Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 464
Filtrar
1.
Cell ; 154(4): 827-42, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23953114

RESUMO

The epidemic of heart failure has stimulated interest in understanding cardiac regeneration. Evidence has been reported supporting regeneration via transplantation of multiple cell types, as well as replication of postmitotic cardiomyocytes. In addition, the adult myocardium harbors endogenous c-kit(pos) cardiac stem cells (eCSCs), whose relevance for regeneration is controversial. Here, using different rodent models of diffuse myocardial damage causing acute heart failure, we show that eCSCs restore cardiac function by regenerating lost cardiomyocytes. Ablation of the eCSC abolishes regeneration and functional recovery. The regenerative process is completely restored by replacing the ablated eCSCs with the progeny of one eCSC. eCSCs recovered from the host and recloned retain their regenerative potential in vivo and in vitro. After regeneration, selective suicide of these exogenous CSCs and their progeny abolishes regeneration, severely impairing ventricular performance. These data show that c-kit(pos) eCSCs are necessary and sufficient for the regeneration and repair of myocardial damage.


Assuntos
Células-Tronco Adultas/transplante , Insuficiência Cardíaca/terapia , Miócitos Cardíacos/citologia , Células-Tronco Adultas/metabolismo , Animais , Células da Medula Óssea/metabolismo , Proteínas de Fluorescência Verde/análise , Coração/fisiologia , Insuficiência Cardíaca/induzido quimicamente , Humanos , Isoproterenol , Masculino , Camundongos , Miócitos Cardíacos/química , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Fator de Células-Tronco/metabolismo
2.
PLoS Genet ; 18(1): e1009666, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35061661

RESUMO

Dynamic and temporally specific gene regulatory changes may underlie unexplained genetic associations with complex disease. During a dynamic process such as cellular differentiation, the overall cell type composition of a tissue (or an in vitro culture) and the gene regulatory profile of each cell can both experience significant changes over time. To identify these dynamic effects in high resolution, we collected single-cell RNA-sequencing data over a differentiation time course from induced pluripotent stem cells to cardiomyocytes, sampled at 7 unique time points in 19 human cell lines. We employed a flexible approach to map dynamic eQTLs whose effects vary significantly over the course of bifurcating differentiation trajectories, including many whose effects are specific to one of these two lineages. Our study design allowed us to distinguish true dynamic eQTLs affecting a specific cell lineage from expression changes driven by potentially non-genetic differences between cell lines such as cell composition. Additionally, we used the cell type profiles learned from single-cell data to deconvolve and re-analyze data from matched bulk RNA-seq samples. Using this approach, we were able to identify a large number of novel dynamic eQTLs in single cell data while also attributing dynamic effects in bulk to a particular lineage. Overall, we found that using single cell data to uncover dynamic eQTLs can provide new insight into the gene regulatory changes that occur among heterogeneous cell types during cardiomyocyte differentiation.


Assuntos
Perfilação da Expressão Gênica/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Análise de Célula Única/métodos , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/química , Miócitos Cardíacos/química , RNA-Seq
3.
Proc Natl Acad Sci U S A ; 117(39): 24545-24556, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929035

RESUMO

The relationship between oxidative stress and cardiac stiffness is thought to involve modifications to the giant muscle protein titin, which in turn can determine the progression of heart disease. In vitro studies have shown that S-glutathionylation and disulfide bonding of titin fragments could alter the elastic properties of titin; however, whether and where titin becomes oxidized in vivo is less certain. Here we demonstrate, using multiple models of oxidative stress in conjunction with mechanical loading, that immunoglobulin domains preferentially from the distal titin spring region become oxidized in vivo through the mechanism of unfolded domain oxidation (UnDOx). Via oxidation type-specific modification of titin, UnDOx modulates human cardiomyocyte passive force bidirectionally. UnDOx also enhances titin phosphorylation and, importantly, promotes nonconstitutive folding and aggregation of unfolded domains. We propose a mechanism whereby UnDOx enables the controlled homotypic interactions within the distal titin spring to stabilize this segment and regulate myocardial passive stiffness.


Assuntos
Miocárdio/química , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Proteínas Quinases/metabolismo , Animais , Elasticidade , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miócitos Cardíacos/química , Oxirredução , Fosforilação , Proteínas Quinases/química , Proteínas Quinases/genética
4.
Proc Natl Acad Sci U S A ; 117(6): 2764-2766, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31988123

RESUMO

The field of cardiomyocyte mechanobiology is gaining significant attention, due to accumulating evidence concerning the significant role of cellular mechanical effects on the integrated function of the heart. To date, the protein titin has been demonstrated as a major contributor to the cardiomyocytes Young's modulus (YM). The microtubular network represents another potential regulator of cardiac mechanics. However, the contribution of microtubules (MTs) to the membrane YM is still understudied and has not been interrogated in the context of myocardial infarction (MI) or mechanical loading and unloading. Using nanoscale mechanoscanning ion conductance microscopy, we demonstrate that MTs contribute to cardiomyocyte transverse YM in healthy and pathological states with different mechanical loading. Specifically, we show that posttranslational modifications of MTs have differing effects on cardiomyocyte YM: Acetylation provides flexibility, whereas detyrosination imparts rigidity. Further studies demonstrate that there is no correlation between the total protein amount of acetylated and detyrosinated MT. Yet, in the polymerized-only populations, an increased level of acetylation results in a decline of detyrosinated MTs in an MI model.


Assuntos
Microtúbulos/metabolismo , Miócitos Cardíacos/química , Miócitos Cardíacos/metabolismo , Acetilação , Animais , Fenômenos Biomecânicos , Membrana Celular/química , Membrana Celular/metabolismo , Células Cultivadas , Módulo de Elasticidade , Masculino , Microtúbulos/química , Processamento de Proteína Pós-Traducional , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley
5.
Proc Natl Acad Sci U S A ; 117(31): 18822-18831, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690703

RESUMO

Muscle contraction is regulated by the movement of end-to-end-linked troponin-tropomyosin complexes over the thin filament surface, which uncovers or blocks myosin binding sites along F-actin. The N-terminal half of troponin T (TnT), TNT1, independently promotes tropomyosin-based, steric inhibition of acto-myosin associations, in vitro. Recent structural models additionally suggest TNT1 may restrain the uniform, regulatory translocation of tropomyosin. Therefore, TnT potentially contributes to striated muscle relaxation; however, the in vivo functional relevance and molecular basis of this noncanonical role remain unclear. Impaired relaxation is a hallmark of hypertrophic and restrictive cardiomyopathies (HCM and RCM). Investigating the effects of cardiomyopathy-causing mutations could help clarify TNT1's enigmatic inhibitory property. We tested the hypothesis that coupling of TNT1 with tropomyosin's end-to-end overlap region helps anchor tropomyosin to an inhibitory position on F-actin, where it deters myosin binding at rest, and that, correspondingly, cross-bridge cycling is defectively suppressed under diastolic/low Ca2+ conditions in the presence of HCM/RCM lesions. The impact of TNT1 mutations on Drosophila cardiac performance, rat myofibrillar and cardiomyocyte properties, and human TNT1's propensity to inhibit myosin-driven, F-actin-tropomyosin motility were evaluated. Our data collectively demonstrate that removing conserved, charged residues in TNT1's tropomyosin-binding domain impairs TnT's contribution to inhibitory tropomyosin positioning and relaxation. Thus, TNT1 may modulate acto-myosin activity by optimizing F-actin-tropomyosin interfacial contacts and by binding to actin, which restrict tropomyosin's movement to activating configurations. HCM/RCM mutations, therefore, highlight TNT1's essential role in contractile regulation by diminishing its tropomyosin-anchoring effects, potentially serving as the initial trigger of pathology in our animal models and humans.


Assuntos
Cardiomiopatias/metabolismo , Mutação/genética , Tropomiosina , Troponina T , Actinas/química , Actinas/metabolismo , Animais , Cálcio/metabolismo , Diástole/genética , Diástole/fisiologia , Proteínas de Drosophila , Humanos , Miócitos Cardíacos/química , Miócitos Cardíacos/metabolismo , Ligação Proteica , Ratos , Tropomiosina/química , Tropomiosina/metabolismo , Troponina T/química , Troponina T/genética , Troponina T/metabolismo
6.
PLoS Genet ; 16(5): e1008818, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32469866

RESUMO

The Hippo signalling pathway and its central effector YAP regulate proliferation of cardiomyocytes and growth of the heart. Using genetic models in mice we show that the increased proliferation of embryonal and postnatal cardiomyocytes due to loss of the Hippo-signaling component SAV1 depends on the Myb-MuvB (MMB) complex. Similarly, proliferation of postnatal cardiomyocytes induced by constitutive active YAP requires MMB. Genome studies revealed that YAP and MMB regulate an overlapping set of cell cycle genes in cardiomyocytes. Protein-protein interaction studies in cell lines and with recombinant proteins showed that YAP binds directly to B-MYB, a subunit of MMB, in a manner dependent on the YAP WW domains and a PPXY motif in B-MYB. Disruption of the interaction by overexpression of the YAP binding domain of B-MYB strongly inhibits the proliferation of cardiomyocytes. Our results point to MMB as a critical downstream effector of YAP in the control of cardiomyocyte proliferation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/genética , Miócitos Cardíacos/citologia , Transativadores/química , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Recém-Nascidos , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proliferação de Células , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Miócitos Cardíacos/química , Regiões Promotoras Genéticas , Ratos , Proteínas de Sinalização YAP
7.
Proc Natl Acad Sci U S A ; 116(45): 22531-22539, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31624124

RESUMO

Traditional bioelectronics, primarily comprised of nonliving synthetic materials, lack cellular behaviors such as adaptability and motility. This shortcoming results in mechanically invasive devices and nonnatural signal transduction across cells and tissues. Moreover, resolving heterocellular electrical communication in vivo is extremely limited due to the invasiveness of traditional interconnected electrical probes. In this paper, we present a cell-silicon hybrid that integrates native cellular behavior (e.g., gap junction formation and biosignal processing) with nongenetically enabled photosensitivity. This hybrid configuration allows interconnect-free cellular modulation with subcellular spatial resolution for bioelectric studies. Specifically, we hybridize cardiac myofibroblasts with silicon nanowires and use these engineered hybrids to synchronize the electrical activity of cardiomyocytes, studying heterocellular bioelectric coupling in vitro. Thereafter, we inject the engineered myofibroblasts into heart tissues and show their ability to seamlessly integrate into contractile tissues in vivo. Finally, we apply local photostimulation with high cell specificity to tackle a long-standing debate regarding the existence of myofibroblast-cardiomyocyte electrical coupling in vivo.


Assuntos
Miócitos Cardíacos/química , Miofibroblastos/química , Silício/química , Animais , Bioengenharia , Células Cultivadas , Fenômenos Eletrofisiológicos , Junções Comunicantes/fisiologia , Humanos , Camundongos , Miócitos Cardíacos/fisiologia , Miofibroblastos/fisiologia , Nanofios/química , Transdução de Sinais
8.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162959

RESUMO

Oxidative stress, defined as the excess production of reactive oxygen species (ROS) relative to antioxidant defense, plays a significant role in the development of cardiovascular diseases. Endoplasmic reticulum (ER) stress has emerged as an important source of ROS and its modulation could be cardioprotective. Previously, we demonstrated that miR-16-5p is enriched in the plasma of ischemic dilated cardiomyopathy (ICM) patients and promotes ER stress-induced apoptosis in cardiomyocytes in vitro. Here, we hypothesize that miR-16-5p might contribute to oxidative stress through ER stress induction and that targeting miR-16-5p may exert a cardioprotective role in ER stress-mediated cardiac injury. Analysis of oxidative markers in the plasma of ICM patients demonstrates that oxidative stress is associated with ICM. Moreover, we confirm that miR-16-5p overexpression promotes oxidative stress in AC16 cardiomyoblasts. We also find that, in response to tunicamycin-induced ER stress, miR-16-5p suppression decreases apoptosis, inflammation and cardiac damage via activating the ATF6-mediated cytoprotective pathway. Finally, ATF6 is identified as a direct target gene of miR-16-5p by dual-luciferase reporter assays. Our results indicate that miR-16-5p promotes ER stress and oxidative stress in cardiac cells through regulating ATF6, suggesting that the inhibition of miR-16-5p has potential as a therapeutic approach to protect the heart against ER and oxidative stress-induced injury.


Assuntos
Biomarcadores/sangue , Cardiomiopatia Dilatada/genética , MicroRNAs/genética , Miócitos Cardíacos/citologia , Tunicamicina/efeitos adversos , Adulto , Idoso , Cardiomiopatia Dilatada/sangue , Cardiomiopatia Dilatada/etiologia , Estudos de Casos e Controles , Linhagem Celular , Estresse do Retículo Endoplasmático , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Miócitos Cardíacos/química , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos
9.
Hum Mol Genet ; 28(23): 3954-3969, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31625562

RESUMO

Genetics is a significant factor contributing to congenital heart disease (CHD), but our understanding of the genetic players and networks involved in CHD pathogenesis is limited. Here, we searched for de novo copy number variations (CNVs) in a cohort of 167 CHD patients to identify DNA segments containing potential pathogenic genes. Our search focused on new candidate disease genes within 19 deleted de novo CNVs, which did not cover known CHD genes. For this study, we developed an integrated high-throughput phenotypical platform to probe for defects in cardiogenesis and cardiac output in human induced pluripotent stem cell (iPSC)-derived multipotent cardiac progenitor (MCPs) cells and, in parallel, in the Drosophila in vivo heart model. Notably, knockdown (KD) in MCPs of RPL13, a ribosomal gene and SON, an RNA splicing cofactor, reduced proliferation and differentiation of cardiomyocytes, while increasing fibroblasts. In the fly, heart-specific RpL13 KD, predominantly at embryonic stages, resulted in a striking 'no heart' phenotype. KD of Son and Pdss2, among others, caused structural and functional defects, including reduced or abolished contractility, respectively. In summary, using a combination of human genetics and cardiac model systems, we identified new genes as candidates for causing human CHD, with particular emphasis on ribosomal genes, such as RPL13. This powerful, novel approach of combining cardiac phenotyping in human MCPs and in the in vivo Drosophila heart at high throughput will allow for testing large numbers of CHD candidates, based on patient genomic data, and for building upon existing genetic networks involved in heart development and disease.


Assuntos
Variações do Número de Cópias de DNA , Cardiopatias Congênitas/genética , Miocárdio/citologia , Proteínas de Neoplasias/genética , Proteínas Ribossômicas/genética , Animais , Células Cultivadas , Estudos de Coortes , Modelos Animais de Doenças , Drosophila , Feminino , Redes Reguladoras de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/química , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/química , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Estudos Retrospectivos
10.
PLoS Comput Biol ; 16(10): e1008294, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33027247

RESUMO

We propose four novel mathematical models, describing the microscopic mechanisms of force generation in the cardiac muscle tissue, which are suitable for multiscale numerical simulations of cardiac electromechanics. Such models are based on a biophysically accurate representation of the regulatory and contractile proteins in the sarcomeres. Our models, unlike most of the sarcomere dynamics models that are available in the literature and that feature a comparable richness of detail, do not require the time-consuming Monte Carlo method for their numerical approximation. Conversely, the models that we propose only require the solution of a system of PDEs and/or ODEs (the most reduced of the four only involving 20 ODEs), thus entailing a significant computational efficiency. By focusing on the two models that feature the best trade-off between detail of description and identifiability of parameters, we propose a pipeline to calibrate such parameters starting from experimental measurements available in literature. Thanks to this pipeline, we calibrate these models for room-temperature rat and for body-temperature human cells. We show, by means of numerical simulations, that the proposed models correctly predict the main features of force generation, including the steady-state force-calcium and force-length relationships, the length-dependent prolongation of twitches and increase of peak force, the force-velocity relationship. Moreover, they correctly reproduce the Frank-Starling effect, when employed in multiscale 3D numerical simulation of cardiac electromechanics.


Assuntos
Coração/fisiologia , Modelos Cardiovasculares , Miocárdio , Miócitos Cardíacos , Adulto , Animais , Fenômenos Biofísicos/fisiologia , Biologia Computacional , Humanos , Masculino , Miocárdio/química , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/química , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ratos , Sarcômeros/química , Sarcômeros/metabolismo , Sarcômeros/fisiologia , Adulto Jovem
11.
Nanomedicine ; 33: 102367, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33549819

RESUMO

Cardiovascular diseases are the number one killer in the world.1,2 Currently, there are no clinical treatments to regenerate damaged cardiac tissue, leaving patients to develop further life-threatening cardiac complications. Cardiac tissue has multiple functional demands including vascularization, contraction, and conduction that require many synergic components to properly work. Most of these functions are a direct result of the cardiac tissue structure and composition, and, for this reason, tissue engineering strongly proposed to develop substitute engineered heart tissues (EHTs). EHTs usually have combined pluripotent stem cells and supporting scaffolds with the final aim to repair or replace the damaged native tissue. However, as simple as this idea is, indeed, it resulted, after many attempts in the field, to be very challenging. Without design complexity, EHTs remain unable to mature fully and integrate into surrounding heart tissue resulting in minimal in vivo effects.3 Lately, there has been a growing body of evidence that a complex, multifunctional approach through implementing scaffold designs, cellularization, and molecular release appears to be essential in the development of a functional cardiac EHTs.4-6 This review covers the advancements in EHTs developments focusing on how to integrate contraction, conduction, and vascularization mimics and how combinations have resulted in improved designs thus warranting further investigation to develop a clinically applicable treatment.


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Miócitos Cardíacos/química , Miócitos Cardíacos/metabolismo , Alicerces Teciduais/química , Animais , Proliferação de Células , Células-Tronco Embrionárias/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Coração , Humanos , Testes Mecânicos , Contração Miocárdica , Regeneração , Engenharia Tecidual
12.
Molecules ; 26(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34771134

RESUMO

Connexins (Cxs) are a family of membrane-spanning proteins, expressed in vertebrates and named according to their molecular weight. They are involved in tissue homeostasis, and they function by acting at several communication levels. Cardiac Cxs are responsible for regular heart function and, among them, Cx26 and Cx43 are widely expressed throughout the heart. Cx26 is present in vessels, as well as in cardiomyocytes, and its localization is scattered all over the cell aside from at the intercalated discs as is the case for the other cardiac Cxs. However, having been found in cardiomyocytes only recently, both its subcellular localization and its functional characterization in cardiomyocytes remain poorly understood. Therefore, in this study we aimed to obtain further data on the localization of Cx26 at the subcellular level. Our TEM immunogold analyses were performed on rat heart ventricles and differentiated H9c2 cardiac cell sections as well as on differentiated H9c2 derived extracellular vesicles. The results confirmed the absence of Cx26 at intercalated discs and showed the presence of Cx26 at the level of different subcellular compartments. The peculiar localization at the level of extracellular vesicles suggested a specific role for cardiac Cx26 in inter-cellular communication in an independent gap junction manner.


Assuntos
Conexina 26/análise , Vesículas Extracelulares/química , Miócitos Cardíacos/química , Animais , Linhagem Celular , Conexina 26/metabolismo , Vesículas Extracelulares/metabolismo , Junções Comunicantes/química , Junções Comunicantes/metabolismo , Miócitos Cardíacos/metabolismo , Ratos
13.
Biochemistry ; 59(19): 1800-1803, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32338497

RESUMO

Structural characterization of misfolded protein aggregates is essential to understanding the molecular mechanism of protein aggregation associated with various protein misfolding disorders. Here, we report structural analyses of ex vivo transthyretin aggregates extracted from human cardiac tissue. Comparative structural analyses of in vitro and ex vivo transthyretin aggregates using various biophysical techniques revealed that cardiac transthyretin amyloid has structural features similar to those of in vitro transthyretin amyloid. Our solid-state nuclear magnetic resonance studies showed that in vitro amyloid contains extensive nativelike ß-sheet structures, while other loop regions including helical structures are disrupted in the amyloid state. These results suggest that transthyretin undergoes a common misfolding and aggregation transition to nativelike aggregation-prone monomers that self-assemble into amyloid precipitates in vitro and in vivo.


Assuntos
Amiloide/química , Amiloide/metabolismo , Miócitos Cardíacos/química , Pré-Albumina/química , Pré-Albumina/metabolismo , Agregados Proteicos , Dobramento de Proteína , Amiloide/isolamento & purificação , Humanos , Modelos Moleculares , Tamanho da Partícula , Pré-Albumina/isolamento & purificação , Conformação Proteica , Propriedades de Superfície
14.
Circulation ; 140(5): 390-404, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31311300

RESUMO

BACKGROUND: Modeling of human arrhythmias with induced pluripotent stem cell-derived cardiomyocytes has focused on single-cell phenotypes. However, arrhythmias are the emergent properties of cells assembled into tissues, and the impact of inherited arrhythmia mutations on tissue-level properties of human heart tissue has not been reported. METHODS: Here, we report an optogenetically based, human engineered tissue model of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmia caused by mutation of the cardiac ryanodine channel and triggered by exercise. We developed a human induced pluripotent stem cell-derived cardiomyocyte-based platform to study the tissue-level properties of engineered human myocardium. We investigated pathogenic mechanisms in CPVT by combining this novel platform with genome editing. RESULTS: In our model, CPVT tissues were vulnerable to developing reentrant rhythms when stimulated by rapid pacing and catecholamine, recapitulating hallmark features of the disease. These conditions elevated diastolic Ca2+ levels and increased temporal and spatial dispersion of Ca2+ wave speed, creating a vulnerable arrhythmia substrate. Using Cas9 genome editing, we pinpointed a single catecholamine-driven phosphorylation event, ryanodine receptor-serine 2814 phosphorylation by Ca2+/calmodulin-dependent protein kinase II, that is required to unmask the arrhythmic potential of CPVT tissues. CONCLUSIONS: Our study illuminates the molecular and cellular pathogenesis of CPVT and reveals a critical role of calmodulin-dependent protein kinase II-dependent reentry in the tissue-scale mechanism of this disease. We anticipate that this approach will be useful for modeling other inherited and acquired cardiac arrhythmias.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Taquicardia Ventricular/patologia , Taquicardia Ventricular/fisiopatologia , Engenharia Tecidual/métodos , Potenciais de Ação/fisiologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/química , Miócitos Cardíacos/química , Optogenética/métodos
15.
Annu Rev Biomed Eng ; 21: 417-442, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167105

RESUMO

Understanding and predicting the mechanical behavior of myocardium under healthy and pathophysiological conditions are vital to developing novel cardiac therapies and promoting personalized interventions. Within the past 30 years, various constitutive models have been proposed for the passive mechanical behavior of myocardium. These models cover a broad range of mathematical forms, microstructural observations, and specific test conditions to which they are fitted. We present a critical review of these models, covering both phenomenological and structural approaches, and their relations to the underlying structure and function of myocardium. We further explore the experimental and numerical techniques used to identify the model parameters. Next, we provide a brief overview of continuum-level electromechanical models of myocardium, with a focus on the methods used to integrate the active and passive components of myocardial behavior. We conclude by pointing to future directions in the areas of optimal form as well as new approaches for constitutive modeling of myocardium.


Assuntos
Coração/fisiologia , Modelos Cardiovasculares , Animais , Fenômenos Biomecânicos , Engenharia Biomédica , Colágeno/química , Colágeno/fisiologia , Simulação por Computador , Fenômenos Eletrofisiológicos , Coração/anatomia & histologia , Humanos , Contração Miocárdica/fisiologia , Miocárdio/química , Miocárdio/ultraestrutura , Miócitos Cardíacos/química , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/ultraestrutura , Miofibrilas/química , Miofibrilas/fisiologia
16.
Anal Biochem ; 602: 113766, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32389692

RESUMO

The S100A1 protein is a target of interest for the treatment of heart failure as it has been previously reported to be depleted in failing cardiomyocytes. A gene therapy approach leading to increased expression levels of the protein directly in the heart could potentially lead to restoration of contractile function and improve overall cell survival. S100A1 is a relatively small soluble protein that is extremely well conserved across species with only a single amino acid difference between the sequences in human and pig, a commonly used pre-clinical model for evaluation of efficacy, biodistribution and safety for cardiac-directed gene therapy approaches. This high homology presents a bioanalytical challenge for the accurate detection and quantitation of both endogenous (pig) and exogenous (human) transduced S100A1 proteins post treatment using a human S100A1 gene therapy in pigs. Here we present a sensitive and selective LC-MS/MS approach that can easily differentiate and simultaneously quantitate both human and pig S100A1 proteins. Additionally, we report on a detailed profiling of S100A1 protein in various pig tissues, a comprehensive evaluation of S100A1 distribution in pig hearts and a comparison to S100A1 levels in human cardiac samples.


Assuntos
Técnicas de Transferência de Genes , Miócitos Cardíacos/química , Proteínas S100/análise , Proteínas S100/genética , Animais , Cromatografia Líquida , Humanos , Miócitos Cardíacos/metabolismo , Proteínas S100/metabolismo , Suínos , Espectrometria de Massas em Tandem
17.
Circ Res ; 122(12): 1703-1715, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29703749

RESUMO

RATIONALE: Autologous bone marrow mesenchymal stem cells (MSCs) and c-kit+ cardiac progenitor cells (CPCs) are 2 promising cell types being evaluated for patients with heart failure (HF) secondary to ischemic cardiomyopathy. No information is available in humans about the relative efficacy of MSCs and CPCs and whether their combination is more efficacious than either cell type alone. OBJECTIVE: CONCERT-HF (Combination of Mesenchymal and c-kit+ Cardiac Stem Cells As Regenerative Therapy for Heart Failure) is a phase II trial aimed at elucidating these issues by assessing the feasibility, safety, and efficacy of transendocardial administration of autologous MSCs and CPCs, alone and in combination, in patients with HF caused by chronic ischemic cardiomyopathy (coronary artery disease and old myocardial infarction). METHODS AND RESULTS: Using a randomized, double-blinded, placebo-controlled, multicenter, multitreatment, and adaptive design, CONCERT-HF examines whether administration of MSCs alone, CPCs alone, or MSCs+CPCs in this population alleviates left ventricular remodeling and dysfunction, reduces scar size, improves quality of life, or augments functional capacity. The 4-arm design enables comparisons of MSCs alone with CPCs alone and with their combination. CONCERT-HF consists of 162 patients, 18 in a safety lead-in phase (stage 1) and 144 in the main trial (stage 2). Stage 1 is complete, and stage 2 is currently randomizing patients from 7 centers across the United States. CONCLUSIONS: CONCERT-HF will provide important insights into the potential therapeutic utility of MSCs and CPCs, given alone and in combination, for patients with HF secondary to ischemic cardiomyopathy. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02501811.


Assuntos
Insuficiência Cardíaca/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Miócitos Cardíacos/citologia , Transplante de Células-Tronco/métodos , Terapia Combinada/métodos , Método Duplo-Cego , Estudos de Viabilidade , Insuficiência Cardíaca/etiologia , Humanos , Isquemia Miocárdica/complicações , Miócitos Cardíacos/química , Proteínas Proto-Oncogênicas c-kit , Projetos de Pesquisa , Transplante Autólogo , Resultado do Tratamento , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/terapia , Remodelação Ventricular
18.
Proc Natl Acad Sci U S A ; 114(10): E1866-E1874, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223521

RESUMO

Here, we report a method for time-resolved, longitudinal extraction and quantitative measurement of intracellular proteins and mRNA from a variety of cell types. Cytosolic contents were repeatedly sampled from the same cell or population of cells for more than 5 d through a cell-culture substrate, incorporating hollow 150-nm-diameter nanostraws (NS) within a defined sampling region. Once extracted, the cellular contents were analyzed with conventional methods, including fluorescence, enzymatic assays (ELISA), and quantitative real-time PCR. This process was nondestructive with >95% cell viability after sampling, enabling long-term analysis. It is important to note that the measured quantities from the cell extract were found to constitute a statistically significant representation of the actual contents within the cells. Of 48 mRNA sequences analyzed from a population of cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs), 41 were accurately quantified. The NS platform samples from a select subpopulation of cells within a larger culture, allowing native cell-to-cell contact and communication even during vigorous activity such as cardiomyocyte beating. This platform was applied both to cell lines and to primary cells, including CHO cells, hiPSC-CMs, and human astrocytes derived in 3D cortical spheroids. By tracking the same cell or group of cells over time, this method offers an avenue to understand dynamic cell behavior, including processes such as induced pluripotency and differentiation.


Assuntos
Rastreamento de Células/métodos , Células-Tronco Embrionárias/química , Proteínas/isolamento & purificação , RNA Mensageiro/isolamento & purificação , Animais , Células CHO , Diferenciação Celular/efeitos dos fármacos , Cricetulus , Citoplasma/química , Citoplasma/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/química , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/química , Miócitos Cardíacos/citologia , Proteínas/química , RNA Mensageiro/química
19.
Nano Lett ; 19(9): 6173-6181, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31424942

RESUMO

Micronanotechnology-based multielectrode arrays have led to remarkable progress in the field of transmembrane voltage recording of excitable cells. However, providing long-term optoporation- or electroporation-free intracellular access remains a considerable challenge. In this study, a novel type of nanopatterned volcano-shaped microelectrode (nanovolcano) is described that spontaneously fuses with the cell membrane and permits stable intracellular access. The complex nanostructure was manufactured following a simple and scalable fabrication process based on ion beam etching redeposition. The resulting ring-shaped structure provided passive intracellular access to neonatal rat cardiomyocytes. Intracellular action potentials were successfully recorded in vitro from different devices, and continuous recording for more than 1 h was achieved. By reporting transmembrane action potentials at potentially high spatial resolution without the need to apply physical triggers, the nanovolcanoes show distinct advantages over multielectrode arrays for the assessment of electrophysiological characteristics of cardiomyocyte networks at the transmembrane voltage level over time.


Assuntos
Potenciais de Ação/fisiologia , Miócitos Cardíacos/química , Nanoestruturas/química , Neurônios/química , Animais , Membrana Celular/química , Membrana Celular/fisiologia , Citoplasma/química , Técnicas Eletrofisiológicas Cardíacas , Eletroporação , Humanos , Microeletrodos , Miócitos Cardíacos/fisiologia , Neurônios/fisiologia , Ratos
20.
J Environ Sci (China) ; 96: 163-170, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32819690

RESUMO

The treatment of wastewaters is crucial to maintain the ecological status of receiving waters, and thereby guarantee the protection of aquatic life and human health. Wastewater quality evaluation is conventionally based on physicochemical parameters, but increasing attention has been paid to integrate physicochemical and biological data. Nevertheless, the regulatory use of fish in biological testing methods has been subject to various ethical and cost concerns, and in vitro cell-based assays have thus become an important topic of interest. Hence, the present study intends: (a) to evaluate the efficiency of two different sample pre-concentration techniques (lyophilisation and solid phase extraction) to assess the toxicity of municipal effluents on rat cardiomyoblast H9c2(2-1) cells, and (b) maximizing the use of the effluent sample collected, to estimate the environmental condition of the receiving environment. The gathered results demonstrate that the H9c2(2-1) sulforhodamine B-based assay is an appropriate in vitro method to assess biological effluent toxicity, and the best results were attained by lyophilising the sample as pre-treatment. Due to its response, the H9c2(2-1) cell line might be a possible alternative in vitro model for fish lethal testing to assess the toxicity of municipal effluents. The physicochemical status of the sample suggests a high potential for eutrophication, and iron exceeded the permissible level for wastewater discharge, possibly due to the addition of ferric chloride for wastewater treatment. In general, the levels of carbamazepine and sulfamethoxazole are higher than those reported for other countries, and both surpassed the aquatic protective values for long-term exposure.


Assuntos
Poluentes Químicos da Água/análise , Animais , Bioensaio , Monitoramento Ambiental , Humanos , Miócitos Cardíacos/química , Ratos , Rodaminas , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA