Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.547
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 165(4): 896-909, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153497

RESUMO

The circadian clock controls metabolic and physiological processes through finely tuned molecular mechanisms. The clock is remarkably plastic and adapts to exogenous "zeitgebers," such as light and nutrition. How a pathological condition in a given tissue influences systemic circadian homeostasis in other tissues remains an unanswered question of conceptual and biomedical importance. Here, we show that lung adenocarcinoma operates as an endogenous reorganizer of circadian metabolism. High-throughput transcriptomics and metabolomics revealed unique signatures of transcripts and metabolites cycling exclusively in livers of tumor-bearing mice. Remarkably, lung cancer has no effect on the core clock but rather reprograms hepatic metabolism through altered pro-inflammatory response via the STAT3-Socs3 pathway. This results in disruption of AKT, AMPK, and SREBP signaling, leading to altered insulin, glucose, and lipid metabolism. Thus, lung adenocarcinoma functions as a potent endogenous circadian organizer (ECO), which rewires the pathophysiological dimension of a distal tissue such as the liver. PAPERCLIP.


Assuntos
Adenocarcinoma/fisiopatologia , Relógios Circadianos , Fígado/fisiopatologia , Neoplasias Pulmonares/fisiopatologia , Adenocarcinoma de Pulmão , Animais , Citocinas/genética , Glucose/metabolismo , Homeostase , Insulina/metabolismo , Camundongos , Transdução de Sinais
2.
Genes Dev ; 35(7-8): 528-541, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33737385

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers worldwide and evolves often to lung metastasis. P53R175H (homologous to Trp53R172H in mice) is a common hot spot mutation. How metastasis is regulated by p53R175H in ESCC remains to be investigated. To investigate p53R175H-mediated molecular mechanisms, we used a carcinogen-induced approach in Trp53R172H/- mice to model ESCC. In the primary Trp53R172H/- tumor cell lines, we depleted Trp53R172H (shTrp53) and observed a marked reduction in cell invasion in vitro and lung metastasis burden in a tail-vein injection model in comparing isogenic cells (shCtrl). Furthermore, we performed bulk RNA-seq to compare gene expression profiles of metastatic and primary shCtrl and shTrp53 cells. We identified the YAP-BIRC5 axis as a potential mediator of Trp53R172H -mediated metastasis. We demonstrate that expression of Survivin, an antiapoptotic protein encoded by BIRC5, increases in the presence of Trp53R172H Furthermore, depletion of Survivin specifically decreases Trp53R172H-driven lung metastasis. Mechanistically, Trp53R172H but not wild-type Trp53, binds with YAP in ESCC cells, suggesting their cooperation to induce Survivin expression. Furthermore, Survivin high expression level is associated with increased metastasis in several GI cancers. Taken together, this study unravels new insights into how mutant p53 mediates metastasis.


Assuntos
Neoplasias Pulmonares/fisiopatologia , Survivina/genética , Survivina/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/genética , Camundongos , Mutação , Metástase Neoplásica , Transcriptoma , Proteína Supressora de Tumor p53/metabolismo
3.
Genes Dev ; 35(11-12): 870-887, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34016692

RESUMO

Small cell lung carcinoma (SCLC) is among the most lethal of all solid tumor malignancies. In an effort to identify novel therapeutic approaches for this recalcitrant cancer type, we applied genome-scale CRISPR/Cas9 inactivation screens to cell lines that we derived from a murine model of SCLC. SCLC cells were particularly sensitive to the deletion of NEDD8 and other neddylation pathway genes. Genetic suppression or pharmacological inhibition of this pathway using MLN4924 caused cell death not only in mouse SCLC cell lines but also in patient-derived xenograft (PDX) models of pulmonary and extrapulmonary small cell carcinoma treated ex vivo or in vivo. A subset of PDX models were exceptionally sensitive to neddylation inhibition. Neddylation inhibition suppressed expression of major regulators of neuroendocrine cell state such as INSM1 and ASCL1, which a subset of SCLC rely upon for cell proliferation and survival. To identify potential mechanisms of resistance to neddylation inhibition, we performed a genome-scale CRISPR/Cas9 suppressor screen. Deletion of components of the COP9 signalosome strongly mitigated the effects of neddylation inhibition in small cell carcinoma, including the ability of MLN4924 to suppress neuroendocrine transcriptional program expression. This work identifies neddylation as a regulator of neuroendocrine cell state and potential therapeutic target for small cell carcinomas.


Assuntos
Carcinoma de Células Pequenas/terapia , Ciclopentanos , Neoplasias Pulmonares/terapia , Proteína NEDD8/metabolismo , Pirimidinas , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Complexo do Signalossomo COP9/genética , Carcinoma de Células Pequenas/fisiopatologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclopentanos/farmacologia , Ciclopentanos/uso terapêutico , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Neoplasias Pulmonares/fisiopatologia , Camundongos , Proteína NEDD8/genética , Células Neuroendócrinas/citologia , Células Neuroendócrinas/efeitos dos fármacos , Proteínas/genética , Proteínas/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Proteínas Repressoras/genética , Deleção de Sequência
4.
Genes Dev ; 33(3-4): 150-165, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30692209

RESUMO

Loss of tumor suppressor liver kinase B1 (LKB1) promotes cancer cell proliferation but also leads to decreased metabolic plasticity in dealing with energy crises. Autophagy is a protective process involving self-cannibalization to maintain cellular energy homeostasis during nutrient deprivation. We developed a mouse model for Lkb1-deficient lung cancer with conditional deletion of essential autophagy gene Atg7 to test whether autophagy compensates for LKB1 loss for tumor cells to survive energy crises. We found that autophagy ablation was synthetically lethal during Lkb1-deficient lung tumorigenesis in both tumor initiation and tumor growth. We further found that autophagy deficiency causes defective intracellular recycling, which limits amino acids to support mitochondrial energy production in starved cancer cells and causes autophagy-deficient cells to be more dependent on fatty acid oxidation (FAO) for energy production, leading to reduced lipid reserve and energy crisis. Our findings strongly suggest that autophagy inhibition could be a strategy for treating LKB1-deficient lung tumors.


Assuntos
Autofagia , Carcinogênese/patologia , Proteínas de Transporte/genética , Metabolismo dos Lipídeos/fisiologia , Neoplasias Pulmonares/fisiopatologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Modelos Animais de Doenças , Metabolismo Energético/genética , Deleção de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular
5.
Genes Dev ; 33(3-4): 180-193, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30692208

RESUMO

Claudin-2 promotes breast cancer liver metastasis by enabling seeding and early cancer cell survival. We now demonstrate that the PDZ-binding motif of Claudin-2 is necessary for anchorage-independent growth of cancer cells and is required for liver metastasis. Several PDZ domain-containing proteins were identified that interact with the PDZ-binding motif of Claudin-2 in liver metastatic breast cancer cells, including Afadin, Arhgap21, Pdlim2, Pdlim7, Rims2, Scrib, and ZO-1. We specifically examined the role of Afadin as a potential Claudin-2-interacting partner that promotes breast cancer liver metastasis. Afadin associates with Claudin-2, an interaction that requires the PDZ-binding motif of Claudin-2. Loss of Afadin also impairs the ability of breast cancer cells to form colonies in soft agar and metastasize to the lungs or liver. Immunohistochemical analysis of Claudin-2 and/or Afadin expression in 206 metastatic breast cancer tumors revealed that high levels of both Claudin-2 and Afadin in primary tumors were associated with poor disease-specific survival, relapse-free survival, lung-specific relapse, and liver-specific relapse. Our findings indicate that signaling downstream from a Claudin-2/Afadin complex enables the efficient formation of breast cancer metastases. Moreover, combining Claudin-2 and Afadin as prognostic markers better predicts the potential of breast cancer to metastasize to soft tissues.


Assuntos
Neoplasias da Mama/fisiopatologia , Claudina-2/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Proteínas dos Microfilamentos/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Claudina-2/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatologia , Proteínas dos Microfilamentos/genética , Metástase Neoplásica , Domínios PDZ , Prognóstico , Análise de Sobrevida , Células Tumorais Cultivadas
6.
Genes Dev ; 32(13-14): 865-867, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29967289

RESUMO

Tumor heterogeneity of a primary histologic cancer type has major implications for cancer research and therapeutics. An important and understudied aspect of this heterogeneity is the role of transcription factors that serve as "lineage oncogenes" in a tumor type. A demonstration that different subgroups have distinct dependencies on lineage-specific transcription factors is highlighted in a relatively homogenous cancer type: the pulmonary neuroendocrine cancer small cell lung carcinoma (SCLC). Identification of these factors is providing new insights into the origin of the heterogeneity and subtype-specific vulnerabilities in SCLC and provides a template for studying heterogeneity in other cancer types.


Assuntos
Carcinoma Neuroendócrino/fisiopatologia , Neoplasias Pulmonares/fisiopatologia , Carcinoma de Pequenas Células do Pulmão/fisiopatologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem da Célula , Heterogeneidade Genética , Humanos , Mutação
7.
Genes Dev ; 32(13-14): 915-928, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29945888

RESUMO

Small cell lung cancer (SCLC) is widely considered to be a tumor of pulmonary neuroendocrine cells; however, a variant form of this disease has been described that lacks neuroendocrine features. Here, we applied domain-focused CRISPR screening to human cancer cell lines to identify the transcription factor (TF) POU2F3 (POU class 2 homeobox 3; also known as SKN-1a/OCT-11) as a powerful dependency in a subset of SCLC lines. An analysis of human SCLC specimens revealed that POU2F3 is expressed exclusively in variant SCLC tumors that lack expression of neuroendocrine markers and instead express markers of a chemosensory lineage known as tuft cells. Using chromatin- and RNA-profiling experiments, we provide evidence that POU2F3 is a master regulator of tuft cell identity in a variant form of SCLC. Moreover, we show that most SCLC tumors can be classified into one of three lineages based on the expression of POU2F3, ASCL1, or NEUROD1. Our CRISPR screens exposed other unique dependencies in POU2F3-expressing SCLC lines, including the lineage TFs SOX9 and ASCL2 and the receptor tyrosine kinase IGF1R (insulin-like growth factor 1 receptor). These data reveal POU2F3 as a cell identity determinant and a dependency in a tuft cell-like variant of SCLC, which may reflect a previously unrecognized cell of origin or a trans-differentiation event in this disease.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatologia , Fatores de Transcrição de Octâmero/genética , Fatores de Transcrição de Octâmero/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/fisiopatologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Linhagem Celular Tumoral , Linhagem da Célula , Humanos , Pulmão/patologia , Camundongos , Receptor IGF Tipo 1/metabolismo
8.
Nature ; 575(7782): 380-384, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31666695

RESUMO

Mitochondria are essential regulators of cellular energy and metabolism, and have a crucial role in sustaining the growth and survival of cancer cells. A central function of mitochondria is the synthesis of ATP by oxidative phosphorylation, known as mitochondrial bioenergetics. Mitochondria maintain oxidative phosphorylation by creating a membrane potential gradient that is generated by the electron transport chain to drive the synthesis of ATP1. Mitochondria are essential for tumour initiation and maintaining tumour cell growth in cell culture and xenografts2,3. However, our understanding of oxidative mitochondrial metabolism in cancer is limited because most studies have been performed in vitro in cell culture models. This highlights a need for in vivo studies to better understand how oxidative metabolism supports tumour growth. Here we measure mitochondrial membrane potential in non-small-cell lung cancer in vivo using a voltage-sensitive, positron emission tomography (PET) radiotracer known as 4-[18F]fluorobenzyl-triphenylphosphonium (18F-BnTP)4. By using PET imaging of 18F-BnTP, we profile mitochondrial membrane potential in autochthonous mouse models of lung cancer, and find distinct functional mitochondrial heterogeneity within subtypes of lung tumours. The use of 18F-BnTP PET imaging enabled us to functionally profile mitochondrial membrane potential in live tumours.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Neoplasias Pulmonares/fisiopatologia , Potencial da Membrana Mitocondrial , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Camundongos , Camundongos Transgênicos , Compostos Organofosforados , Tomografia por Emissão de Pósitrons
9.
Genes Dev ; 31(2): 184-196, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28167502

RESUMO

A large number of cancer drivers have been identified through tumor sequencing efforts, but how they interact and the degree to which they can substitute for each other have not been systematically explored. To comprehensively investigate how cancer drivers genetically interact, we searched for modifiers of epidermal growth factor receptor (EGFR) dependency by performing CRISPR, shRNA, and expression screens in a non-small cell lung cancer (NSCLC) model. We elucidated a broad spectrum of tumor suppressor genes (TSGs) and oncogenes (OGs) that can genetically modify proliferation and survival of cancer cells when EGFR signaling is altered. These include genes already known to mediate EGFR inhibitor resistance as well as many TSGs not previously connected to EGFR and whose biological functions in tumorigenesis are not well understood. We show that mutation of PBRM1, a subunit of the SWI/SNF complex, attenuates the effects of EGFR inhibition in part by sustaining AKT signaling. We also show that mutation of Capicua (CIC), a transcriptional repressor, suppresses the effects of EGFR inhibition by partially restoring the EGFR-promoted gene expression program, including the sustained expression of Ets transcription factors such as ETV1 Together, our data provide strong support for the hypothesis that many cancer drivers can substitute for each other in certain contexts and broaden our understanding of EGFR regulation.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/fisiopatologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatologia , Adenocarcinoma de Pulmão , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Resistencia a Medicamentos Antineoplásicos/genética , Ativação Enzimática/efeitos dos fármacos , Gefitinibe , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Proteínas Nucleares/genética , Proteína Oncogênica v-akt/metabolismo , Quinazolinas/farmacologia , Proteínas Repressoras/genética , Deleção de Sequência , Transdução de Sinais/genética , Fatores de Transcrição/genética , Transcriptoma
10.
Genes Dev ; 30(17): 1956-70, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664236

RESUMO

Increased lipid synthesis is a key characteristic of many cancers that is critical for cancer progression. ATP-citrate lyase (ACLY), a key enzyme for lipid synthesis, is frequently overexpressed or activated in cancer to promote lipid synthesis and tumor progression. Cullin3 (CUL3), a core protein for the CUL3-RING ubiquitin ligase complex, has been reported to be a tumor suppressor and frequently down-regulated in lung cancer. Here, we found that CUL3 interacts with ACLY through its adaptor protein, KLHL25 (Kelch-like family member 25), to ubiquitinate and degrade ACLY in cells. Through negative regulation of ACLY, CUL3 inhibits lipid synthesis, cell proliferation, and xenograft tumor growth of lung cancer cells. Furthermore, ACLY inhibitor SB-204990 greatly abolishes the promoting effect of CUL3 down-regulation on lipid synthesis, cell proliferation, and tumor growth. Importantly, low CUL3 expression is associated with high ACLY expression and poor prognosis in human lung cancer. In summary, our results identify CUL3-KLHL25 ubiquitin ligase as a novel negative regulator for ACLY and lipid synthesis and demonstrate that decreased CUL3 expression is an important mechanism for increased ACLY expression and lipid synthesis in lung cancer. These results also reveal that negative regulation of ACLY and lipid synthesis is a novel and critical mechanism for CUL3 in tumor suppression.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Culina/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/fisiopatologia , Células A549 , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas Culina/genética , Progressão da Doença , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos/biossíntese , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Masculino , Camundongos Endogâmicos BALB C , Proteólise
11.
Genes Dev ; 30(5): 522-34, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26915821

RESUMO

Poly(C)-binding protein 4 (PCBP4), also called MCG10 and a target of p53, plays a role in the cell cycle and is implicated in lung tumor suppression. Here, we found that PCBP4-deficient mice are prone to lung adenocarcinoma, lymphoma, and kidney tumor and that PCBP4-deficient mouse embryo fibroblasts (MEFs) exhibit enhanced cell proliferation but decreased cellular senescence. We also found that p53 expression is markedly reduced in PCBP4-deficient MEFs and mouse tissues, suggesting that PCBP4 in turn regulates p53 expression. To determine how PCBP4 regulates p53 expression, PCBP4 targets were identified by RNA immunoprecipitation followed by RNA sequencing (RNA-seq). We found that the transcript encoding ZFP871 (zinc finger protein 871; also called ZNF709 in humans) interacts with and is regulated by PCBP4 via mRNA stability. Additionally, we found that ZFP871 physically interacts with p53 and MDM2 proteins. Consistently, ectopic expression of ZFP871 decreases-whereas knockdown of ZFP871 increases-p53 protein stability through a proteasome-dependent degradation pathway. Moreover, loss of ZFP871 reverses the reduction of p53 expression by lack of PCBP4, and thus increased expression of ZFP871 is responsible for decreased expression of p53 in the PCBP4-deficient MEFs and mouse tissues. Interestingly, we found that, like PCBP4, ZFP871 is also regulated by DNA damage and p53. Finally, we showed that knockdown of ZFP871 markedly enhances p53 expression, leading to growth suppression and apoptosis in a p53-dependent manner. Thus, the p53-PCBP4-ZFP871 axis represents a novel feedback loop in the p53 pathway. Together, we hypothesize that PCBP4 is a potential tissue-specific tumor suppressor and that ZFP871 is part of MDM2 and possibly other ubiquitin E3 ligases that target p53 for degradation.


Assuntos
Proteínas de Transporte/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/fisiopatologia , Adenocarcinoma de Pulmão , Animais , Proliferação de Células/genética , Senescência Celular/genética , Proteínas de Ligação a DNA , Técnicas de Silenciamento de Genes , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatologia , Camundongos , Ligação Proteica , Estabilidade Proteica , Proteólise
12.
Genes Dev ; 30(15): 1704-17, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27516533

RESUMO

Autophagy degrades and is thought to recycle proteins, other macromolecules, and organelles. In genetically engineered mouse models (GEMMs) for Kras-driven lung cancer, autophagy prevents the accumulation of defective mitochondria and promotes malignancy. Autophagy-deficient tumor-derived cell lines are respiration-impaired and starvation-sensitive. However, to what extent their sensitivity to starvation arises from defective mitochondria or an impaired supply of metabolic substrates remains unclear. Here, we sequenced the mitochondrial genomes of wild-type or autophagy-deficient (Atg7(-/-)) Kras-driven lung tumors. Although Atg7 deletion resulted in increased mitochondrial mutations, there were too few nonsynonymous mutations to cause generalized mitochondrial dysfunction. In contrast, pulse-chase studies with isotope-labeled nutrients revealed impaired mitochondrial substrate supply during starvation of the autophagy-deficient cells. This was associated with increased reactive oxygen species (ROS), lower energy charge, and a dramatic drop in total nucleotide pools. While starvation survival of the autophagy-deficient cells was not rescued by the general antioxidant N-acetyl-cysteine, it was fully rescued by glutamine or glutamate (both amino acids that feed the TCA cycle and nucleotide synthesis) or nucleosides. Thus, maintenance of nucleotide pools is a critical challenge for starving Kras-driven tumor cells. By providing bioenergetic and biosynthetic substrates, autophagy supports nucleotide pools and thereby starvation survival.


Assuntos
Autofagia , Neoplasias Pulmonares/metabolismo , Nucleotídeos/metabolismo , Proteínas ras/metabolismo , Animais , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Deleção de Genes , Variação Genética , Genoma Mitocondrial/genética , Glutamina/farmacologia , Neoplasias Pulmonares/fisiopatologia , Camundongos , Mitocôndrias/metabolismo , Nucleosídeos/farmacologia , Oxirredução
13.
Genes Dev ; 30(23): 2623-2636, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007785

RESUMO

Expansion of neoplastic lesions generates the initial signal that instigates the creation of a tumor niche. Nontransformed cell types within the microenvironment continuously coevolve with tumor cells to promote tumorigenesis. Here, we identify p38MAPK as a key component of human lung cancer, and specifically stromal interactomes, which provides an early, protumorigenic signal in the tissue microenvironment. We found that lung cancer growth depends on short-distance cues produced by the cancer niche in a p38-dependent manner. We identified fibroblast-specific hyaluronan synthesis at the center of p38-driven tumorigenesis, which regulates early stromal fibroblast activation, the conversion to carcinoma-associated fibroblasts (CAFs), and cancer cell proliferation. Systemic down-regulation of p38MAPK signaling in a knock-in model with substitution of activating Tyr182 to phenylalanine or conditional ablation of p38 in fibroblasts has a significant tumor-suppressive effect on K-ras lung tumorigenesis. Furthermore, both Kras-driven mouse lung tumors and orthotopically grown primary human lung cancers show a significant sensitivity to both a chemical p38 inhibitor and an over-the-counter inhibitor of hyaluronan synthesis. We propose that p38MAPK-hyaluronan-dependent reprogramming of the tumor microenvironment plays a critical role in driving lung tumorigenesis, while blocking this process could have far-reaching therapeutic implications.


Assuntos
Carcinogênese/genética , Carcinogênese/patologia , Ácido Hialurônico/metabolismo , Neoplasias Pulmonares/fisiopatologia , Microambiente Tumoral/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Antineoplásicos/farmacologia , Proliferação de Células , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Reprogramação Celular/genética , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Fibroblastos , Regulação Neoplásica da Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
14.
Genes Dev ; 30(11): 1289-99, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27298335

RESUMO

Small cell lung cancer (SCLC) is a devastating neuroendocrine carcinoma. MYCL (L-Myc) is frequently amplified in human SCLC, but its roles in SCLC progression are poorly understood. We isolated preneoplastic neuroendocrine cells from a mouse model of SCLC and found that ectopic expression of L-Myc, c-Myc, or N-Myc conferred tumor-forming capacity. We focused on L-Myc, which promoted pre-rRNA synthesis and transcriptional programs associated with ribosomal biogenesis. Deletion of Mycl in two genetically engineered models of SCLC resulted in strong suppression of SCLC. The high degree of suppression suggested that L-Myc may constitute a therapeutic target for a broad subset of SCLC. We then used an RNA polymerase I inhibitor to target rRNA synthesis in an autochthonous Rb/p53-deleted mouse SCLC model and found significant tumor inhibition. These data reveal that activation of RNA polymerase I by L-Myc and other MYC family proteins provides an axis of vulnerability for this recalcitrant cancer.


Assuntos
Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Polimerase I/metabolismo , Carcinoma de Pequenas Células do Pulmão/enzimologia , Carcinoma de Pequenas Células do Pulmão/genética , Animais , Animais Geneticamente Modificados , Benzotiazóis/farmacologia , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inativação Gênica , Neoplasias Pulmonares/fisiopatologia , Camundongos , Naftiridinas/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , RNA Polimerase I/antagonistas & inibidores , Ribossomos/metabolismo , Carcinoma de Pequenas Células do Pulmão/fisiopatologia , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas
15.
Proc Natl Acad Sci U S A ; 117(8): 4347-4357, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32041891

RESUMO

Lung cancer is the leading cause of cancer-related deaths worldwide and non-small cell lung cancer (NSCLC) accounts for over 80% of lung cancer cases. The RNA binding protein, QKI, belongs to the STAR family and plays tumor-suppressive functions in NSCLC. QKI-5 is a major isoform of QKIs and is predominantly expressed in NSCLC. However, the underlying mechanisms of QKI-5 in NSCLC progression remain unclear. We found that QKI-5 regulated microRNA (miRNA), miR-196b-5p, and its expression was significantly up-regulated in NSCLC tissues. Up-regulated miR-196b-5p promotes lung cancer cell migration, proliferation, and cell cycle through directly targeting the tumor suppressors, GATA6 and TSPAN12. Both GATA6 and TSPAN12 expressions were down-regulated in NSCLC patient tissue samples and were negatively correlated with miR-196b-5p expression. Mouse xenograft models demonstrated that miR-196b-5p functions as a potent onco-miRNA, whereas TSPAN12 functions as a tumor suppressor in NSCLC in vivo. QKI-5 bound to miR-196b-5p and influenced its stability, resulting in up-regulated miR-196b-5p expression in NSCLC. Further analysis showed that hypomethylation in the promoter region enhanced miR-196b-5p expression in NSCLC. Our findings indicate that QKI-5 may exhibit novel anticancer mechanisms by regulating miRNA in NSCLC, and targeting the QKI5∼miR-196b-5p∼GATA6/TSPAN12 pathway may enable effectively treating some NSCLCs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fator de Transcrição GATA6/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Tetraspaninas/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação para Baixo , Feminino , Fator de Transcrição GATA6/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/fisiopatologia , Camundongos , Camundongos Nus , MicroRNAs/genética , Tetraspaninas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Genes Dev ; 29(3): 250-61, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25644601

RESUMO

The mechanisms by which TGF-ß promotes lung adenocarcinoma (ADC) metastasis are largely unknown. Here, we report that in lung ADC cells, TGF-ß potently induces expression of DOCK4, but not other DOCK family members, via the Smad pathway and that DOCK4 induction mediates TGF-ß's prometastatic effects by enhancing tumor cell extravasation. TGF-ß-induced DOCK4 stimulates lung ADC cell protrusion, motility, and invasion without affecting epithelial-to-mesenchymal transition. These processes, which are fundamental to tumor cell extravasation, are driven by DOCK4-mediated Rac1 activation, unveiling a novel link between TGF-ß and Rac1. Thus, our findings uncover the atypical Rac1 activator DOCK4 as a key component of the TGF-ß/Smad pathway that promotes lung ADC cell extravasation and metastasis.


Assuntos
Adenocarcinoma/fisiopatologia , Proteínas Ativadoras de GTPase/metabolismo , Neoplasias Pulmonares/fisiopatologia , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adenocarcinoma de Pulmão , Animais , Linhagem Celular Tumoral , Proteínas Ativadoras de GTPase/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Metástase Neoplásica
17.
Genes Dev ; 29(17): 1850-62, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26341558

RESUMO

Despite the fact that the majority of lung cancer deaths are due to metastasis, the molecular mechanisms driving metastatic progression are poorly understood. Here, we present evidence that loss of Foxa2 and Cdx2 synergizes with loss of Nkx2-1 to fully activate the metastatic program. These three lineage-specific transcription factors are consistently down-regulated in metastatic cells compared with nonmetastatic cells. Knockdown of these three factors acts synergistically and is sufficient to promote the metastatic potential of nonmetastatic cells to that of naturally arising metastatic cells in vivo. Furthermore, silencing of these three transcription factors is sufficient to account for a significant fraction of the gene expression differences between the nonmetastatic and metastatic states in lung adenocarcinoma, including up-regulated expression of the invadopodia component Tks5long, the embryonal proto-oncogene Hmga2, and the epithelial-to-mesenchymal mediator Snail. Finally, analyses of tumors from a genetically engineered mouse model and patients show that low expression of Nkx2-1, Foxa2, and Cdx2 strongly correlates with more advanced tumors and worse survival. Our findings reveal that a large part of the complex transcriptional network in metastasis can be controlled by a small number of regulatory nodes that function redundantly, and loss of multiple nodes is required to fully activate the metastatic program.


Assuntos
Adenocarcinoma/fisiopatologia , Fator 3-beta Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/metabolismo , Neoplasias Pulmonares/fisiopatologia , Metástase Neoplásica/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/mortalidade , Adenocarcinoma de Pulmão , Animais , Animais Geneticamente Modificados , Fator de Transcrição CDX2 , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Inativação Gênica , Fator 3-beta Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Camundongos , Camundongos Nus , Proteínas Nucleares/genética , Proto-Oncogene Mas , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/genética
19.
Am J Respir Crit Care Med ; 204(10): 1180-1192, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34473939

RESUMO

Rationale: Ground-glass opacity (GGO)-associated lung cancers are common and radiologically distinct clinical entities known to have an indolent clinical course and superior survival, implying a unique underlying biology. However, the molecular and immune characteristics of GGO-associated lung nodules have not been systemically studied. Objectives: To provide mechanistic insights for the treatment of these radiologically distinct clinical entities. Methods: We initiated a prospective cohort study to collect and characterize pulmonary nodules with GGO components (nonsolid and part-solid nodules) or without GGO components, as precisely quantified by using three-dimensional image reconstruction to delineate the molecular and immune features associated with GGO. Multiomics assessment conducted by using targeted gene panel sequencing, RNA sequencing, TCR (T-cell receptor) sequencing, and circulating tumor DNA detection was performed. Measurements and Main Results: GGO-associated lung cancers exhibited a lower tumor mutation burden than solid nodules. Transcriptomic analysis revealed a less active immune environment in GGO components and immune pathways, decreased expression of immune activation markers, and less infiltration of most immune-cell subsets, which was confirmed by using multiplex immunofluorescence. Furthermore, T-cell repertoire sequencing revealed lower T-cell expansion in GGO-associated lung cancers. HLA loss of heterozygosity was significantly less common in lung adenocarcinomas with GGO components than in those without. Circulating tumor DNA analysis suggested that the release of tumor DNA to the peripheral blood was correlated with the tumor size of non-GGO components. Conclusions: Compared with lung cancers presenting with solid lung nodules, GGO-associated lung cancers are characterized by a less active metabolism and a less active immune microenvironment, which may be the mechanisms underlying their indolent clinical course. Clinical trial registered with www.clinicaltrials.gov (NCT03320044).


Assuntos
Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/fisiopatologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/fisiopatologia , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/fisiopatologia , Nódulo Pulmonar Solitário/diagnóstico , Nódulo Pulmonar Solitário/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Estudos de Coortes , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos
20.
Genes Dev ; 28(6): 561-75, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24589553

RESUMO

Oncogene-induced senescence (OIS) is proposed as a cellular defense mechanism that restrains malignant progression of oncogene-expressing, initiated tumor cells. Consistent with this, expression of BRAF(V600E) in the mouse lung epithelium elicits benign tumors that fail to progress to cancer due to an apparent senescence-like proliferative arrest. Here we demonstrate that nuclear ß-catenin → c-MYC signaling is essential for early stage proliferation of BRAF(V600E)-induced lung tumors and is inactivated in the subsequent senescence-like state. Furthermore, either ß-catenin silencing or pharmacological blockade of Porcupine, an acyl-transferase essential for WNT ligand secretion and activity, significantly inhibited BRAF(V600E)-initiated lung tumorigenesis. Conversely, sustained activity of ß-catenin or c-MYC significantly enhanced BRAF(V600E)-induced lung tumorigenesis and rescued the anti-tumor effects of Porcupine blockade. These data indicate that early stage BRAF(V600E)-induced lung tumors are WNT-dependent and suggest that inactivation of WNT → ß-catenin → c-MYC signaling is a trigger for the senescence-like proliferative arrest that constrains the expansion and malignant progression of BRAF(V600E)-initiated lung tumors. Moreover, these data further suggest that the trigger for OIS in initiated BRAF(V600E)-expressing lung tumor cells is not simply a surfeit of signals from oncogenic BRAF but an insufficiency of WNT → ß-catenin → c-MYC signaling. These data have implications for understanding how genetic abnormalities cooperate to initiate and promote lung carcinogenesis.


Assuntos
Neoplasias Pulmonares/fisiopatologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Neoplasias Pulmonares/genética , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA