RESUMO
Rationale: The global burden of sepsis is greatest in low-resource settings. Melioidosis, infection with the gram-negative bacterium Burkholderia pseudomallei, is a frequent cause of fatal sepsis in endemic tropical regions such as Southeast Asia. Objectives: To investigate whether plasma metabolomics would identify biological pathways specific to melioidosis and yield clinically meaningful biomarkers. Methods: Using a comprehensive approach, differential enrichment of plasma metabolites and pathways was systematically evaluated in individuals selected from a prospective cohort of patients hospitalized in rural Thailand with infection. Statistical and bioinformatics methods were used to distinguish metabolomic features and processes specific to patients with melioidosis and between fatal and nonfatal cases. Measurements and Main Results: Metabolomic profiling and pathway enrichment analysis of plasma samples from patients with melioidosis (n = 175) and nonmelioidosis infections (n = 75) revealed a distinct immuno-metabolic state among patients with melioidosis, as suggested by excessive tryptophan catabolism in the kynurenine pathway and significantly increased levels of sphingomyelins and ceramide species. We derived a 12-metabolite classifier to distinguish melioidosis from other infections, yielding an area under the receiver operating characteristic curve of 0.87 in a second validation set of patients. Melioidosis nonsurvivors (n = 94) had a significantly disturbed metabolome compared with survivors (n = 81), with increased leucine, isoleucine, and valine metabolism, and elevated circulating free fatty acids and acylcarnitines. A limited eight-metabolite panel showed promise as an early prognosticator of mortality in melioidosis. Conclusions: Melioidosis induces a distinct metabolomic state that can be examined to distinguish underlying pathophysiological mechanisms associated with death. A 12-metabolite signature accurately differentiates melioidosis from other infections and may have diagnostic applications.
Assuntos
Burkholderia pseudomallei , Melioidose , Sepse , Humanos , Melioidose/diagnóstico , Melioidose/microbiologia , Estudos Prospectivos , MetabolômicaRESUMO
Burkholderia pseudomallei is the causative agent of melioidosis, a disease highly endemic to Southeast Asia and northern Australia, though the area of endemicity is expanding. Cases may occur in returning travelers or, rarely, from imported contaminated products. Identification of B. pseudomallei is challenging for laboratories that do not see this organism frequently, and misidentifications by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and automated biochemical testing have been reported. The in vitro diagnostic database for use with the Vitek MS has recently been updated to include B. pseudomallei and we aimed to validate the performance for identification in comparison to automated biochemical testing with the Vitek 2 GN card, quantitative real-time polymerase chain reaction (qPCR) targeting the type III secretion system, and capsular polysaccharide antigen detection using a lateral flow immunoassay (LFA). We tested a "derivation" cohort including geographically diverse B. pseudomallei and a range of closely related Burkholderia species, and a prospective "validation" cohort of B. pseudomallei and B. cepacia complex clinical isolates. MALDI-TOF MS had a sensitivity of 1.0 and specificity of 1.0 for the identification and differentiation of B. pseudomallei from related Burkholderia species when a certainty cutoff of 99.9% was used. In contrast, automated biochemical testing for B. pseudomallei identification had a sensitivity of 0.83 and specificity of 0.88. Both qPCR and LFA correctly identified all B. pseudomallei isolates with no false positives. Due to the high level of accuracy, we have now incorporated MALDI-TOF MS into our laboratory's B. pseudomallei identification workflow.IMPORTANCEBurkholderia pseudomallei causes melioidosis, a disease associated with high morbidity and mortality that disproportionately affects rural areas in Southeast Asia and northern Australia. The known area of endemicity is expanding and now includes the continental United States. Laboratory identification can be challenging which may result in missed or delayed diagnoses and poor patient outcomes. In this study, we compared mass spectrometry using an updated spectral database with multiple other methods for B. pseudomallei identification and found mass spectrometry highly accurate. We have therefore incorporated this fast and cost-effective method into our laboratory's workflow for B. pseudomallei identification.
Assuntos
Burkholderia pseudomallei , Melioidose , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/classificação , Burkholderia pseudomallei/isolamento & purificação , Burkholderia pseudomallei/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Humanos , Melioidose/diagnóstico , Melioidose/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Antígenos de Bactérias/genética , Antígenos de Bactérias/análise , Sensibilidade e Especificidade , Austrália , Técnicas Bacteriológicas/métodosRESUMO
BACKGROUND: Melioidosis is difficult to diagnose due to its wide range of clinical symptoms. The culture method is time-consuming and less sensitive, emphasizing the importance of rapid and accurate diagnostic tests for melioidosis. Burkholderia invasion protein D (BipD) of Burkholderia pseudomallei is a potential diagnostic biomarker. This study aimed to isolate and characterize single-stranded DNA aptamers that specifically target BipD. METHODS: The recombinant BipD protein was produced, followed by isolation of BipD-specific aptamers using Systematic Evolution of Ligands by EXponential enrichment. The binding affinity and specificity of the selected aptamers were evaluated using Enzyme-Linked Oligonucleotide Assay. RESULTS: The fifth SELEX cycle showed a notable enrichment of recombinant BipD protein-specific aptamers. Sequencing analysis identified two clusters with a total of seventeen distinct aptamers. AptBipD1, AptBipD13, and AptBipD50 were chosen based on their frequency. Among them, AptBipD1 exhibited the highest binding affinity with a Kd value of 1.0 µM for the recombinant BipD protein. Furthermore, AptBipD1 showed significant specificity for B. pseudomallei compared to other tested bacteria. CONCLUSION: AptBipD1 is a promising candidate for further development of reliable, affordable, and efficient point-of-care diagnostic tests for melioidosis.
Assuntos
Aptâmeros de Nucleotídeos , Proteínas de Bactérias , Burkholderia pseudomallei , DNA de Cadeia Simples , Técnica de Seleção de Aptâmeros , Aptâmeros de Nucleotídeos/química , DNA de Cadeia Simples/química , Melioidose/microbiologia , Melioidose/diagnóstico , Antígenos de Bactérias/isolamento & purificação , Antígenos de Bactérias/química , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/genéticaRESUMO
BACKGROUND: Melioidosis is a bacterial infection associated with high mortality. The diagnostic approach to this rare disease in Europe is challenging, especially because pulmonary manifestation of melioidosis can mimic pulmonary tuberculosis (TB). Antibiotic therapy of melioidosis consists of an initial intensive phase of 2-8 weeks followed by an eradication therapy of 3-6 months. CASE PRESENTATION: We present the case of a 46-year-old female patient with pulmonary melioidosis in Germany. The patient showed chronic cough, a pulmonary mass and a cavitary lesion, which led to the initial suspicion of pulmonary TB. Melioidosis was considered due to a long-term stay in Thailand with recurrent exposure to rice fields. RESULTS: Microbiologic results were negative for TB. Histopathology of an endobronchial tumor showed marked chronic granulation tissue and fibrinous inflammation. Melioidosis was diagnosed via polymerase chain reaction by detection of Burkholderia pseudomallei/mallei target from mediastinal lymph-node tissue. CONCLUSION: This case report emphasizes that melioidosis is an important differential diagnosis in patients with suspected pulmonary tuberculosis and recent travel to South-East Asia.
Assuntos
Burkholderia pseudomallei , Melioidose , Humanos , Melioidose/diagnóstico , Melioidose/tratamento farmacológico , Feminino , Pessoa de Meia-Idade , Diagnóstico Diferencial , Alemanha , Burkholderia pseudomallei/isolamento & purificação , Sudeste Asiático , Viagem , Tailândia , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico , Antibacterianos/uso terapêuticoRESUMO
Melioidosis is a tropical infectious disease caused by the saprophytic gram-negative bacterium Burkholderia pseudomallei. Despite the infection being endemic in southeast Asia and northern Australia, the broad clinical presentations and diagnostic difficulties limit its early detection, particularly in children. Melioidosis more commonly affects the immunocompromised and adults. Melioidosis is increasingly being diagnosed around the world and whole-genome sequencing indicates that these cases are not linked with travel to endemic areas. Research has concentrated on the adult population with limited experience reported in the care of this uncommon, but potentially fatal condition in children presenting with bacteraemia and pneumonia.
Assuntos
Burkholderia pseudomallei , Melioidose , Melioidose/diagnóstico , Humanos , Criança , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/isolamento & purificação , Antibacterianos/uso terapêutico , Bacteriemia/microbiologia , Bacteriemia/diagnósticoRESUMO
BACKGROUND: Melioidosis, caused by the category B biothreat agent Burkholderia pseudomallei, is a disease with a high mortality rate and requires an immediate culture-independent diagnosis for effective disease management. In this study, we developed a highly sensitive qPCR assay for specific detection of Burkholderia pseudomallei and melioidosis disease diagnosis based on a novel target sequence. METHODS: An extensive in-silico analysis was done to identify a novel and highly conserved sequence for developing a qPCR assay. The specificity of the developed assay was analyzed with 65 different bacterial cultures, and the analytical sensitivity of the assay was determined with the purified genomic DNA of B. pseudomallei. The applicability of the assay for B. pseudomallei detection in clinical and environmental matrices was evaluated by spiking B. pseudomallei cells in the blood, urine, soil, and water along with suitable internal controls. RESULTS: A novel 85-nucleotide-long sequence was identified using in-silico tools and employed for the development of the highly sensitive and specific quantitative real-time PCR assay S664. The assay S664 was found to be highly specific when evaluated with 65 different bacterial cultures related and non-related to B. pseudomallei. The assay was found to be highly sensitive, with a detection limit of 3 B. pseudomallei genome equivalent copies per qPCR reaction. The detection limit in clinical matrices was found to be 5 × 102 CFU/mL for both human blood and urine. In environmental matrices, the detection limit was found to be 5 × 101 CFU/mL of river water and 2 × 103 CFU/gm of paddy field soil. CONCLUSIONS: The findings of the present study suggest that the developed assay S664 along with suitable internal controls has a huge diagnostic potential and can be successfully employed for specific, sensitive, and rapid molecular detection of B. pseudomallei in various clinical and environmental matrices.
Assuntos
Burkholderia pseudomallei , Melioidose , Humanos , Burkholderia pseudomallei/genética , Melioidose/diagnóstico , Melioidose/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Solo , Água , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: Melioidosis is a serious bacterial infection caused by Burkholderia pseudomallei, a gram-negative bacterium commonly found in soil and water. It can affect both humans and animals, and is endemic in regions such as Southeast Asia and Northern Australia. In recent years, there have been reports of an emergence of human melioidosis in other areas, including New Caledonia. RESULTS: During standard laboratory analysis in New Caledonia in 2021, a strain of B. pseudomallei was isolated from a goat. The strain was characterized using both MLST and WGS techniques and was found to cluster with previously described local human strains from the area. In parallel, several serological tests (CFT, ELISA, Luminex (Hcp1, GroEL, BPSS1840), arrays assay and a latex agglutination test) were performed on animals from the farm where the goat originated, and/or from three other neighboring farms. Using two commercial ELISA kits, seropositive animals were found only on the farm where the infected goat originated and tests based on recombinant proteins confirmed the usefulness of the Hcp1 protein for the diagnosis of melioidosis in animals. CONCLUSIONS: Despite the regular reports of human cases, this is the first confirmed case of melioidosis in an animal in New Caledonia. These results confirm the presence of the bacterium in the region and highlight the importance of vigilance for both animal and human health. It is critical that all health partners, including breeders, veterinarians, and biologists, work together to monitor and prevent the spread of the disease.
Assuntos
Burkholderia pseudomallei , Doenças das Cabras , Melioidose , Humanos , Animais , Burkholderia pseudomallei/genética , Melioidose/diagnóstico , Melioidose/epidemiologia , Melioidose/veterinária , Tipagem de Sequências Multilocus/veterinária , Cabras , Nova Caledônia/epidemiologiaRESUMO
We describe an incidental Burkholderia pseudomallei laboratory exposure in Arizona, USA. Because melioidosis cases are increasing in the United States and B. pseudomallei reservoirs have been discovered in the Gulf Coast Region, US laboratory staff could be at increased risk for B. pseudomallei exposure.
Assuntos
Burkholderia pseudomallei , Melioidose , Humanos , Estados Unidos/epidemiologia , Burkholderia pseudomallei/genética , Arizona/epidemiologia , Melioidose/diagnóstico , Melioidose/epidemiologiaRESUMO
Melioidosis, caused by the environmental gram-negative bacterium Burkholderia pseudomallei, usually develops in adults with predisposing conditions and in Australia more commonly occurs during the monsoonal wet season. We report an outbreak of 7 cases of melioidosis in immunocompetent children in Australia. All the children had participated in a single-day sporting event during the dry season in a tropical region of Australia, and all had limited cutaneous disease. All case-patients had an adverse reaction to oral trimethoprim/sulfamethoxazole treatment, necessitating its discontinuation. We describe the clinical features, environmental sampling, genomic epidemiologic investigation, and public health response to the outbreak. Management of this outbreak shows the potential benefits of making melioidosis a notifiable disease. The approach used could also be used as a framework for similar outbreaks in the future.
Assuntos
Burkholderia pseudomallei , Melioidose , Adulto , Humanos , Criança , Melioidose/diagnóstico , Melioidose/tratamento farmacológico , Melioidose/epidemiologia , Burkholderia pseudomallei/genética , Austrália/epidemiologia , Genômica , Surtos de DoençasRESUMO
Burkholderia mallei, the causative agent of glanders, is a clonal descendant of Burkholderia pseudomallei, the causative agent of melioidosis, which has lost its environmental reservoir and has a restricted host range. Despite limitations in terms of sensitivity and specificity, complement fixation is still the official diagnostic test for glanders. Therefore, new tools are needed for diagnostics and to study the B. mallei epidemiology. We recently developed a highly sensitive serodiagnostic microarray test for human melioidosis based on the multiplex detection of B. pseudomallei proteins. In this study, we modified our array tests by using anti-horse IgG conjugate and tested sera from B. mallei-infected horses (n = 30), negative controls (n = 39), and horses infected with other pathogens (n = 14). Our array results show a sensitivity of 96.7% (confidence interval [CI] 85.5 to 99.6%) and a specificity of 100.0% (CI, 95.4 to 100.0%). The reactivity pattern of the positive sera on our array test allowed us to identify a set of 12 highly reactive proteins of interest for glanders diagnosis. The B. mallei variants of the three best protein candidates were selected for the development of a novel dipstick assay. Our point-of-care test detected glanders cases in less than 15 min with a sensitivity of 90.0% (CI, 75.7 to 97.1%) and a specificity of 100.0% (CI, 95.4 to 100.0%). The microarray and dipstick can easily be adopted for the diagnosis of both B. mallei and B. pseudomallei infections in different animals. Future studies will show whether multiplex serological testing has the potential to differentiate between these pathogens.
Assuntos
Burkholderia mallei , Burkholderia pseudomallei , Mormo , Melioidose , Humanos , Cavalos , Animais , Mormo/diagnóstico , Melioidose/diagnóstico , Melioidose/veterinária , Análise Serial de Proteínas , Burkholderia mallei/genéticaRESUMO
Melioidosis is a tropical infectious disease caused by Burkholderia pseudomallei. Melioidosis is associated with diverse clinical manifestations and high mortality. Early diagnosis is needed for appropriate treatment, but it takes several days to obtain bacterial culture results. We previously developed a rapid immunochromatography test (ICT) based on hemolysin coregulated protein 1 (Hcp1) and two enzyme-linked immunosorbent assays (ELISAs) based on Hcp1 (Hcp1-ELISA) and O-polysaccharide (OPS-ELISA) for serodiagnosis of melioidosis. This study prospectively validated the diagnostic accuracy of the Hcp1-ICT in suspected melioidosis cases and determined its potential use for identifying occult melioidosis cases. Patients were enrolled and grouped by culture results, including 55 melioidosis cases, 49 other infection patients, and 69 patients with no pathogen detected. The results of the Hcp1-ICT were compared with culture, a real-time PCR test based on type 3 secretion system 1 genes (TTS1-PCR), and ELISAs. Patients in the no-pathogen-detected group were followed for subsequent culture results. Using bacterial culture as a gold standard, the sensitivity and specificity of Hcp1-ICT were 74.5% and 89.8%, respectively. The sensitivity and specificity of TTS1-PCR were 78.2% and 100%, respectively. The diagnostic accuracy was markedly improved if the Hcp1-ICT results were combined with TTS1-PCR results (sensitivity and specificity were 98.2% and 89.8%, respectively). Among patients with initially negative cultures, Hcp1-ICT was positive in 16/73 (21.9%). Five of the 16 patients (31.3%) were subsequently confirmed to have melioidosis by repeat culture. The combined Hcp1-ICT and TTS1-PCR test results are useful for diagnosis, and Hcp1-ICT may help identify occult cases of melioidosis.
Assuntos
Burkholderia pseudomallei , Melioidose , Humanos , Melioidose/diagnóstico , Melioidose/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Anticorpos Antibacterianos , Burkholderia pseudomallei/genética , Sensibilidade e Especificidade , Proteínas Hemolisinas/genética , Testes Diagnósticos de RotinaRESUMO
Melioidosis is an emerging infection with increasing endemic foci and global distribution. It is underrecognized and underdiagnosed because of factors including limited awareness of the disease, nonspecific clinical presentation, lack of diagnostic facilities in some locations, misidentification in laboratories inexperienced with culture, and identification of Burkholderia pseudomallei. Cutaneous findings are reported in approximately 10% to 20% of melioidosis cases and dermatologists may play a significant role in its recognition and management. The most dynamic situation of melioidosis recognition and/or expansion currently is in the United States. Global modeling had predicted that B. pseudomallei were potentially endemic in the southern United States and endemicity with local cases of melioidosis was confirmed in 2022. With the distribution and prevalence of melioidosis increasing globally and with this recent recognition that melioidosis is now endemic in the southern United States, it is important for dermatologists to maintain high clinical suspicion in appropriate patients and be familiar with its diagnosis and treatment. Here we review the available literature on cutaneous melioidosis to evaluate its epidemiology, etiology, pathophysiology and clinical presentation and provide guidance for diagnosis and management in dermatology practice.
Assuntos
Burkholderia pseudomallei , Melioidose , Humanos , Melioidose/diagnóstico , Melioidose/epidemiologia , Melioidose/tratamento farmacológico , Dermatologistas , Fatores de RiscoRESUMO
A 33-year-old man from Ghana who had diabetes had chronic osteomyelitis of the femoral shaft develop. Tissue samples from surgical debridement grew Burkholderia pseudomallei. He received meropenem, followed by oral trimethoprim/sulfamethoxazole and doxycycline, and fully recovered without complications. Our case report extends the range of countries in Africa as sources of culture-confirmed melioidosis.
Assuntos
Burkholderia pseudomallei , Melioidose , Osteomielite , Adulto , Antibacterianos/uso terapêutico , Gana , Humanos , Masculino , Melioidose/diagnóstico , Melioidose/tratamento farmacológico , Osteomielite/diagnóstico , Osteomielite/tratamento farmacológicoRESUMO
PURPOSE OF REVIEW: Melioidosis and its causative bacterium Burkholderia pseudomallei are being found in unexpected locations and bacterial genotyping is providing new insights into global spread and where and how individuals are being infected. This review summarizes recent studies covering the epidemiology, diagnosis, treatment, and prevention of melioidosis. RECENT FINDINGS: Whole-genome sequencing of B. pseudomallei from patients and environmental sampling is informing the phylogeography of B. pseudomallei at regional, continental, and global levels, while also defining the epidemiology for individual cases. The situation in Africa remains the most unresolved, while the evolving story of B. pseudomallei in the Americas may establish that B. pseudomallei is endemic in parts of southern USA. Guidelines for diagnosis and treatment of melioidosis are well established, and published mortality has decreased from 50% or higher to 10% or lower in some countries but access to laboratory and therapeutic resources are not available or are extremely limited in many melioidosis-endemic regions. SUMMARY: The enormous clinical diversity of melioidosis and the complexities of laboratory diagnosis and of treatment make it a sentinel disease for highlighting the continuing global disparities in access to and provision of healthcare.
Assuntos
Burkholderia pseudomallei , Melioidose , Humanos , Melioidose/diagnóstico , Melioidose/tratamento farmacológico , Melioidose/epidemiologia , Burkholderia pseudomallei/genética , Sequenciamento Completo do Genoma , Vacinação , AméricaRESUMO
Burkholderia pseudomallei is a Gram-negative soil saprophyte with the potential to cause melioidosis, an opportunistic disease with a high mortality potential. Periodic case reports of melioidosis in or imported from Africa occur in the literature dating back decades. Furthermore, statistical models suggest Western sub-Saharan Africa as a high-risk zone for the presence of B. pseudomallei. A recent case report from the United Kingdom of a returning traveler from Ghana highlights the need for environmental studies in Ghana. We examined 100 soil samples from a rice farm in south-central Ghana. Soil was subjected to selective enrichment culture for B. pseudomallei using threonine-basal salt solution with colistin (TBSS-C50) and erythritol medium, as described in the literature. Bacterial cultures were identified with standard biochemical tests, a rapid antigen detection assay, and real-time PCR specific for B. pseudomallei. Of the 100 soil samples, 55% yielded cultures consistent with B. pseudomallei on Ashdown's agar as well as by capsular polysaccharide antigen production. This is the first confirmatory report of culture-confirmed B. pseudomallei in the environment of Ghana. Our study emphasizes the need for further exploration of the burden of human melioidosis in Ghana. We recommend that local clinicians familiarize themselves with the diagnosis and clinical management of melioidosis, while laboratories develop capacity for the safe isolation and identification of B. pseudomallei. IMPORTANCE We present the first confirmation of the presence of B. pseudomallei in the environment of Ghana. This study will bring attention to a disease with the potential to cause significant morbidity and mortality in Ghana, but which has gone completely unrecognized until this point. Furthermore, this work would encourage local clinicians to familiarize themselves with the diagnosis and clinical management of melioidosis and laboratories to develop capacity for the safe isolation and identification of B. pseudomallei.
Assuntos
Burkholderia pseudomallei , Melioidose , Burkholderia pseudomallei/genética , Gana , Humanos , Melioidose/diagnóstico , Melioidose/microbiologia , Solo , Microbiologia do SoloRESUMO
BACKGROUND: Burkholderia pseudomallei (B. pseudomallei), as a highly pathogenic organism, causes melioidosis, which is a disease of public health importance in many tropical developing countries. Here, we present and validate a novel detection technique, termed multiple cross displacement amplification combined with nanoparticles-based lateral flow biosensor (MCDA-NB), for identifying B. pseudomallei and diagnosing melioidosis. RESULTS: B. pseudomallei-MCDA targets the TTS1 (Type III secretion system gene cluster 1) to specifically design ten MCDA primers. The nanoparticles-based biosensor (NB) can be combined with B. pseudomallei-MCDA for visually, objective, simply and rapidly reporting reaction results. The optimal amplification conditions of B. pseudomallei-MCDA were 66 °C for 30 min. Assay's sensitivity was 100 fg of genomic DNA in the pure cultures, and the analytical specificity was 100% by the examination of 257 strains, including 228 B. pseudomallei and 29 non-B. pseudomallei. As a result, the whole detection procedure was completed within 50 min, including 15 min for genomic DNA preparation, 30 min for l MCDA reaction, and 2 min for the interpretation of the results visually by biosensor. CONCLUSIONS: B. pseudomallei-MCDA assay is a rapid, sensitive and specific method for the detection of B. pseudomallei, and can be used as a potential tool for melioidosis diagnose in basic, field and clinical laboratories.
Assuntos
Técnicas Biossensoriais , Burkholderia pseudomallei , Melioidose , Técnicas Biossensoriais/métodos , Burkholderia pseudomallei/genética , Humanos , Melioidose/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e EspecificidadeRESUMO
Melioidosis is endemic in Southeast Asia and northern Australia. The causative agent of melioidosis is a Gram-negative bacterium, Burkholderia pseudomallei. Its invasion can be fatal if melioidosis is not treated promptly. It is intrinsically resistant to a variety of antibiotics. In this paper, we present a comprehensive overview of the current trends on melioidosis cases, treatments, B. pseudomallei virulence factors, and molecular techniques to detect the bacterium from different samples. The clinical and microbial diagnosis methods of identification and detection of B. pseudomallei are commonly used for the rapid diagnosis and typing of strains, such as polymerase chain reaction or multi-locus sequence typing. The genotyping strategies and techniques have been constantly evolving to identify genomic loci linked to or associated with this human disease. More research strategies for detecting and controlling melioidosis should be encouraged and conducted to understand the current situation. In conclusion, we review existing diagnostic methodologies for melioidosis detection and provide insights on prospective diagnostic methods for the bacterium.
Assuntos
Burkholderia pseudomallei , Melioidose , Burkholderia pseudomallei/genética , Humanos , Melioidose/diagnóstico , Melioidose/microbiologia , Tipagem de Sequências Multilocus , Estudos Prospectivos , Fatores de Virulência/genéticaRESUMO
BACKGROUND: Neuro-melioidosis, comprising 4% of all cases of melioidosis carries a risk of high morbidity and mortality. We describe two Sri Lankan patients presenting with long segment myelitis secondary to melioidosis. CASE PRESENTATION: Case 1: 47-year-old male presented with right side hemiparesis which progressed rapidly to quadriparesis. Initial cerebro spinal fluid (CSF) analysis revealed protein 76 mg/dl and glucose 72 mg/dl but without a cellular reaction. MRI spine revealed long segment myelitis with contrast enhancement. The patient was treated with intravenous methyl prednisolone pulses (IV MPP) and plasma exchanges(PLEX) on suspicion of an immune mediated myelitis but without success. A repeat MRI revealed high signal changes in the brain stem and along the entire spinal cord with contrast enhancement. MRI brain after treatment with MPP/PLEX showed enhancing hyper intensities along the corticospinal tracts. The repeat CSF revealed protein 1187 mg/dl, glucose 78 mg/dl, lymphocytes 1600/mm3 and neutrophils 10,200/mm3. CSF culture has become positive for Burkholderia pseudomallei. Serum melioidosis antibody titre was 1: 320. He was started on IV meropenem with oral cotrimoxazole for 12 weeks followed by oral co trimoxazole. But he had poor clinical recovery. Case 2: 47-year-old female presented with bilateral lower limb weakness for 1-week duration. On examination, she had flaccid paraparesis with a sensory level at T11. Inflammatory markers were elevated. CSF analysis revealed protein 50 mg/dl with lymphocytes 172/mm3. MRI pan spine revealed a long segment myelitis. Serum melioidosis antibody titre was 1: 640. She was treated with IV meropenem for 8 weeks followed by oral co-trimoxazole with an excellent clinical and radiological response. CONCLUSION: Numerous neurological manifestations have been described with melioidosis, however long segment myelitis with a positive CSF culture is not yet reported. These cases signify the importance of considering melioidosis as a differential in patients with long segment myelitis especially in endemic areas.
Assuntos
Melioidose , Mielite , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Melioidose/diagnóstico , Melioidose/diagnóstico por imagem , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Meropeném/uso terapêutico , Glucose , Prednisolona/uso terapêuticoRESUMO
BACKGROUND: The accurate and rapid diagnosis of melioidosis is challenging. Several serological approaches have been developed using recombinant antigens to improve the diagnostic indices of serological tests for melioidosis. METHODS: Fusion proteins from Burkholderia pseudomallei (rGroEL-FLAG300) were evaluated as a potential target antigen for melioidosis antibodies. A total of 220 serum samples from 38 culture proven melioidosis patients (gold standard), 126 healthy individuals from endemic (n = 37) and non-endemic (n = 89) Thai provinces and 56 patients with other proven bacterial infections as negative controls were tested using indirect enzyme-linked immunosorbent assays (ELISA). RESULTS: Using an optical density (OD) cut-off of 0.299148, our assay had 94.74% sensitivity (95% confidence interval (CI) = 82.3-99.4%), 95.05% specificity (95% CI = 90.8-97.7%), and 95% accuracy, which was better than in our previous work (90.48% sensitivity, 87.14% specificity, and 87.63% accuracy). CONCLUSION: Our results suggest that the application of chimeric antigens in ELISA could improve the serological diagnosis of melioidosis and should be reconfirmed with greater patient numbers.
Assuntos
Burkholderia pseudomallei , Melioidose , Anticorpos Antibacterianos , Antígenos de Bactérias/genética , Burkholderia pseudomallei/genética , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Melioidose/diagnóstico , Melioidose/microbiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes , Sensibilidade e Especificidade , Testes Sorológicos/métodosRESUMO
BACKGROUND: Melioidosis caused by Burkholderia pseudomallei is an emerging infection in Sri Lanka with a high case fatality rate. The disease usually manifests as pneumonia, however multisystem involvement is common. Myositis is an extremely rare occurrence and this is the only documented case where the initial presentation of melioidosis has been myositis and later complicated to myonecrosis. CASE PRESENTATION: A 45-year-old gentleman with pre-existing diabetes presented with a tender, right thigh lump for 1 week duration without any history of trauma or infection. Investigations revealed neutrophil leukocytosis, high erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels whilst ultrasonography showed focal myositis of right quadriceps. The patient went into sepsis amidst antibacterial treatment which warranted urgent surgery. At surgery, a large intramuscular abscess with myonecrosis was observed within vastus medialis which was completely drained and pus was taken for culture which eventually isolated Burkholderia pseudomallei. Melioidosis was diagnosed and intravenous meropenem was prescribed for 3 weeks. Following complete recovery, the patient was discharged on doxycycline and trimethoprim sulfamethoxazole for 3 months. CONCLUSIONS: Melioidosis, an endemic disease in south east Asia and northern Australia, is an emerging infection in Sri Lanka. Myositis is a rare presentation of the disease that can lead to myonecrosis and abscess formation which can cause rapid disease escalation and sepsis. Early surgical intervention may be life-saving in such cases where antibiotic therapy alone may not suffice.