Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.545
Filtrar
1.
Anal Biochem ; 692: 115571, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38796119

RESUMO

Markers of myocardial injury, such as myoglobin (Mb), are substances swiftly released into the peripheral bloodstream upon myocardial cell injury or altered cardiac activity. During the onset of acute myocardial infarction, patients experience a significant surge in serum Mb levels. Given this, precise detection of Mb is essential, necessitating the development of innovative assays to optimize detection capabilities. This study introduces the synthesis of a three-dimensional hierarchical nanocomposite, Cubic-ZIF67@Au-rGOF-NH2, utilizing aminated reduced graphene oxide and zeolite imidazolium ester framework-67 (ZIF67) as foundational structures. Notably, this novel material, applied in a label-free electrochemical immunosensor, presents a groundbreaking approach for detecting myocardial injury markers. Experimental outcomes revealed ZIF67 and AuNPs exhibit enhanced affinity and growth on the 3D-rGOF-NH2 matrix, thus amplifying electrical conductivity while preserving the inherent electrochemical attributes of ZIF67. As a result, the Cubic-ZIF67@Au-rGOF-NH2 label-free electrochemical immunosensor exhibited a broad detection range and high sensitivity for Mb. The derived standard curve was ΔIp = 16.67552lgC+275.245 (R = 0.993) with a detection threshold of 3.47 fg/ml. Moreover, recoveries of standards spiked into samples ranged between 96.3% and 108.7%. Importantly, the devised immunosensor retained notable selectivity against non-target proteins, proving its potential clinical utility based on exemplary sample analysis performance.


Assuntos
Técnicas Eletroquímicas , Ouro , Grafite , Estruturas Metalorgânicas , Mioglobina , Mioglobina/análise , Técnicas Eletroquímicas/métodos , Grafite/química , Estruturas Metalorgânicas/química , Ouro/química , Humanos , Técnicas Biossensoriais/métodos , Nanocompostos/química , Zeolitas/química , Imidazóis/química , Limite de Detecção , Nanopartículas Metálicas/química
2.
J Am Chem Soc ; 144(6): 2716-2725, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35120294

RESUMO

The implementation of a reliable, rapid, inexpensive, and simple method for whole-proteome identification would greatly benefit cell biology research and clinical medicine. Proteins are currently identified by cleaving them with proteases, detecting the polypeptide fragments with mass spectrometry, and mapping the latter to sequences in genomic/proteomic databases. Here, we demonstrate that the polypeptide fragments can instead be detected and classified at the single-molecule limit using a nanometer-scale pore formed by the protein aerolysin. Specifically, three different water-soluble proteins treated with the same protease, trypsin, produce different polypeptide fragments defined by the degree by which the latter reduce the nanopore's ionic current. The fragments identified with the aerolysin nanopore are consistent with the predicted fragments that trypsin could produce.


Assuntos
Toxinas Bacterianas/química , Citocromos c/análise , Muramidase/análise , Mioglobina/análise , Nanoporos , Proteínas Citotóxicas Formadoras de Poros/química , Aeromonas hydrophila/química , Citocromos c/química , Proteínas Hemolisinas/química , Muramidase/química , Mioglobina/química , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Proteólise , Proteômica , Tripsina/química
3.
J Am Chem Soc ; 144(2): 757-768, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34994548

RESUMO

The nanopore is emerging as a means of single-molecule protein sensing. However, proteins demonstrate different charge properties, which complicates the design of a sensor that can achieve simultaneous sensing of differently charged proteins. In this work, we introduce an asymmetric electrolyte buffer combined with the Mycobacterium smegmatis porin A (MspA) nanopore to form an electroosmotic flow (EOF) trap. Apo- and holo-myoglobin, which differ in only a single heme, can be fully distinguished by this method. Direct discrimination of lysozyme, apo/holo-myoglobin, and the ACTR/NCBD protein complex, which are basic, neutral, and acidic proteins, respectively, was simultaneously achieved by the MspA EOF trap. To automate event classification, multiple event features were extracted to build a machine learning model, with which a 99.9% accuracy is achieved. The demonstrated method was also applied to identify single molecules of α-lactalbumin and ß-lactoglobulin directly from whey protein powder. This protein-sensing strategy is useful in direct recognition of a protein from a mixture, suggesting its prospective use in rapid and sensitive detection of biomarkers or real-time protein structural analysis.


Assuntos
Aprendizado de Máquina , Mycobacterium smegmatis/metabolismo , Porinas/química , Cálcio/química , Cálcio/metabolismo , Eletro-Osmose , Lactalbumina/análise , Lactalbumina/isolamento & purificação , Lactoglobulinas/análise , Lactoglobulinas/isolamento & purificação , Muramidase/análise , Mutagênese Sítio-Dirigida , Mioglobina/análise , Mioglobina/química , Nanoporos , Porinas/genética , Porinas/metabolismo , Proteínas do Soro do Leite/química
4.
Anal Chem ; 93(3): 1294-1303, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33320538

RESUMO

Vibrational circular dichroism (VCD) spectroscopy has emerged as a powerful platform to quantify chirality, a vital biological property that performs a pivotal role in the metabolism of life organisms. With a photoelastic modulator (PEM) integrated into an infrared spectrometer, the differential response of a sample to the direction of circularly polarized light can be used to infer conformation handedness. However, these optical components inherently exhibit chromatic behavior and are typically optimized at discrete spectral frequencies. Advancements of discrete frequency infrared (DFIR) spectroscopic microscopes in spectral image quality and data throughput are promising for use toward analytical VCD measurements. Utilizing the PEM advantages incorporated into a custom-built QCL microscope, we demonstrate a point scanning VCD instrument capable of acquiring spectra rapidly across all fingerprint region wavelengths in transmission configuration. Moreover, for the first time, we also demonstrate the VCD imaging performance of our instrument for site-specific chirality mapping of biological tissue samples. This study offers some insight into future possibilities of examining small, localized changes in tissue that have major implications for systemic diseases and their progression, while also laying the groundwork for additional modeling and validation in advancing the capability of VCD spectroscopy and imaging.


Assuntos
Concanavalina A/análise , Citocromos c/análise , Muramidase/análise , Mioglobina/análise , Soroalbumina Bovina/análise , Animais , Bovinos , Dicroísmo Circular , Humanos , Espectrofotometria Infravermelho , Vibração
5.
Nanotechnology ; 32(9): 095502, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33242844

RESUMO

We have developed a low-cost molecularly imprinted polymer (MIP)-based fluorometric assay to directly quantify myoglobin in a biological sample. The assay uses a previously unreported method for the development of microwave-assisted rapid synthesis of aldehyde functionalized magnetic nanoparticles, in just 20 min. The aldehyde functionalized nanoparticles have an average size of 7.5 nm ± 1.8 and saturation magnetizations of 31.8 emu g-1 with near-closed magnetization loops, confirming their superparamagnetic properties. We have subsequently shown that protein tethering was possible to the aldehyde particles, with 0.25 ± 0.013 mg of myoglobin adsorbed to 20 mg of the nanomaterial. Myoglobin-specific fluorescently tagged MIP (F-MIP) particles were synthesized and used within the assay to capture myoglobin from a test sample. Excess F-MIP was removed from the sample using protein functionalized magnetic nanoparticles (Mb-SPION), with the remaining sample analyzed using fluorescence spectroscopy. The obtained calibration plot of myoglobin showed a linear correlation ranging from 60 pg ml-1 to 6 mg ml-1 with the limit of detection of 60 pg ml-1. This method was successfully used to detect myoglobin in spiked fetal calf serum, with a recovery rate of more than 93%.


Assuntos
Química Verde/métodos , Polímeros Molecularmente Impressos/síntese química , Mioglobina/análise , Soroalbumina Bovina/química , Adsorção , Animais , Humanos , Nanopartículas de Magnetita , Micro-Ondas , Impressão Molecular , Polímeros Molecularmente Impressos/química , Mioglobina/química , Espectrometria de Fluorescência
6.
Adv Exp Med Biol ; 1269: 107-112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33966203

RESUMO

Previous studies have reported that the reduced scattering coefficient (µs') in the vastus lateralis changes during ramp-incremental exercise due to blood volume changes or accumulation of metabolic by-products. We aimed to clarify the influences of deoxygenation and blood volume changes during exercise on µs' dynamics in subjects with various aerobic capacities. Twenty-three healthy young men participated in this study. All subjects performed a ramp-incremental cycling exercise until exhaustion and were divided into two groups: lower (Low: n = 12; peak pulmonary oxygen uptake per kg of fat-free mass (VO2peak), 54.2 ± 5.3 mL/kg/min) and higher aerobic capacity group (High: n = 11; VO2peak, 69.7 ± 5.2 mL/kg/min) by median of VO2peak. Deoxygenated hemoglobin and myoglobin concentrations (deoxy[Hb + Mb]) and total [Hb + Mb] (total[Hb + Mb]) in the vastus lateralis were monitored during the exercise by three-wavelength (760, 800, and 830 nm) time-resolved NIRS. Similarly, µs' at each wavelength was continuously monitored. With increasing exercise intensity, deoxy[Hb + Mb] and total[Hb + Mb] significantly increased in both groups, and the average values of the peak amplitudes of deoxy[Hb + Mb] and total[Hb + Mb] during exercise showed a 106.4% increase and a 17.9% increase from the start of the exercise, respectively. Furthermore, the peak amplitude of total[Hb + Mb] was significantly greater in High. Conversely, there were no changes in µs' at any wavelength during exercise and no differences between two groups, suggesting that the great deoxygenation and blood volume changes during incremental exercise have little effect on µs' dynamics.


Assuntos
Músculo Esquelético , Consumo de Oxigênio , Teste de Esforço , Hemodinâmica , Hemoglobinas/metabolismo , Humanos , Masculino , Músculo Esquelético/metabolismo , Mioglobina/análise , Mioglobina/metabolismo , Oxigênio/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho
7.
Adv Exp Med Biol ; 1269: 367-372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33966244

RESUMO

Insufficient O2 delivery to, and uptake by skeletal muscle can produce mobility limitations for patients with chronic diseases. Near-infrared spectroscopy (NIRS) can be used to noninvasively quantify the balance between skeletal muscle O2 delivery and utilization during contraction. However, it is not clear how the oxygenated or deoxygenated NIRS signal should be used to assess muscle O2 changes. This issue is related to the fact that the contributions of hemoglobin (Hb) and myoglobin (Mb) cannot be distinguished. This conundrum can be resolved by quantitative analysis of experimental data by computer simulations with a mechanistic, mathematical model. Model simulations distinguish dynamic responses of the oxygenated (HbO2, MbO2) and deoxygenated (HHb, HMb) contributions to the NIRS signal components (HbMbO2, HHbMb). Simulations of muscle O2 uptake and NIRS kinetics correspond closely to published experimental data (Hernández et al., J Appl Physiol 108: 1169-1176, 2010). Simulated muscle O2 uptake and oxygenation kinetics with different blood flows indicate (1) faster O2 delivery is responsible for slower muscle oxygenation kinetics; (2) Hb and Mb contributions to the HbMbO2 are similar (40-60%); and (3) Hb and Mb contributions to the HHbMb are significantly different, 80% and 20%, respectively. The effect of slow blood flow kinetics on oxygenated Hb and Mb contributions is minimal. However, the effect on the imbalance between O2 delivery and utilization rates causes significant overshoots and undershoots of deoxygenated Hb and Mb contributions. Model analysis in combination with NIRS measurements and information on hemodynamic and microvascular distribution can help to determine the use of NIRS signal in evaluating the factors limiting exercise tolerance in health and disease states.


Assuntos
Mioglobina , Espectroscopia de Luz Próxima ao Infravermelho , Exercício Físico , Hemodinâmica , Hemoglobinas/metabolismo , Humanos , Músculo Esquelético/metabolismo , Mioglobina/análise , Mioglobina/metabolismo , Oxigênio/metabolismo , Consumo de Oxigênio
8.
Molecules ; 26(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299527

RESUMO

A label free electrochemical sensor based on pure titanium oxide and manganese (Mn)-doped titanium oxide (TiO2) nanoparticles are fabricated and characterized for the sensitive detection of myoglobin (Mb) levels to analyze the cardiovascular infarction. Pristine and Mn-doped TiO2 nanoparticles were synthesized via the sol-gel method and characterized in order to understand their structure, morphologies, composition and optical properties. The structural properties revealed that the pure- and doped-TiO2 nanoparticles possess different TiO2 planes. FTIR studies confirm the formation of metal oxide nanoparticles by exhibiting a well-defined peak in the range of 600-650 cm-1. The values of the optical band gap, estimated from UV-Vis spectroscopy, are decreased for the Mn-doped TiO2 nanoparticles. UV-Vis spectra in the presence of myoglobin (Mb) indicated interaction between the TiO2 nanoparticles and myoglobin. The SPE electrodes were then fabricated by printing powder film over the working electrode and tested for label-free electrochemical detection of myoglobin (Mb) in the concentration range of 0-15 nM Mb. The fabricated electrochemical sensor exhibited a high sensitivity of 100.40 µA-cm-2/nM with a lowest detection limit of 0.013 nM (0.22 ng/mL) and a response time of ≤10 ms for sample S3. An interference study with cyt-c and Human Serum Albumin (HSA) of the sensors show the selective response towards Mb in 1:1 mixture.


Assuntos
Manganês/química , Mioglobina/análise , Nanopartículas/química , Titânio/química , Biomarcadores/análise , Técnicas Eletroquímicas , Humanos , Infarto do Miocárdio/diagnóstico
9.
Anal Chem ; 92(14): 10058-10067, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32558545

RESUMO

H/D exchange (HDX) mass spectrometry (MS) is a widely used technique for interrogating protein structure and dynamics. Backbone HDX is mediated by opening/closing (unfolding/refolding) fluctuations. In traditional HDX-MS, proteins are incubated in D2O as a function of time at constant temperature (T). There is an urgent need to complement this traditional approach with experiments that probe proteins in a T-dependent fashion, e.g., for assessing the stability of therapeutic antibodies. A key problem with such studies is the absence of strategies for interpreting HDX-MS data in the context of T-dependent protein dynamics. Specifically, it has not been possible thus far to separate T-induced changes of the chemical labeling step (kch) from thermally enhanced protein fluctuations. Focusing on myoglobin, the current work solves this problem by dissecting T-dependent HDX-MS profiles into contributions from kch(T), as well as local and global protein dynamics. Experimental profiles started off with surprisingly shallow slopes that seemed to defy the quasi-exponential kch(T) dependence. Just below the melting temperature (Tm) the profiles showed a sharp increase. Our analysis revealed that local dynamics dominate at low T, while global events become prevalent closer to Tm. About half of the backbone NH sites exhibited a canonical scenario, where local opening/closing was associated with positive ΔH and ΔS. Many of the remaining sites had negative ΔH and ΔS, thereby accounting for the shallowness of the experimental HDX-MS profiles at low T. In summary, this work provides practitioners with the tools to analyze proteins over a wide temperature range, paving the way toward T-dependent high-throughput screening applications by HDX-MS.


Assuntos
Espectrometria de Massa com Troca Hidrogênio-Deutério , Mioglobina/análise , Temperatura , Animais , Coração , Cavalos
10.
Anal Chem ; 92(18): 12429-12436, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32803948

RESUMO

The development of various ionization and fragmentation techniques has been of key importance for establishing mass spectrometry (MS) as a powerful tool for protein characterization. One example of this is matrix-assisted laser desorption/ionization (MALDI) combined with in-source decay (ISD) fragmentation that allows mapping of N- and C-terminal regions of large proteins without the need for proteolysis. Positive ion mode ISD fragments are commonly assigned in the mass region above m/z 1000, while MALDI matrix ions generally hamper the detection of smaller singly charged fragments. The ultrahigh resolving power provided by Fourier transform ion cyclotron resonance (FT-ICR) MS partially overcomes this limitation, but to further increase the detection of smaller fragments we have revisited the application of negative ion mode MALDI-ISD and found good coverage of the peptide chain termini starting from c'2 and z'2 fragment ions. For the first time, we demonstrate that the combination of negative and positive ion MALDI FT-ICR MS is a useful tool to improve the characterization of mAbs. The different specificities of the two ion modes allowed us to selectively cover the sequence of the light and heavy chains of mAbs at increased sensitivity. A comprehensive evaluation of positive and negative ion mode MALDI-ISD FT-ICR MS in the m/z range 46-13 500 showed an increased sequence coverage for three standard proteins, namely, myoglobin, SiLuLite mAb, and NIST mAb. The data obtained in the two ion modes were, in part, complementary.


Assuntos
Anticorpos Monoclonais/análise , Mioglobina/análise , Animais , Cavalos , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Anal Chem ; 92(6): 4292-4300, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32107919

RESUMO

Size-exclusion chromatography employing aqueous mobile phases with volatile salts at neutral pH combined with electrospray-ionization mass spectrometry (SEC-ESI-MS) is a useful tool to study proteins in their native state. However, whether the applied eluent conditions actually prevent protein-stationary phase interactions, and/or protein denaturation, often is not assessed. In this study, the effects of volatile mobile phase additives on SEC retention and ESI of proteins were thoroughly investigated. Myoglobin was used as the main model protein, and eluents of varying ionic strength and pH were applied. The degree of interaction between protein and stationary phase was evaluated by calculating the SEC distribution coefficient. Protein-ion charge state distributions obtained during offline and online native ESI-MS were used to monitor alterations in protein structure. Interestingly, most of the supposedly mild eluent compositions induced nonideal SEC behavior and/or protein unfolding. SEC experiments revealed that the nature, ionic strength, and pH of the eluent affected protein retention. Protein-stationary phase interactions were effectively avoided using ammonium acetate at ionic strengths above 0.1 M. Direct-infusion ESI-MS showed that the tested volatile eluent salts seem to follow the Hofmeister series: no denaturation was induced using ammonium acetate (kosmotropic), whereas ammonium formate and bicarbonate (both chaotropic) caused structural changes. Using a mobile phase of 0.2 M ammonium acetate (pH 6.9), several proteins (i.e., myoglobin, carbonic anhydrase, and cytochrome c) could be analyzed by SEC-ESI-MS using different column chemistries without compromising their native state. Overall, with SEC-ESI-MS, the effect of nonspecific interactions between protein and stationary phase on the protein structure can be studied, even revealing gradual structural differences along a peak.


Assuntos
Cromatografia em Gel , Mioglobina/análise , Animais , Coração , Cavalos , Concentração de Íons de Hidrogênio , Desnaturação Proteica , Espectrometria de Massas por Ionização por Electrospray
12.
Anal Chem ; 92(18): 12363-12370, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786458

RESUMO

Photoactivation and photodissociation have long proven to be useful tools in tandem mass spectrometry, but implementation often involves cumbersome and potentially dangerous configurations. Here, we redress this problem by using a fiber-optic cable to couple an infrared (IR) laser to a mass spectrometer for robust, efficient, and safe photoactivation experiments. Transmitting 10.6 µm IR photons through a hollow-core fiber, we show that such fiber-assisted activated ion-electron transfer dissociation (AI-ETD) and IR multiphoton dissociation (IRMPD) experiments can be carried out as effectively as traditional mirror-based implementations. We report on the transmission efficiency of the hollow-core fiber for conducting photoactivation experiments and perform various intact protein and peptide analyses to illustrate the benefits of fiber-assisted AI-ETD, namely, a simplified system for irradiating the two-dimensional linear ion trap volume concurrent with ETD reactions to limit uninformative nondissociative events and thereby amplify sequence coverage. We also describe a calibration scheme for the routine analysis of IR laser alignment and power through the fiber and into the dual cell quadrupolar linear ion trap. In all, these advances allow for a more robust, straightforward, and safe instrumentation platform, permitting implementation of AI-ETD and IRMPD on commercial mass spectrometers and broadening the accessibility of these techniques.


Assuntos
Mioglobina/análise , Fibras Ópticas , Peptídeos/análise , Ubiquitina/análise , Animais , Calibragem , Bovinos , Cavalos , Lasers , Espectrometria de Massas , Processos Fotoquímicos
13.
Anal Chem ; 92(11): 7877-7883, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32368902

RESUMO

Accurate quantification is essential in the fields of proteomics, clinical assay, and biomarker discovery. Popular methods for absolute protein quantitation by mass spectrometry (MS) involve the digestion of target protein and employ isotope-labeled peptide internal standards to quantify chosen surrogate peptides. Although these methods have gained success, syntheses of isotope-labeled peptides are time-consuming and costly. To eliminate the need for using standards or calibration curves, herein we present a coulometric mass spectrometric (CMS) approach for absolute protein quantitation, based on the electrochemical oxidation of a surrogate peptide combined with mass spectrometric measurement of the oxidation yield. To demonstrate the utility of this method, several proteins were analyzed such as model proteins ß-casein, and apomyoglobin as well as circadian clock protein KaiB isolated from Escherichia coli. In our experiment, tyrosine-containing peptides were selected as surrogate peptides for quantitation, considering the oxidizable nature of tyrosine. Our data showed that the results for surrogate peptide quantity measured by our method and by traditional isotope dilution method are in excellent agreement, with the discrepancy of 0.3-3%, validating our CMS method for absolute quantitation. Furthermore, therapeutic monoclonal antibody (mAb) could be quantified by our method as well. Due to the high specificity and sensitivity of MS and no need to use isotope-labeled peptide standards, our CMS method would be of high value for the absolute proteomic quantification.


Assuntos
Apoproteínas/análise , Caseínas/análise , Proteínas de Escherichia coli/análise , Mioglobina/análise , Proteínas Circadianas Period/análise , Animais , Bovinos , Técnicas Eletroquímicas , Escherichia coli/química , Cavalos , Espectrometria de Massas , Oxirredução
14.
Anal Chem ; 92(8): 5871-5881, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32212639

RESUMO

Comprehensive determination of primary sequence and identification of post-translational modifications (PTMs) are key elements in protein structural analysis. Various mass spectrometry (MS) based fragmentation techniques are powerful approaches for mapping both the amino acid sequence and PTMs; one of these techniques is matrix-assisted laser desorption/ionization (MALDI), combined with in-source decay (ISD) fragmentation and Fourier-transform ion cyclotron resonance (FT-ICR) MS. MALDI-ISD MS protein analysis involves only minimal sample preparation and does not require spectral deconvolution. The resulting MALDI-ISD MS data is complementary to electrospray ionization-based MS/MS sequencing readouts, providing knowledge on the types of fragment ions is available. In this study, we evaluate the isotopic distributions of z' ions in protein top-down MALDI-ISD FT-ICR mass spectra and show why these distributions can deviate from theoretical profiles as a result of co-occurring and isomeric z and y-NH3 ions. Two synthetic peptides, containing either normal or deuterated alanine residues, were used to confirm the presence and unravel the identity of isomeric z and y-NH3 fragment ions ("twins"). Furthermore, two reducing MALDI matrices, namely 1,5-diaminonaphthalene and N-phenyl-p-phenylenediamine were applied that yield ISD mass spectra with different fragment ion distributions. This study demonstrates that the relative abundance of isomeric z and y-NH3 ions requires consideration for accurate and confident assignments of z' ions in MALDI-ISD FT-ICR mass spectra.


Assuntos
Amônia/química , Insulina/análise , Mioglobina/análise , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , 2-Naftilamina/metabolismo , Amônia/metabolismo , Animais , Cavalos , Humanos , Insulina/metabolismo , Íons/química , Íons/metabolismo , Estrutura Molecular , Mioglobina/metabolismo , Fenilenodiaminas/química , Fenilenodiaminas/metabolismo , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
15.
Anal Chem ; 92(1): 884-891, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31808341

RESUMO

A separation-free electrogenerated chemiluminescence (ECL) immunoassay for biomarkers has been developed incorporating target assistant proximity hybridization and dynamically competitive hybridization of a DNA ECL signal probe for the first time. In this work, the biomarkers of acute myocardial infarction including cardiac troponin I (cTnI), cardiac troponin T (cTnT), and myoglobin (Myo) were chosen as the model proteins while the corresponding antibody was utilized as a recognition probe and the DNA5 tagged with ruthenium complex was chosen as an ECL signal probe (DNA5-Ru1). The biosensors were fabricated by covalently coupling the capture probe DNA1 onto the surface of a glassy carbon electrode, and then, a competitor ss-DNA2 was hybridized with DNA1. When the biosensor was incubated in the solution containing a target protein, the recognition probes (DNA3-Ab1 and DNA4-Ab2), DNA5-Ru1, and the coreactant tri-n-propylamine, the target protein was bounded with two antibodies of the recognition probes and thus induced the sufficient proximity hybridization of DNA3 with DNA1, DNA4 with DNA5-Ru1, and DNA5-Ru1 with DNA1 and the unwinding of the competitor DNA2 with DNA1, and ECL measurement was performed in separation-free format. It was found that the hybridization base number and length of DNA1 and a competing hybridization of DNA5-Ru1 with DNA2 for DNA1 have important effects. The developed ECL method showed a quite low detection limit of 0.4 pg/mL for cTnI, 0.5 pg/mL for cTnT, and 0.5 ng/mL for Myo. The fabricated biosensor exhibited stability and reusability. This work demonstrated that the developed ECL immunoassay is a promising separation-free and flexible strategy for quantitation of multiple proteins using one biosensor.


Assuntos
Técnicas Biossensoriais/métodos , Sondas de DNA/química , Mioglobina/sangue , Troponina I/sangue , Animais , Anticorpos Imobilizados/química , Técnicas Eletroquímicas/métodos , Humanos , Ácidos Nucleicos Imobilizados/química , Imunoensaio/métodos , Limite de Detecção , Medições Luminescentes/métodos , Camundongos , Infarto do Miocárdio/sangue , Infarto do Miocárdio/diagnóstico , Mioglobina/análise , Hibridização de Ácido Nucleico , Rutênio/química , Troponina I/análise
16.
Anal Bioanal Chem ; 412(12): 2777-2784, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32076791

RESUMO

The activity of proteins rather than the concentration of proteins in biopharmaceutical and in vitro diagnostics are often the primary focus. Nonetheless, development of a calibration-free concentration analysis (CFCA) approach that accurately quantifies the concentration of proteins based on molecular interactions with specific monoclonal antibodies and without the requirement of external calibrators would be beneficial to diagnostics. Generally, only analytes that interact with the antibody (Ab) are quantified by CFCA. Moreover, protein concentrations measured by CFCA usually vary when different Abs are used, and are lower than those obtained by amino acid analysis because any non-native state population of the target protein is not captured by the Ab. To achieve comparable results between CFCA and traditional amino acid analysis (AAA), an Ab that recognizes the target protein irrespective of its conformation should be used. In this report, three different monoclonal antibodies were used to quantify purified human myoglobin in solution by CFCA. The concentrations obtain by the Abs (i.e., 2.985, 2.912, 3.032 mg mL-1) were comparable with that obtained by AAA. Moreover, isotope dilution mass spectrometry (IDMS) gave a human myoglobin concentration of 2.851 mg mL-1, which is also in agreement with the results from CFCA. The performance of CFCA was evaluated by measuring various parameters, including within-day and between-day precision. The results demonstrated that the active concentration measured by CFCA is comparable with that of IDMS when the appropriate Ab is used. Recommended procedures for performing the new CFCA approach are provided. This study shows that CFCA represents a primary method for accurate protein concentration determination, which should aid the development of certified reference materials. Graphical abstract.


Assuntos
Espectrometria de Massas/métodos , Mioglobina/análise , Ressonância de Plasmônio de Superfície/métodos , Calibragem , Humanos , Técnicas de Diluição do Indicador
17.
Curr Microbiol ; 77(5): 826-835, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31925515

RESUMO

The nutritional value of mutton chop rolls is gradually recognized by people, but it is easy to cause microbial contamination during storage, leading to spoilage and shortening of storage time. The bacterial diversity of mutton chop rolls in different cold preservation time was analyzed to explore the main pathogens of spoilage of mutton chop rolls. At the same time, the oxidative state of myoglobin and the change of mitochondrial Metmyoglobin (MMb) Reduction Ability (MRA) in different cold preservation were studied. It lays a foundation for further study on the mechanism of meat color stabilization of mutton chop rolls during cold preservation. A total of 10,123,180 effective Tags were obtained from three samples with different cold preservation time by high throughput sequencing. The relative abundance of Pseudomonas was the highest in the samples refrigerated for 8 days, Acinetobacter, Brochothrix and Lactobacillales showed the highest relative abundance in the samples refrigerated for 4 days, which were closely related to the deterioration of mutton chop rolls and color deterioration. With the increase of cold preservation time, Oxymyoglobin (OMb) content decreased and Metmyoglobin (MMb) content increased. MRA was negatively correlated with MMb. The content of NADH was extremely significant difference with OMb and MMb. At the same time, the content of NADH was a significant difference with MRA. This study provides theoretical basis for prolonging the shelf life, maintaining meat color stability, improving the quality of mutton chop rolls. And it also plays a certain role in promoting the production and consumption of chilled meat.


Assuntos
Bactérias/classificação , Temperatura Baixa , Microbiologia de Alimentos , Microbiota , Mioglobina/metabolismo , Carne Vermelha/microbiologia , Animais , Bactérias/isolamento & purificação , Cor , Armazenamento de Alimentos , Mioglobina/análise , Oxirredução , Ovinos
18.
Sensors (Basel) ; 20(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003353

RESUMO

Immobilization of proteins on a surface plasmon resonance (SPR) transducer is a delicate procedure since loss of protein bioactivity can occur upon contact with the untreated metal surface. Solution to the problem is the use of an immobilization matrix having a complex structure. However, this is at the expense of biosensor selectivity and sensitivity. It has been shown that the matrix-assisted pulsed laser evaporation (MAPLE) method has been successfully applied for direct immobilization (without a built-in matrix) of proteins, preserving their bioactivity. So far, MAPLE deposition has not been performed on a gold surface as required for SPR biosensors. In this paper we study the impact of direct immobilization of heme proteins (hemoglobin (Hb) and myoglobin (Mb)) on their bioactivity. For the purpose, Hb and Mb were directly immobilized by MAPLE technique on a SPR transducer. The bioactivity of the ligands immobilized in the above-mentioned way was assessed by SPR registration of the molecular reactions of various Hb/Mb functional groups. By SPR we studied the reaction between the beta chain of the Hb molecule and glucose, which shows the structural integrity of the immobilized Hb. A supplementary study of films deposited by FTIR and AFM was provided. The experimental facts showed that direct immobilization of an intact molecule was achieved.


Assuntos
Técnicas Biossensoriais , Hemoglobinas/análise , Proteínas Imobilizadas/análise , Mioglobina/análise , Ressonância de Plasmônio de Superfície , Ouro
19.
Molecules ; 25(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429224

RESUMO

Valorisation of industrial low-value waste residues was preconized. Hence, carbon dots (C-dots) were synthesized from wastewaters of the cork industry-an abundant and affordable, but environmentally-problematic industrial effluent. The carbon nanomaterials were structurally and morphologically characterised, and their photophysical properties were analysed by an ensemble of spectroscopy techniques. Afterwards, they were successfully applied as highly-sensitive fluorescence probes for the direct detection of haemproteins. Haemoglobin, cytochrome c and myoglobin were selected as specific targets owing to their relevant roles in living organisms, wherein their deficiencies or surpluses are associated with several medical conditions. For all of them, remarkable responses were achieved, allowing their detection at nanomolar levels. Steady-state and time-resolved fluorescence, ground-state UV-Vis absorption and electronic circular dichroism techniques were used to investigate the probable mechanisms behind the fluorescence turn-off of C-dots. Extensive experimental evidence points to a static quenching mechanism. Likewise, resonance energy transfer and collisional quenching have been discarded as excited-state deactivating mechanisms. It was additionally found that an oxidative, photoinduced electron transfer occurs for cytochrome c, the most electron-deficient protein. Besides, C-dots prepared from citric acid/ethylenediamine were comparatively assayed for protein detection and the differences between the two types of nanomaterials highlighted.


Assuntos
Carbono/química , Citocromos c/análise , Hemoglobinas/análise , Mioglobina/análise , Casca de Planta/química , Pontos Quânticos/química , Técnicas Biossensoriais , Ácido Cítrico/química , Etilenodiaminas/química , Corantes Fluorescentes/química , Humanos , Resíduos Industriais , Pontos Quânticos/ultraestrutura , Soluções , Espectrometria de Fluorescência , Águas Residuárias/química
20.
J Sci Food Agric ; 100(7): 2922-2931, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32031256

RESUMO

BACKGROUND: Supranutritional supplementation of lamb diets with α-tocopherol is an effective method to reduce lipid oxidation and colour deterioration in meat products. However, alternative antioxidant sources have been proposed to replace the supranutritional vitamin E applications. RESULTS: Indoor concentrate-fed Rasa Aragonesa male lambs (n = 480) were supplemented with increasing levels of all-rac-α-tocopheryl acetate (0.25, 0.5, 1.0 g kg-1 compound feed), rosemary extract (0.20, 0.40, or 0.80 g kg-1 compound feed), or rosemary extract embedded in a fat matrix (0.20, 0.40, or 0.80 g kg-1 compound feed) for 14 days before slaughter. The longissimus thoracis et lumborum muscle from three lambs per pen (18 lambs per treatment) were modified-atmosphere packaged (70% O2 + 30% CO2 ) and maintained under retail conditions for 14 days. Supranutritional supplementation with antioxidants had no effect (P > 0.05) on average daily weight gain, feed intake, and feed efficiency. Rosemary extract supplementation (with or without fat embedment) had no effect on lipid oxidation, myoglobin forms, or colour stability parameters, regardless of the dose. All vitamin E supplementation levels significantly affected lipid oxidation, colour stability (L*, C*, and h), myoglobin forms, and meat discoloration parameters compared with non-supplemented lambs. CONCLUSIONS: This study demonstrates that, unlike vitamin E, neither dose nor protection of the rosemary extract had an effect on lipid oxidation or meat colour stability of lambs during the 14 days of storage under retail conditions. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ração Animal/análise , Extratos Vegetais/farmacologia , Carne Vermelha/análise , Rosmarinus , Vitamina E/farmacologia , Animais , Cor , Dieta/veterinária , Masculino , Músculo Esquelético/química , Mioglobina/análise , Extratos Vegetais/administração & dosagem , Carneiro Doméstico/crescimento & desenvolvimento , Carneiro Doméstico/metabolismo , Vitamina E/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA