RESUMO
Coastal Antarctic marine ecosystems are significant in carbon cycling because of their intense seasonal phytoplankton blooms. Southern Ocean algae are primarily limited by light and iron (Fe) and can be co-limited by cobalamin (vitamin B12). Micronutrient limitation controls productivity and shapes the composition of blooms which are typically dominated by either diatoms or the haptophyte Phaeocystis antarctica. However, the vitamin requirements and ecophysiology of the keystone species P. antarctica remain poorly characterized. Using cultures, physiological analysis, and comparative omics, we examined the response of P. antarctica to a matrix of Fe-B12 conditions. We show that P. antarctica is not auxotrophic for B12, as previously suggested, and identify mechanisms underlying its B12 response in cultures of predominantly solitary and colonial cells. A combination of proteomics and proteogenomics reveals a B12-independent methionine synthase fusion protein (MetE-fusion) that is expressed under vitamin limitation and interreplaced with the B12-dependent isoform under replete conditions. Database searches return homologues of the MetE-fusion protein in multiple Phaeocystis species and in a wide range of marine microbes, including other photosynthetic eukaryotes with polymorphic life cycles as well as bacterioplankton. Furthermore, we find MetE-fusion homologues expressed in metaproteomic and metatranscriptomic field samples in polar and more geographically widespread regions. As climate change impacts micronutrient availability in the coastal Southern Ocean, our finding that P. antarctica has a flexible B12 metabolism has implications for its relative fitness compared to B12-auxotrophic diatoms and for the detection of B12-stress in a more diverse set of marine microbes.
Assuntos
Diatomáceas , Haptófitas , Haptófitas/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Ecossistema , Fitoplâncton/metabolismo , Diatomáceas/genética , Vitaminas/metabolismo , Micronutrientes/metabolismoRESUMO
Micronutrients are essential small molecules required by organisms in minute quantity for survival. For instance, vitamins and minerals, the two major categories of micronutrients, are central for biological processes such as metabolism, cell replication, differentiation, and immune response. Studies estimated that around two billion humans worldwide suffer from micronutrient deficiencies, also known as "hidden hunger," linked to weakened immune responses. While micronutrients affect the immune system at multiple levels, recent studies showed that micronutrients potentially impact the differentiation and function of immune cells as cofactors for epigenetic enzymes, including the 2-oxoglutarate-dependent dioxygenase (2OGDD) family involved in histone and DNA demethylation. Here, we will first provide an overview of the role of DNA methylation in T cells and B cells, followed by the micronutrients ascorbate (vitamin C) and iron, two critical cofactors for 2OGDD. We will discuss the emerging evidence of these micronutrients could regulate adaptive immune response by influencing epigenetic remodeling.
Assuntos
Epigênese Genética , Micronutrientes , Humanos , Imunidade/genética , Micronutrientes/metabolismo , Minerais/metabolismo , VitaminasRESUMO
Prenatal multivitamins, including folic acid, are commonly consumed in excess, whereas choline, an essential nutrient and an important source of labile methyl groups, is underconsumed. Here, we characterized profiles of one-carbon metabolism and related pathways and patterns of DNA methylation in offspring exposed to excess or imbalanced micronutrients prenatally. Pregnant Wistar rats were fed either recommended 1× vitamins (RV), high 10× vitamins (HV), high 10× folic acid with recommended choline (HFolRC), or high 10× folic acid with no choline (HFolNC). Offspring were weaned to a high-fat diet for 12 weeks. Circulating metabolites were analyzed with a focus on the hypothalamus, an area known to be under epigenetic regulation. HV, HFolRC, and HFolNC males had higher body weight (BW) and lower plasma choline and methionine consistent with lower hypothalamic S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) and global DNA methylation compared with RV. HV and HFolNC females had higher BW and lower plasma 5-methyltetrahydrofolate and methionine consistent with lower hypothalamic global DNA methylation compared with RV. Plasma dimethylglycine (DMG) and methionine were higher as with hypothalamic SAM:SAH and global DNA methylation in HFolRC females without changes in BW compared with RV. Plasma trimethylamine and trimethylamine-N-oxide were higher in males but lower in females from HFolRC compared with RV. Network modeling revealed a link between the folate-dependent pathway and SAH, with most connections through DMG. Final BW was negatively correlated with choline, DMG, and global DNA methylation. In conclusion, prenatal intake of excess or imbalanced micronutrients induces distinct metabolic and epigenetic perturbations in offspring that reflect long-term nutritional programming of health.
Assuntos
Colina , Metilação de DNA , Ácido Fólico , Metilaminas , Micronutrientes , Ratos Wistar , Animais , Feminino , Ratos , Gravidez , Masculino , Metilaminas/metabolismo , Metilaminas/sangue , Micronutrientes/metabolismo , Colina/metabolismo , Colina/farmacologia , Ácido Fólico/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Carbono/metabolismo , Hipotálamo/metabolismo , Epigênese Genética , Metionina/metabolismoRESUMO
Micronutrient deficiencies account for an estimated one million premature deaths annually, and for some nations can reduce gross domestic product1,2 by up to 11%, highlighting the need for food policies that focus on improving nutrition rather than simply increasing the volume of food produced3. People gain nutrients from a varied diet, although fish-which are a rich source of bioavailable micronutrients that are essential to human health4-are often overlooked. A lack of understanding of the nutrient composition of most fish5 and how nutrient yields vary among fisheries has hindered the policy shifts that are needed to effectively harness the potential of fisheries for food and nutrition security6. Here, using the concentration of 7 nutrients in more than 350 species of marine fish, we estimate how environmental and ecological traits predict nutrient content of marine finfish species. We use this predictive model to quantify the global spatial patterns of the concentrations of nutrients in marine fisheries and compare nutrient yields to the prevalence of micronutrient deficiencies in human populations. We find that species from tropical thermal regimes contain higher concentrations of calcium, iron and zinc; smaller species contain higher concentrations of calcium, iron and omega-3 fatty acids; and species from cold thermal regimes or those with a pelagic feeding pathway contain higher concentrations of omega-3 fatty acids. There is no relationship between nutrient concentrations and total fishery yield, highlighting that the nutrient quality of a fishery is determined by the species composition. For a number of countries in which nutrient intakes are inadequate, nutrients available in marine finfish catches exceed the dietary requirements for populations that live within 100 km of the coast, and a fraction of current landings could be particularly impactful for children under 5 years of age. Our analyses suggest that fish-based food strategies have the potential to substantially contribute to global food and nutrition security.
Assuntos
Pesqueiros , Peixes/metabolismo , Abastecimento de Alimentos , Internacionalidade , Micronutrientes/deficiência , Micronutrientes/metabolismo , Estado Nutricional , Animais , Teorema de Bayes , Cálcio/análise , Pré-Escolar , Proteínas Alimentares/análise , Ácidos Graxos Ômega-3/análise , Produtos Pesqueiros/análise , Produtos Pesqueiros/economia , Pesqueiros/economia , Peixes/classificação , Humanos , Lactente , Ferro/análise , Micronutrientes/análise , Selênio/análise , Vitamina A/análise , Zinco/análiseRESUMO
Homeostasis of the essential micronutrient manganese (Mn) is crucially determined through availability and uptake efficiency in all organisms. Mn deficiency of plants especially occurs in alkaline and calcareous soils, seriously restricting crop yield. However, the mechanisms underlying the sensing and signaling of Mn availability and conferring regulation of Mn uptake await elucidation. Here, we uncover that Mn depletion triggers spatiotemporally defined long-lasting Ca2+ oscillations in Arabidopsis roots. These Ca2+ signals initiate in individual cells, expand, and intensify intercellularly to transform into higher-order multicellular oscillations. Furthermore, through an interaction screen we identified the Ca2+-dependent protein kinases CPK21 and CPK23 as Ca2+ signal-decoding components that bring about translation of these signals into regulation of uptake activity of the high-affinity Mn transporter natural resistance associated macrophage proteins 1 (NRAMP1). Accordingly, a cpk21/23 double mutant displays impaired growth and root development under Mn-limiting conditions, while kinase overexpression confers enhanced tolerance to low Mn supply to plants. In addition, we define Thr498 phosphorylation within NRAMP1 as a pivot mechanistically determining NRAMP1 activity, as revealed by biochemical assays and complementation of yeast Mn uptake and Arabidopsis nramp1 mutants. Collectively, these findings delineate the Ca2+-CPK21/23-NRAMP1 axis as key for mounting plant Mn homeostasis.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cálcio , Proteínas de Transporte de Cátions , Manganês , Proteínas Quinases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Homeostase , Manganês/metabolismo , Micronutrientes/metabolismo , Fosforilação , Raízes de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , SoloRESUMO
BACKGROUND: Biofortification represents a promising and sustainable strategy for mitigating global nutrient deficiencies. However, its successful implementation poses significant challenges. Among staple crops, wheat emerges as a prime candidate to address these nutritional gaps. Wheat biofortification offers a robust approach to enhance wheat cultivars by elevating the micronutrient levels in grains, addressing one of the most crucial global concerns in the present era. MAIN TEXT: Biofortification is a promising, but complex avenue, with numerous limitations and challenges to face. Notably, micronutrients such as iron (Fe), zinc (Zn), selenium (Se), and copper (Cu) can significantly impact human health. Improving Fe, Zn, Se, and Cu contents in wheat could be therefore relevant to combat malnutrition. In this review, particular emphasis has been placed on understanding the extent of genetic variability of micronutrients in diverse Triticum species, along with their associated mechanisms of uptake, translocation, accumulation and different classical to advanced approaches for wheat biofortification. CONCLUSIONS: By delving into micronutrient variability in Triticum species and their associated mechanisms, this review underscores the potential for targeted wheat biofortification. By integrating various approaches, from conventional breeding to modern biotechnological interventions, the path is paved towards enhancing the nutritional value of this vital crop, promising a brighter and healthier future for global food security and human well-being.
Assuntos
Biofortificação , Desnutrição , Micronutrientes , Triticum , Triticum/metabolismo , Triticum/genética , Micronutrientes/metabolismo , Desnutrição/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Zinco/metabolismo , Valor NutritivoRESUMO
Fertilizers and plant diseases contribute positively and negatively to crop production, respectively. Macro- and micronutrients provided by the soil and fertilizers are transported by various plant nutrient transporters from the soil to the roots and shoots, facilitating growth and development. However, the homeostasis of different nutrients has different effects on plant disease. This review is aimed at providing insights into the interconnected regulation between nutrient homeostasis and immune responses, and it highlights strategies to enhance disease resistance by optimal manipulation of nutrient transporters in rice. First, we highlight the essential roles of six macronutrients (nitrogen, phosphorus, potassium, sulfur, calcium, magnesium) and eight micronutrients (iron, manganese, zinc, copper, boron, molybdenum, silicon, nickel), and summarize the diverse effects of each on rice diseases. We then systematically review the molecular mechanisms of immune responses modulated by nutrient transporters and the genetic regulatory pathways that control the specific nutrient-mediated immune signaling that is regulated by the pathogens and the host plant. Finally, we discuss putative strategies for breeding disease-resistant rice by genetic engineering of nutrient transporters.
Assuntos
Resistência à Doença , Oryza , Doenças das Plantas , Oryza/genética , Oryza/imunologia , Oryza/metabolismo , Resistência à Doença/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Nutrientes/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Micronutrientes/metabolismoRESUMO
Micronutrients like iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), boron (B), nickel (Ni), and molybdenum (Mo) perform significant roles in the regulation of plant metabolism, growth, and development. Micronutrients, namely Fe, Zn, Cu, Mn, and Ni, are involved in oxidative stress and antioxidant defense as they are cofactors or activators of various antioxidant enzymes, viz., superoxide dismutase (Fe, Cu/Zn, Mn, and Ni), catalase (Fe), and ascorbate peroxidase (Fe). An effort has been made to incorporate recent advances along with classical work done on the micronutrient deficiency-induced oxidative stress and associated antioxidant responses of plants. Deficiency of a micronutrient produces ROS in the cellular compartments. Enzymatic and non-enzymatic antioxidant defense systems are often modulated by micronutrient deficiency to regulate redox balance and scavenge deleterious ROS for the safety of cellular constituents. ROS can strike cellular constituents such as lipids, proteins, and nucleic acids and can destruct cellular membranes and proteins. ROS might act as a signaling molecule and activate the antioxidant proteins by interacting with signaling partners such as respiratory burst oxidase homolog (RBOH), G-proteins, Ca2+, mitogen activated protein kinases (MAPKs), and various transcription factors (TFs). Opinions on probable ROS signaling under micronutrient deficiency have been described in this review. However, further research is required to decipher micronutrient deficiency-induced ROS generation, perception, and associated downstream signaling events, leading to the development of antioxidant responses in plants.
Assuntos
Micronutrientes , Estresse Oxidativo , Plantas , Espécies Reativas de Oxigênio , Micronutrientes/metabolismo , Micronutrientes/deficiência , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Transdução de SinaisRESUMO
KEY MESSAGE: Metabolomic and transcriptomic analyses revealed an intensification of energy metabolism in rice grains under DMA stress, possibly causing the consumption of sugars or non-sugars and the development of unfilled grains Excessive dimethylarsinic acid (DMA) causes rice straighthead disease, a physiological disorder typically with erect panicle due to empty grain at maturity. Although the toxicity of DMA and its uptake and transport in rice are well recognized, the underlying mechanism of unfilled grains remains unclear. Therefore, a pot experiment was conducted using a susceptible variety (Ruanhuayou1179, RHY) and a resistant one (Nanjingxiangzhan, NJXZ) via the metabolomic and transcriptomic approaches to explore the mechanisms of empty grains in diseased rice under DMA stress. The results demonstrate an increase in total and methylated As in grains of RHY and NJXZ under DMA addition, with RHY containing higher levels of DMA. DMA addition increased the soluble sugar content in grains of RHY and NJXZ by 17.1% and 14.3% compared to the control, respectively, but significantly reduced the levels of amino acid, soluble protein, and starch. The decrease of grain Zn and B contents was also observed, and inadequate Zn might be a key factor limiting rice grain yield under DMA stress. Notably, DMA addition altered the expression levels of genes involved in the transport of sugar, amino acids, nitrates/peptides, and mineral ions. In sugar and amino acid metabolism, the reduction of metabolites and the upregulated expression of genes reflect positive regulation at the level of energy metabolism, implying that the reduction of grain starch and proteins might be ascribed to generate sufficient energy to resist the stress. This study provides a useful reference for understanding the molecular mechanism of grain emptying under DMA stress.
Assuntos
Aminoácidos , Ácido Cacodílico , Regulação da Expressão Gênica de Plantas , Oryza , Estresse Fisiológico , Oryza/genética , Oryza/metabolismo , Oryza/efeitos dos fármacos , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácido Cacodílico/metabolismo , Grão Comestível/metabolismo , Grão Comestível/genética , Grão Comestível/efeitos dos fármacos , Micronutrientes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Zinco/metabolismoRESUMO
Flooding intensity significantly alters the availability of iron (Fe), zinc (Zn), and cadmium (Cd) in paddy soil. However, the influence of arbuscular mycorrhizal fungi (AMF) on the uptake and transfer of Cd and micronutrients (Fe and Zn) under Cd stress in varying flooding conditions is not well understood. A pot experiment was conducted to investigate the micronutrient homeostasis and Cd uptake and transfer in rice cultivated in Cd-contaminated soil with AMF inoculation under continuous and intermittent flooding conditions. Compared to non-inoculation controls, mycorrhizal inoculation decreased Cd concentration in rice plants under continuous and intermittent flooding, and improved grain yield by 39.2â¯% for early season rice and 21.1â¯% for late season rice under continuous flooding. Mycorrhizal inoculation balanced the availability of Zn and Fe and decreased the availability of Cd in soil, lowering the ratios of soil-available Cd to both soil-available Zn and soil Fe2+. These changes led to a redistribution of Zn and Fe concentrations in rice, thereby reducing Cd acquisition in a soil-rice system. Structural equation model (SEM) analysis revealed that mycorrhizal inoculation had a strong direct negative effect on the expression of Zn and Fe-related genes OsNRAMP1, OsIRT1, and OsIRT2 in the roots of rice, which in turn directly affected root Cd concentration. Furthermore, mycorrhizal colonization decreased Cd transfer coefficients from leaves to grains under continuous flooding and from nodes and leaves to grains under intermittent flooding. In the nodes, the Fe concentration and the expression of genes OsIRT1 and OsHMA2 were associated with Cd transfer from the nodes to grains. Similarly, in the leaves, the expression of genes OsZIP1 and OsMTP1 corresponded with Cd transfer from leaves to grains. This study provides insights into the role of AMF in affecting micronutrient concentrations and Cd uptake in rice under varying flooding conditions.
Assuntos
Cádmio , Inundações , Homeostase , Ferro , Micronutrientes , Micorrizas , Oryza , Raízes de Plantas , Poluentes do Solo , Zinco , Oryza/metabolismo , Oryza/microbiologia , Cádmio/metabolismo , Micorrizas/fisiologia , Poluentes do Solo/metabolismo , Zinco/metabolismo , Ferro/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Micronutrientes/metabolismo , Solo/químicaRESUMO
Disease modifiers, whether from cancer, sepsis, systemic inflammation, or microbial pathogens, all appear to induce epithelial barrier leak, with induced changes of the Tight Junctional (TJ) complex being pivotal to the process. This leak-and the ensuant breakdown of compartmentation-plays a central role in disease morbidity on many levels. Accumulation of lung water in the luminal compartment of airways was a major driver of morbidity and mortality in COVID-19 and is an excellent example of the phenomenon. Increasing awareness of the ability of micronutrients to improve basal barrier function and reduce barrier compromise in pathophysiology may prove to be a low-cost, safe, and easily administered prophylactic and/or therapeutic option amenable to large populations. The growing appreciation of the clinical utility of supplemental doses of Vitamin D in COVID-19 is but one example. This narrative review is intended to propose a general theory on how and why micronutrients-at levels above normal dietary intake-successfully remodel TJs and improve barrier function. It discusses the key difference between dietary/Recommended Daily Allowance (RDA) levels of micronutrients versus supplemental levels, and why the latter are needed in disease situations. It advances a hypothesis for why signal transduction regulation of barrier function may require these higher supplemental doses to achieve the TJ remodeling and other barrier element changes that are clinically beneficial.
Assuntos
COVID-19 , Micronutrientes , Humanos , Micronutrientes/metabolismo , Junções Íntimas/metabolismo , Vitaminas/metabolismo , Vitamina D/metabolismo , COVID-19/metabolismoRESUMO
Non-alcoholic fatty liver disease (NAFLD) is a condition in which the pathological cumulation of fat with coexisting inflammation and damage of hepatic cells leads to progressive dysfunctions of the liver. Except for the commonly well-known major causes of NAFLD such as obesity, dyslipidemia, insulin resistance, or diabetes, an unbalanced diet and imbalanced nutritional status should also be taken into consideration. In this narrative review, we summarized the current knowledge regarding the micro- and macronutrient status of patients suffering from NAFLD considering various diets and supplementation of chosen supplements. We aimed to summarize the knowledge indicating which nutritional impairments may be associated with the onset and progression of NAFLD at the same time evaluating the potential therapy targets that could facilitate the healing process. Except for the above-mentioned objectives, one of the most important aspects of this review was to highlight the possible strategies for taking care of NAFLD patients taking into account the challenges and opportunities associated with the micronutrient status of the patients. The current research indicates that a supplementation of chosen vitamins (e.g., vitamin A, B complex, C, or D) as well as chosen elements such as zinc may alleviate the symptoms of NAFLD. However, there is still a lack of sufficient data regarding healthy ranges of dosages; thus, further research is of high importance in this matter.
Assuntos
Suplementos Nutricionais , Micronutrientes , Hepatopatia Gordurosa não Alcoólica , Nutrientes , Humanos , Micronutrientes/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Nutrientes/metabolismo , Estado Nutricional , Vitaminas/metabolismo , Vitaminas/administração & dosagemRESUMO
Phosphate (Pi) starvation is a critical factor limiting crop growth, development, and productivity. Rice (Oryza sativa) R2R3-MYB transcription factors function in the transcriptional regulation of plant responses to various abiotic stresses and micronutrient deprivation, but little is known about their roles in Pi starvation signaling and Pi homeostasis. Here, we identified the R2R3-MYB transcription factor gene OsMYB58, which shares high sequence similarity with AtMYB58. OsMYB58 expression was induced more strongly by Pi starvation than by other micronutrient deficiencies. Overexpressing OsMYB58 in Arabidopsis thaliana and rice inhibited plant growth and development under Pi-deficient conditions. In addition, the overexpression of OsMYB58 in plants exposed to Pi deficiency strongly affected root development, including seminal root, lateral root, and root hair formation. Overexpressing OsMYB58 strongly decreased the expression of the rice microRNAs OsmiR399a and OsmiR399j. By contrast, overexpressing OsMYB58 strongly increased the expression of rice PHOSPHATE 2 (OsPHO2), whose expression is repressed by miR399 during Pi starvation signaling. OsMYB58 functions as a transcriptional repressor of the expression of its target genes, as determined by a transcriptional activity assay. These results demonstrate that OsMYB58 negatively regulates OsmiR399-dependent Pi starvation signaling by enhancing OsmiR399s expression.
Assuntos
Arabidopsis , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Plantas/metabolismo , Fosfatos/metabolismo , Homeostase , Arabidopsis/genética , Arabidopsis/metabolismo , Desenvolvimento Vegetal , Micronutrientes/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Oryza/genética , Oryza/metabolismoRESUMO
Prenatal alcohol consumption (PAE) may be associated with a broad spectrum of impacts, ranging from no overt effects, to miscarriage, fetal growth restriction and fetal alcohol spectrum disorder. A major mechanism underlying the effects of PAE is considered to be altered DNA methylation and gene expression. Maternal nutritional status may be an important factor in determining the extent to which PAE impacts pregnancy outcomes, particularly the dietary micronutrients folate and choline because they provide methyl groups for DNA methylation via one carbon metabolism. This review summarises the roles of folate and choline in development of the blastocyst, the placenta and the fetal brain, and examines the evidence that maternal intake of these micronutrients can modify the effects of PAE on development. Studies of folate or choline deficiency have found reduced blastocyst development and implantation, reduced placental invasion, vascularisation and nutrient transport capability, impaired fetal brain development, and abnormal neurodevelopmental outcomes. PAE has been shown to reduce absorption and/or metabolism of folate and choline and to produce similar outcomes to maternal choline/folate deficiency. A few studies have demonstrated that the effects of PAE on brain development can be ameliorated by folate or choline supplementation; however, there is very limited evidence on the effects of supplementation in early pregnancy on the blastocyst and placenta. Further studies are required to support these findings and to determine optimal supplementation parameters.
Assuntos
Ácido Fólico , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Gravidez , Ácido Fólico/metabolismo , Colina/metabolismo , Colina/farmacologia , Placenta/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Desenvolvimento Fetal , Troca Materno-Fetal , Micronutrientes/metabolismo , Carbono/metabolismoRESUMO
Natural variation among individuals and populations exists in all species, playing key roles in response to environmental stress and adaptation. Micro- and macronutrients have a wide range of functions in photosynthetic organisms, and mineral nutrition thus plays a sizable role in biomass production. To maintain nutrient concentrations inside the cell within physiological limits and prevent the detrimental effects of deficiency or excess, complex homeostatic networks have evolved in photosynthetic cells. The microalga Chlamydomonas reinhardtii (Chlamydomonas) is a unicellular eukaryotic model for studying such mechanisms. In this work, 24 Chlamydomonas strains, comprising field isolates and laboratory strains, were examined for intraspecific differences in nutrient homeostasis. Growth and mineral content were quantified in mixotrophy, as full nutrition control, and compared with autotrophy and nine deficiency conditions for macronutrients (-Ca, -Mg, -N, -P, and -S) and micronutrients (-Cu, -Fe, -Mn, and -Zn). Growth differences among strains were relatively limited. However, similar growth was accompanied by highly divergent mineral accumulation among strains. The expression of nutrient status marker genes and photosynthesis were scored in pairs of contrasting field strains, revealing distinct transcriptional regulation and nutrient requirements. Leveraging this natural variation should enable a better understanding of nutrient homeostasis in Chlamydomonas.
Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/metabolismo , Fotossíntese/fisiologia , Chlamydomonas/metabolismo , Micronutrientes/metabolismo , HomeostaseRESUMO
PURPOSE OF REVIEW: Marked inter-individual differences in the clinical manifestation of coronavirus disease 2019 (COVID-19) has initiated studies in the field of genetics. This review evaluates recent genetic evidence (predominantly in the last 18âmonths) related to micronutrients (vitamins and trace elements) and COVID-19. RECENT FINDINGS: In patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), altered circulating levels of micronutrients may serve as prognostic markers of disease severity. Mendelian randomization (MR) studies did not find significant effect of variable genetically predicted levels of micronutrients on COVID-19 phenotypes, however, recent clinical studies on COVID-19 point out to vitamin D and zinc supplementation as a nutritional strategy to reduce disease severity and mortality. Recent evidence also points to variants in vitamin D receptor ( VDR ) gene, most notably rs2228570 (FokI) "f" allele and rs7975232 (ApaI) "aa" genotype as poor prognostic markers. SUMMARY: Since several micronutrients were included in the COVID-19 therapy protocols, research in the field of nutrigenetics of micronutrients is in progress. Recent findings from MR studies prioritize genes involved in biological effect, such as the VDR gene, rather than micronutrient status in future research. Emerging evidence on nutrigenetic markers may improve patient stratification and inform nutritional strategies against severe COVID-19.
Assuntos
COVID-19 , Oligoelementos , Vitaminas , COVID-19/genética , COVID-19/imunologia , COVID-19/metabolismo , Vitamina D/sangue , Vitamina D/metabolismo , Zinco/metabolismo , Micronutrientes/metabolismo , Humanos , Nutrigenômica , Vitaminas/metabolismo , Oligoelementos/metabolismo , SARS-CoV-2/fisiologiaRESUMO
Triglycerides are the major form of stored fat in all animals. One important determinant of whole-body fat storage is whether an animal is male or female. Here, we use Drosophila, an established model for studies on triglyceride metabolism, to gain insight into the genes and physiological mechanisms that contribute to sex differences in fat storage. Our analysis of triglyceride storage and breakdown in both sexes identified a role for triglyceride lipase brummer (bmm) in the regulation of sex differences in triglyceride homeostasis. Normally, male flies have higher levels of bmm mRNA both under normal culture conditions and in response to starvation, a lipolytic stimulus. We find that loss of bmm largely eliminates the sex difference in triglyceride storage and abolishes the sex difference in triglyceride breakdown via strongly male-biased effects. Although we show that bmm function in the fat body affects whole-body triglyceride levels in both sexes, in males, we identify an additional role for bmm function in the somatic cells of the gonad and in neurons in the regulation of whole-body triglyceride homeostasis. Furthermore, we demonstrate that lipid droplets are normally present in both the somatic cells of the male gonad and in neurons, revealing a previously unrecognized role for bmm function, and possibly lipid droplets, in these cell types in the regulation of whole-body triglyceride homeostasis. Taken together, our data reveal a role for bmm function in the somatic cells of the gonad and in neurons in the regulation of male-female differences in fat storage and breakdown and identify bmm as a link between the regulation of triglyceride homeostasis and biological sex.
Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/genética , Drosophila/metabolismo , Lipase/fisiologia , Metabolismo dos Lipídeos/genética , Lipólise/genética , Caracteres Sexuais , Animais , Animais Geneticamente Modificados , Metabolismo Energético/genética , Feminino , Lipase/genética , Lipase/metabolismo , Masculino , Micronutrientes/metabolismo , Triglicerídeos/metabolismoRESUMO
The interplay between nutrition and the microbial communities colonizing the gastrointestinal tract (i.e., gut microbiota) determines juvenile growth trajectory. Nutritional deficiencies trigger developmental delays, and an immature gut microbiota is a hallmark of pathologies related to childhood undernutrition. However, how host-associated bacteria modulate the impact of nutrition on juvenile growth remains elusive. Here, using gnotobiotic Drosophila melanogaster larvae independently associated with Acetobacter pomorumWJL (ApWJL) and Lactobacillus plantarumNC8 (LpNC8), 2 model Drosophila-associated bacteria, we performed a large-scale, systematic nutritional screen based on larval growth in 40 different and precisely controlled nutritional environments. We combined these results with genome-based metabolic network reconstruction to define the biosynthetic capacities of Drosophila germ-free (GF) larvae and its 2 bacterial partners. We first established that ApWJL and LpNC8 differentially fulfill the nutritional requirements of the ex-GF larvae and parsed such difference down to individual amino acids, vitamins, other micronutrients, and trace metals. We found that Drosophila-associated bacteria not only fortify the host's diet with essential nutrients but, in specific instances, functionally compensate for host auxotrophies by either providing a metabolic intermediate or nutrient derivative to the host or by uptaking, concentrating, and delivering contaminant traces of micronutrients. Our systematic work reveals that beyond the molecular dialogue engaged between the host and its bacterial partners, Drosophila and its associated bacteria establish an integrated nutritional network relying on nutrient provision and utilization.
Assuntos
Acetobacter/fisiologia , Drosophila melanogaster/microbiologia , Drosophila melanogaster/fisiologia , Lactobacillus/fisiologia , Necessidades Nutricionais/fisiologia , Acetobacter/genética , Acetobacter/metabolismo , Aminoácidos/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Lactobacillus/genética , Lactobacillus/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/microbiologia , Larva/fisiologia , Redes e Vias Metabólicas , Micronutrientes/metabolismo , Especificidade da EspécieRESUMO
Trace elements sustain biological productivity, yet the significance of trace element mobilization and export in subglacial runoff from ice sheets is poorly constrained at present. Here, we present size-fractionated (0.02, 0.22, and 0.45 µm) concentrations of trace elements in subglacial waters from the Greenland Ice Sheet (GrIS) and the Antarctic Ice Sheet (AIS). Concentrations of immobile trace elements (e.g., Al, Fe, Ti) far exceed global riverine and open ocean mean values and highlight the importance of subglacial aluminosilicate mineral weathering and lack of retention of these species in sediments. Concentrations are higher from the AIS than the GrIS, highlighting the geochemical consequences of prolonged water residence times and hydrological isolation that characterize the former. The enrichment of trace elements (e.g., Co, Fe, Mn, and Zn) in subglacial meltwaters compared with seawater and typical riverine systems, together with the likely sensitivity to future ice sheet melting, suggests that their export in glacial runoff is likely to be important for biological productivity. For example, our dissolved Fe concentration (20,900 nM) and associated flux values (1.4 Gmol y-1) from AIS to the Fe-deplete Southern Ocean exceed most previous estimates by an order of magnitude. The ultimate fate of these micronutrients will depend on the reactivity of the dominant colloidal size fraction (likely controlled by nanoparticulate Al and Fe oxyhydroxide minerals) and estuarine processing. We contend that ice sheets create highly geochemically reactive particulates in subglacial environments, which play a key role in trace elemental cycles, with potentially important consequences for global carbon cycling.
Assuntos
Ciclo do Carbono , Planeta Terra , Camada de Gelo/química , Micronutrientes/metabolismo , Oligoelementos/metabolismo , Regiões Antárticas , Groenlândia , Micronutrientes/análise , Oligoelementos/análiseRESUMO
Methyl donors such as choline, betaine, folic acid, methionine, and vitamins B6 and B12 are critical players in the one-carbon metabolism and have neuroprotective functions. The one-carbon metabolism comprises a series of interconnected chemical pathways that are important for normal cellular functions. Among these pathways are those of the methionine and folate cycles, which contribute to the formation of S-adenosylmethionine (SAM). SAM is the universal methyl donor of methylation reactions such as histone and DNA methylation, two epigenetic mechanisms that regulate gene expression and play roles in human health and disease. Epigenetic mechanisms have been considered a bridge between the effects of environmental factors, such as nutrition, and phenotype. Studies in human and animal models have indicated the importance of the optimal levels of methyl donors on brain health and behavior across the lifespan. Imbalances in the levels of these micronutrients during critical periods of brain development have been linked to epigenetic alterations in the expression of genes that regulate normal brain function. We present studies that support the link between imbalances in the levels of methyl donors, epigenetic alterations, and stress-related disorders. Appropriate levels of these micronutrients should then be monitored at all stages of development for a healthier brain.