C. magnoliae.