RESUMO
PURPOSE: Neuronavigation, explored as an intra-operative adjunct for brain tumor surgery three decades ago, has become globally utilized with a promising upward trajectory. This study aims to chart its success from idea to adoption and evolution within the US and globally. METHODS: A three-pronged methodology included a systematic literature search, impact analysis using NIH relative citation ratio (RCR) and Altmetric scores, and assessment of patent holdings. Data was dichotomized for US and international contexts. RESULTS: The first neuronavigation publication stemmed from Finland in 1993, marking its inception. Over three decades, the cumulative number of 323 studies, along with the significantly increasing publication trend (r = 0.74, p < 0.05) and distribution across 34 countries, underscored its progressive and global adoption. Neuronavigation, mostly optical systems (58%), was utilized in over 19,000 cases, predominantly for brain tumor surgery (84%). Literature impact showed a robust cumulative median RCR score surpassing that for NIH-funded studies (1.37 vs. 1.0), with US studies having a significantly higher median RCR than international (1.71 vs. 1.21, p < 0.05). Technological evolution was characterized by adjuncts, including micro/exo/endoscope (21%), MRI (17%), ultrasound (10%), and CT (7%). Patent analysis demonstrated academic and industrial representation with an interdisciplinary convergence of medical and computational sciences. CONCLUSION: Since its inception thirty years ago, neuronavigation has been adopted worldwide, and it has evolved with adjunct technology integration to enhance its meaningful use. The current neuronavigation innovation pipeline is progressing, with academic and industry partnering to advance its further application in treating brain tumor patients.
Assuntos
Neoplasias Encefálicas , Neuronavegação , Neuronavegação/métodos , Humanos , Neoplasias Encefálicas/cirurgia , Procedimentos Neurocirúrgicos/métodos , História do Século XXIRESUMO
Certain sulci of the human cerebral cortex hold consistent relationships to cytoarchitectonic areas (e.g. the primary motor cortical area 4 and the somatosensory cortical area 3 occupy the anterior and posterior banks of the central sulcus, respectively). Recent research has improved knowledge of the cortical sulci and their variability across individuals. However, other than the so-called primary sulci, understanding of the precise relationships cortical folds hold with many cytoarchitectonic areas remains elusive. To examine these relationships, the cortex must be blocked, sectioned, and histologically processed in a manner that allows the cytoarchitectonic layers to be clearly observed. The optimal strategy to view the cytoarchitecture is to block and section the cortex perpendicular to the sulcal orientation. Most cytoarchitectonic investigations of the cortex, however, have been conducted on specimens cut along a single axis (e.g. the coronal plane), which distorts the appearance of the cytoarchitectonic layers within parts of the cortical ribbon not sectioned optimally. Thus, to understand further the relationships between sulci and cytoarchitectonic areas, the cortex should be sectioned optimally to the sulci of interest. A novel approach for blocking the cortex optimally using structural magnetic resonance imaging (MRI) and surgical neuronavigation tools is presented here.
Assuntos
Córtex Cerebral , Neuronavegação , Humanos , Córtex Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Córtex SomatossensorialRESUMO
BACKGROUND The BrainLab VectorVision neuronavigation system is an image-guided, frameless localization system used intraoperatively, which includes a computer workstation for viewing and analyzing operative microscopic images. This retrospective study aimed to evaluate the use of the BrainLab VectorVision infrared-based neuronavigation imaging system in 80 patients with intracranial meningioma removed surgically between 2013 and 2023. MATERIAL AND METHODS Data were retrospectively collected from 36 patients with convexity meningioma and 44 patients with parasagittal meningioma between 2013 and 2023. The surgical operation of 40 of these patients was performed with the help of neuronavigation, while the other 40 were performed without neuronavigation. Demographic data, preoperative and postoperative radiologic images, craniotomy measurements, surgical complications, and operative times of patients with and without neuronavigation were analyzed. RESULTS Using neuronavigation significantly increased surgery duration (P=0.023). In 6 patients without the use of neuronavigation, the craniotomy had to be enlarged and this resulted in superior sagittal sinus (SSS) damage (P=0.77, P=0.107). Patients for whom neuronavigation was used did not experience any sinus damage and did not require craniotomy enlargement. Postoperative epidural hematoma (EH) developed in 9 patients without navigation, whereas it developed in only 1 patient with navigation (P=0.104). Residual tumors were less common in patients using navigation (P=0.237). CONCLUSIONS The use of neuronavigation allows the incision and craniotomy to be reduced in size. Intraoperatively, it allows the surgeon to master the boundaries of the tumor and surrounding vascular structures, reducing the risk of complications. These results suggest that neuronavigation systems are an effective ancillary in meningioma surgery.
Assuntos
Neoplasias Meníngeas , Meningioma , Neuronavegação , Humanos , Meningioma/cirurgia , Meningioma/patologia , Meningioma/diagnóstico por imagem , Neuronavegação/métodos , Feminino , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , Neoplasias Meníngeas/cirurgia , Adulto , Idoso , Resultado do Tratamento , Craniotomia/métodos , Cirurgia Assistida por Computador/métodos , Procedimentos Neurocirúrgicos/métodos , Complicações Pós-Operatórias/etiologiaRESUMO
Neurosurgical procedures are some of the most complex procedures in medicine and since the advent of the field, planning, performing, and learning them has challenged the neurosurgeon. Virtual reality (VR) and augmented reality (AR) are making these challenges more manageable. VR refers to a virtual digital environment that can be experienced usually through use of stereoscopic glasses and controllers. AR, on the other hand, fuses the natural environment with virtual images, such as superimposing a preoperative MRI image on to the surgical field [1]. They initially were used primarily as neuronavigational tools but soon their potential in other areas of surgery, such as planning, education, and assessment, was noted and explored. Through this chapter, we outline the history and evolution of these two technologies over the past few decades, describe the current state of the technology and its uses, and postulate future directions for research and implementation.
Assuntos
Realidade Aumentada , Procedimentos Neurocirúrgicos , Realidade Virtual , Humanos , Procedimentos Neurocirúrgicos/métodos , Criança , Neurocirurgia/métodos , Pediatria/métodos , Neuronavegação/métodosRESUMO
The primary objective of surgery for brain tumor resection has always been maximizing safe resection while minimizing the risk to normal brain tissue. Technological advances applied in the operating room help surgeons to achieve this objective. This chapter discusses specific tools and approaches in the operating environment that target safe surgery for brain tumors in children, with a focus on pathologies in the sellar/suprasellar region. Particular focus is given to tools that help with safe patient positioning; intraoperative imaging modalities; and chemical visualization adjuncts. Both static (preoperative images used for neuronavigation) and dynamic (images updated during the procedure) intraoperative imaging modalities are discussed. There is further overview of operative rehearsal and preparation strategies, which are rapidly evolving as virtual reality systems become more commonplace. While the rapid evolution of intraoperative adjuncts in neurosurgery means the status of a given technology as novel is quite transient, this chapter offers a snapshot of the current state of advanced intraoperative tools for pediatric brain tumor surgery.
Assuntos
Neoplasias Encefálicas , Procedimentos Neurocirúrgicos , Humanos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Criança , Procedimentos Neurocirúrgicos/métodos , Neuronavegação/métodosRESUMO
Mucopolysaccharidosis type II (MPS II) results from the genetic deficiency of a lysosomal enzyme and is associated with central nervous system (CNS) dysfunction. In Japan, in addition to intravenous enzyme administration, intracerebroventricular enzyme delivery through the Ommaya reservoir has recently gained approval. Nevertheless, the ideal approach for safely implanting the reservoir into the narrow ventricles of infantile MPS II patients remains uncertain. In this report, we present two cases of successful reservoir placement in infantile MPS II patients using ultrasound guidance via the anterior fontanelle, coupled with flameless electromagnetic neuronavigation.
Assuntos
Fontanelas Cranianas , Mucopolissacaridose II , Humanos , Neuronavegação/métodos , Fenômenos Eletromagnéticos , Sistemas de Liberação de Medicamentos/métodosRESUMO
PURPOSE: The aim of this study was to evaluate the diagnostic value and accuracy of navigated intraoperative ultrasound (iUS) in pediatric oncological neurosurgery as compared to intraoperative magnetic resonance imaging (iMRI). METHODS: A total of 24 pediatric patients undergoing tumor debulking surgery with iUS, iMRI, and neuronavigation were included in this study. Prospective acquisition of iUS images was done at two time points during the surgical procedure: (1) before resection for tumor visualization and (2) after resection for residual tumor assessment. Dice similarity coefficients (DSC), Hausdorff distances 95th percentiles (HD95) and volume differences, sensitivity, and specificity were calculated for iUS segmentations as compared to iMRI. RESULTS: A high correlation (R = 0.99) was found for volume estimation as measured on iUS and iMRI before resection. A good spatial accuracy was demonstrated with a median DSC of 0.72 (IQR 0.14) and a median HD95 percentile of 4.98 mm (IQR 2.22 mm). The assessment after resection demonstrated a sensitivity of 100% and a specificity of 84.6% for residual tumor detection with navigated iUS. A moderate accuracy was observed with a median DSC of 0.58 (IQR 0.27) and a median HD95 of 5.84 mm (IQR 4.04 mm) for residual tumor volumes. CONCLUSION: We found that iUS measurements of tumor volume before resection correlate well with those obtained from preoperative MRI. The accuracy of residual tumor detection was reliable as compared to iMRI, indicating the suitability of iUS for directing the surgeon's attention to areas suspect for residual tumor. Therefore, iUS is considered as a valuable addition to the neurosurgical armamentarium. TRIAL REGISTRATION NUMBER AND DATE: PMCLAB2023.476, February 12th 2024.
Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Neuronavegação , Humanos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Criança , Masculino , Feminino , Neuronavegação/métodos , Pré-Escolar , Adolescente , Imageamento por Ressonância Magnética/métodos , Lactente , Procedimentos Neurocirúrgicos/métodos , Estudos Prospectivos , Ultrassonografia/métodos , Monitorização Intraoperatória/métodos , Neoplasia Residual/diagnóstico por imagemRESUMO
BACKGROUND AND OBJECTIVES: Robot-assisted biopsies have gained popularity in the last years. Most robotic procedures are performed with a floor-based robotic arm. Recently, Medtronic Stealth Autoguide, a miniaturized robotic arm that work together with an optical neuronavigation system, was launched. Its application in pediatric cases is relatively unexplored. In this study, we retrospectively report our experience using the Stealth Autoguide, for frameless stereotactic biopsies in pediatric patients. METHODS: Pediatric patients who underwent stereotactic biopsy using the Stealth Autoguide cranial robotic platform from July 2020 to May 2023 were included in this study. Clinical, neuroradiological, surgical, and histological data were collected and analyzed. RESULTS: Nineteen patients underwent 20 procedures (mean age was 9-year-old, range 1-17). In four patients, biopsy was part of a more complex surgical procedure (laser interstitial thermal therapy - LITT). The most common indication was diffuse intrinsic brain stem tumor, followed by diffuse supratentorial tumor. Nine procedures were performed in prone position, eight in supine position, and three in lateral position. Facial surface registration was adopted in six procedures, skull-fixed fiducials in 14. The biopsy diagnostic tissue acquisition rate was 100% in the patients who underwent only biopsy, while in the biopsy/LITT group, one case was not diagnostic. No patients developed clinically relevant postoperative complications. CONCLUSION: The Stealth Autoguide system has proven to be safe, diagnostic, and highly accurate in performing stereotactic biopsies for both supratentorial and infratentorial lesions in the pediatric population.
Assuntos
Biópsia Guiada por Imagem , Procedimentos Cirúrgicos Robóticos , Humanos , Criança , Masculino , Feminino , Pré-Escolar , Adolescente , Procedimentos Cirúrgicos Robóticos/métodos , Procedimentos Cirúrgicos Robóticos/instrumentação , Estudos Retrospectivos , Biópsia Guiada por Imagem/instrumentação , Biópsia Guiada por Imagem/métodos , Lactente , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neuronavegação/métodos , Neuronavegação/instrumentação , Técnicas Estereotáxicas/instrumentaçãoRESUMO
This study reviews lateral ventricular tumors (LVTs), which are rare brain lesions accounting for 0.64-3.5% of brain tumors, and the unique challenges they present due to their location and growth patterns. Once deemed inoperable, advancements in microneurosurgery, imaging, and tumor pathobiology have significantly improved treatment outcomes. This letter summarizes recent studies and key findings in the management of LVTs. Research by S.A. Maryashev et al. identified risk factors for early hemorrhagic complications following the surgical resection of lateral ventricular neoplasms, highlighting the significance of patient characteristics, tumor location, and surgical approach. The study found that factors such as gender, hydrocephalus, tumor blood flow, and Evans index correlate with a higher risk of hemorrhage, with the transcallosal approach having a greater risk compared to the transcortical approach. The utilization of navigation technologies, including fMRI, neuronavigation, and intraoperative brain mapping, has been shown to reduce surgical complications and enhance patient outcomes in the treatment of lateral ventricular meningiomas. Moreover, endoscopic and endoport-assisted endoscopic techniques have proven to be valuable in intraventricular tumor surgery, enabling minimally invasive procedures with better visualization and fewer complications. The integration of advanced surgical techniques, neuroimaging, and neurophysiological monitoring emphasizes the necessity of a multidisciplinary approach to optimize patient outcomes. To improve the study's validity and applicability, further research with larger sample sizes and advanced statistical analyses is needed. This letter advocates for the continued exploration of innovative surgical techniques and technologies to enhance the management of lateral ventricular tumors.
Assuntos
Neoplasias do Ventrículo Cerebral , Procedimentos Neurocirúrgicos , Humanos , Neoplasias do Ventrículo Cerebral/cirurgia , Procedimentos Neurocirúrgicos/métodos , Resultado do Tratamento , Neuronavegação/métodosRESUMO
PURPOSE: Here, we conducted a meta-analysis to explore the use of intraoperative ultrasound (iUS)-guided resection in patients diagnosed with high-grade glioma (HGG) or glioblastoma (GBM). Our aim was to determine whether iUS improves clinical outcomes compared to conventional neuronavigation (CNN). METHODS: Databases were searched until April 21, 2023 for randomized controlled trials (RCTs) and observational cohort studies that compared surgical outcomes for patients with HGG or GBM with the use of either iUS in addition to standard approach or CNN. The primary outcome was overall survival (OS). Secondary outcomes include volumetric extent of resection (EOR), gross total resection (GTR), and progression-free survival (PFS). Outcomes were analyzed by determining pooled relative risk ratios (RR), mean difference (MD), and standardized mean difference (SMD) using random-effects model. RESULTS: Of the initial 867 articles, only 7 articles specifically met the inclusion criteria (1 RCT and 6 retrospective cohorts). The analysis included 732 patients. Compared to CNN, the use of iUS was associated with higher OS (SMD = 0.26,95%CI=[0.12,0.39]) and GTR (RR = 2.02; 95% CI=[1.31,3.1]) for both HGG and GBM. There was no significant difference in PFS or EOR. CONCLUSION: The use of iUS in surgical resections for HGG and GBM can improve OS and GTR compared to CNN, but it did not affect PFS. These results suggest that iUS reduces mortality associated with HGG and GBM but not the risk of recurrence. These results can provide valuable cost-effective interventions for neurosurgeons in HGG and GBM surgery.
Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Bases de Dados Factuais , Neuronavegação , NeurocirurgiõesRESUMO
OBJECTIVE: This study aimed to rigorously assess the accuracy of mixed-reality neuronavigation (MRN) in comparison with magnetic neuronavigation (MN) through a comprehensive phantom-based experiment. It introduces a novel dimension by examining the influence of blue-green light (BGL) on MRN accuracy, a previously unexplored avenue in this domain. METHODS: Twenty-nine phantoms, each meticulously marked with 5-6 fiducials, underwent CT scans as part of the navigation protocol. A 3D model was then superimposed onto a 3D-printed plaster skull using a semiautomatic registration process. The study meticulously evaluated the accuracy of both navigation techniques by pinpointing specific markers on the plaster surface. Precise measurements were then taken using digital calipers, with navigation conducted under three distinct lighting conditions: indirect white light (referred to as no light [NL]), direct white light (WL), and BGL. The research enlisted two operators with distinct levels of experience, one senior and one junior, to ensure a comprehensive analysis. The study was structured into two distinct experiments (experiment 1 [MN] and experiment 2 [MRN]) conducted by the two operators. Data analysis focused on calculating average and median values within subgroups, considering variables such as the type of lighting, precision, and recording time. RESULTS: In experiment 1, no statistically significant differences emerged between the two operators. However, in experiment 2, notable disparities became apparent, with the senior operator recording longer times but achieving higher precision. Most significantly, BGL consistently demonstrated a capacity to enhance accuracy in MRN across both experiments. CONCLUSIONS: This study demonstrated the substantial positive influence of BGL on MRN accuracy, providing profound implications for the design and implementation of mixed-reality systems. It also emphasized that integrating BGL into mixed-reality environments could profoundly improve user experience and performance. Further research is essential to validate these findings in real-world settings and explore the broader potential of BGL in a variety of mixed-reality applications.
Assuntos
Realidade Aumentada , Neuronavegação , Humanos , Neuronavegação/métodos , Luz Verde , Tomografia Computadorizada por Raios X , CrânioRESUMO
OBJECTIVE: The surgical approach to lesions near eloquent areas continues to represent a challenge for neurosurgeons, despite all of the sophisticated tools currently used. The goal of surgery in eloquent areas is to maintain a good oncofunctional balance, that is, to preserve neurological function and ensure maximum tumor resection. Among all the available tools, extended reality (used to describe both virtual reality [VR] and mixed reality) is rapidly gaining a pivotal role in such delicate lesions, especially in preoperative planning, and recently, even during the surgical procedure. VR creates a completely new world in which only digital components are present. Augmented reality (AR), using software and hardware to introduce digital elements into the real-world environment, enhances the human experience. In addition, mixed reality, a more recent technique, combines VR and AR by projecting virtual objects into the real world, allowing the user to interact with them. METHODS: A systematic literature review of the last 23.5 years was conducted (January 2000-June 2023) to investigate and discuss all progress related to the emerging role and use of these new technologies (VR, AR, and mixed reality), particularly in eloquent area lesions as a pre- and/or intraoperative tool. RESULTS: Five hundred eighty-four published studies were identified. After removing duplicates and excluding articles that did not meet the inclusion criteria, 21 papers were included in the systematic review. The use of AR or VR was fully analyzed, considering their roles both intraoperatively and for surgical planning. CONCLUSIONS: The increasing use of such innovative technologies has completely changed the way to approach a lesion, using 3D visualization to foster a better understanding of its anatomical and vascular characteristics.
Assuntos
Realidade Aumentada , Cirurgia Assistida por Computador , Realidade Virtual , Humanos , Cirurgia Assistida por Computador/métodos , Neuronavegação/métodos , Interface Usuário-ComputadorRESUMO
OBJECTIVE: Virtual simulation and imaging systems have evolved as advanced products of computing technology over the years. With advancements in mobile technology, smartphones, and tablets, the quality of display and processing speed have gradually improved, thanks to faster central processing units with higher capacity. Integrating these two technologies into the fields of healthcare and medical education has had a positive impact on surgical training. However, contemporary neurosurgical planning units are expensive and integrated neuronavigation systems in operating rooms require additional accessories. The aim of this study was to investigate the compatibility of smartphone applications in augmented reality (AR)-based craniotomy planning, which can be available even in disadvantaged workplaces with insufficient facilities. METHODS: Thirty patients diagnosed with supratentorial glial tumor and who underwent operations between January 2022 and March 2023 were included in the study. The entire stages of the surgical procedures and the surgical plans were executed with neuronavigation systems. The patient CT scans were reconstructed using software and exported as a 3D figure to an AR-enhanced smartphone application. The evaluation of the application's success was based on the spatial relationship of the AR-based artificial craniotomy to the neuronavigation-based craniotomy, with each AR-based craniotomy scaled from 0 to 3. RESULTS: In the comparison between neuronavigation-based and AR fusion-based craniotomies, 8 of 30 (26.6%) patients scored 0 and were considered failed, 6 (20%) scored 1 and were considered ineffective, 7 (23.3%) scored 2 and were considered acceptable, and 9 (30%) scored 3 and were considered favorable. CONCLUSIONS: AR technology has great potential to be a revolutionary milestone of neurosurgical planning, training, and education in the near future. In the authors' opinion, with the necessary legal permissions, there is no obstacle to the integration of surgical technological systems with mobile technology devices such as smartphones and tablets that benefit from their low-budget requirements, wide-range availability, and built-in operating systems.
Assuntos
Realidade Aumentada , Neoplasias Supratentoriais , Humanos , Smartphone , Procedimentos Neurocirúrgicos/métodos , Craniotomia , Neuronavegação/métodos , CrânioRESUMO
OBJECTIVE: The objective of this study was to assess the intraoperative accuracy and feasibility of 3D-printed marker-based mixed-reality neurosurgical navigation for spinal intradural pathologies. METHODS: The authors produced 3D segmentations of spinal intradural tumors with neighboring structures by using combined CT and MRI, and preoperative registration of pathology and markers was successfully performed. A patient-specific, surgeon-facilitated application for mobile devices was built, and a mixed-reality light detection and ranging (LIDAR) camera on a mobile device was employed for cost-effective, high-accuracy spinal neuronavigation. RESULTS: Mobile device LIDAR cameras can successfully overlay images of virtual tumor segmentations according to the position of a 3D-printed marker. The surgeon can visualize and manipulate 3D segmentations of the pathology intraoperatively in 3D. CONCLUSIONS: A 3D-printed marker-based mixed-reality spinal neuronavigation technique was performed in spinal intradural pathology procedures and has potential to be clinically feasible and easy to use for surgeons, as well as being time saving, cost-effective, and highly precise for spinal surgical procedures.
Assuntos
Realidade Aumentada , Neoplasias da Medula Espinal , Neoplasias da Coluna Vertebral , Cirurgia Assistida por Computador , Humanos , Neuronavegação/métodos , Procedimentos Neurocirúrgicos/métodos , Imageamento por Ressonância Magnética , Neoplasias da Medula Espinal/diagnóstico por imagem , Neoplasias da Medula Espinal/cirurgia , Cirurgia Assistida por Computador/métodos , Imageamento Tridimensional/métodosRESUMO
OBJECTIVE: This study aimed to evaluate the impact of augmented reality intraoperative fiber tractography (AR-iFT) on extent of resection (EOR), motor functional outcome, and survival of patients with primary motor area (M1) intra-axial malignant tumors. METHODS: Data obtained from patients who underwent AR-iFT for M1 primary tumors were retrospectively analyzed and compared with those from a control group who underwent unaugmented reality intraoperative fiber tractography (unAR-iFT). A full asleep procedure with electrical stimulation mapping and fluorescein guidance was performed in both groups. The Neurological Assessment in Neuro-Oncology (NANO), Medical Research Council (MRC), and House-Brackmann grading systems were used for neurological, motor, and facial nerve assessment, respectively. Three-month postoperative NANO and MRC scores were used as outcome measures of the safety of the technique, whereas EOR and survival curves were related to its cytoreductive efficacy. In this study, p < 0.05 indicated statistical significance. RESULTS: This study included 34 and 31 patients in the AR-iFT and unAR-iFT groups, respectively. The intraoperative seizure rate, 3-month postoperative NANO score, and 1-week and 1-month MRC scores were significantly (p < 0.05) different and in favor of the AR-iFT group. However, no difference was observed in the rate of complications. Glioma had incidence rates of 58.9% and 51.7% in the study and control groups, respectively, with no statistical difference. Metastasis had a slightly higher incidence rate in the control group, without statistical significance, and the gross-total resection and near-total resection rates and progression-free survival (PFS) rate were higher in the study group. Overall survival was not affected by the technique. CONCLUSIONS: AR-iFT proved to be feasible, effective, and safe during surgery for M1 tumors and positively affected the EOR, intraoperative seizure rate, motor outcome, and PFS. Integration with electrical stimulation mapping is critical to achieve constant anatomo-functional intraoperative feedback. The accuracy of AR-iFT is intrinsically limited by diffusion tensor-based techniques, parallax error, and fiber tract crowding. Further studies are warranted to definitively validate the benefits of augmented reality navigation in this surgical scenario.
Assuntos
Realidade Aumentada , Neoplasias Encefálicas , Córtex Motor , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Estudos Retrospectivos , Córtex Motor/diagnóstico por imagem , Córtex Motor/cirurgia , Neuronavegação/métodos , Convulsões/cirurgiaRESUMO
BACKGROUND: Surgical treatment for trigeminal neuralgia includes percutaneous techniques, including balloon compression, first described in 1983 by Mullan and Lichtor (J Neurosurg 59(6):1007-1012, 6). METHOD: Here we present a safe and simple navigation-assisted percutaneous technique for balloon compression, which can also be used for glycerol injection. CONCLUSION: The navigation-assisted percutaneous technique for balloon compression for trigeminal neuralgia is a quick and safe treatment for patients not candidates for microvascular decompression.
Assuntos
Neuronavegação , Gânglio Trigeminal , Neuralgia do Trigêmeo , Neuralgia do Trigêmeo/cirurgia , Humanos , Neuronavegação/métodos , Gânglio Trigeminal/cirurgiaRESUMO
BACKGROUND: Radiofrequency thermorhizotomy (TRZ) is an established treatment for trigeminal neuralgia (TN). TRZ can result risky and painful in a consistent subset of patients, due to the need to perform multiple trajectories, before a successful foramen ovale cannulation. Moreover, intraoperative x-rays are required. METHOD: TRZ has been performed by using a neuronavigated stylet, before trajectory planning on a dedicated workstation. CONCLUSION: Navigated-TRZ (N-TRZ) meets the expectations of a safer and more tolerable procedure due to the use of a single trajectory, avoiding critical structures. Moreover, N-TRZ is x-ray free. Efficacy outcomes are similar to those reported in literature.
Assuntos
Neuronavegação , Rizotomia , Neuralgia do Trigêmeo , Neuralgia do Trigêmeo/cirurgia , Neuralgia do Trigêmeo/diagnóstico por imagem , Humanos , Rizotomia/métodos , Neuronavegação/métodos , Resultado do Tratamento , Ablação por Cateter/métodos , Ablação por Cateter/instrumentação , Feminino , Ablação por Radiofrequência/métodosRESUMO
INTRODUCTION: Lumbar spine fixation and fusion is currently performed with intraoperative tools such as intraoperative CT scan integrated to navigation system to provide accurate and safe positioning of the screws. The use of microscopic visualization systems enhances visualization and accuracy during decompression of the spinal canal as well. METHODS: We introduce a novel setting in microsurgical decompression and fusion of lumbar spine using an exoscope with robotized arm (RoboticScope) interfaced with navigation and head mounted displays. CONCLUSION: Spinal canal decompression and fusion can effectively be performed with RoboticScope, with significant advantages especially regarding ergonomics.
Assuntos
Descompressão Cirúrgica , Vértebras Lombares , Procedimentos Cirúrgicos Robóticos , Fusão Vertebral , Humanos , Vértebras Lombares/cirurgia , Vértebras Lombares/diagnóstico por imagem , Descompressão Cirúrgica/métodos , Descompressão Cirúrgica/instrumentação , Fusão Vertebral/métodos , Fusão Vertebral/instrumentação , Procedimentos Cirúrgicos Robóticos/métodos , Procedimentos Cirúrgicos Robóticos/instrumentação , Neuronavegação/métodos , Neuronavegação/instrumentação , Microcirurgia/métodos , Microcirurgia/instrumentaçãoRESUMO
BACKGROUND: Intraoperative ultrasound (IOUS) is a profitable tool for neurosurgical procedures' assistance, especially in neuro-oncology. It is a rapid, ergonomic and reproducible technique. However, its known handicap is a steep learning curve for neurosurgeons. Here, we describe an interesting postoperative analysis that provides extra feedback after surgery, accelerating the learning process. METHOD: We conducted a descriptive retrospective unicenter study including patients operated from intra-axial brain tumors using neuronavigation (Curve, Brainlab) and IOUS (BK-5000, BK medical) guidance. All patients had preoperative Magnetic Resonance Imaging (MRI) prior to tumor resection. During surgery, 3D neuronavigated IOUS studies (n3DUS) were obtained through craniotomy N13C5 transducer's integration to the neuronavigation system. At least two n3DUS studies were obtained: prior to tumor resection and at the resection conclusion. A postoperative MRI was performed within 48 h. MRI and n3DUS studies were posteriorly fused and analyzed with Elements (Brainlab) planning software, permitting two comparative analyses: preoperative MRI compared to pre-resection n3DUS and postoperative MRI to post-resection n3DUS. Cases with incomplete MRI or n3DUS studies were withdrawn from the study. RESULTS: From April 2022 to March 2024, 73 patients were operated assisted by IOUS. From them, 39 were included in the study. Analyses comparing preoperative MRI and pre-resection n3DUS showed great concordance of tumor volume (p < 0,001) between both modalities. Analysis comparing postoperative MRI and post-resection n3DUS also showed good concordance in residual tumor volume (RTV) in cases where gross total resection (GTR) was not achieved (p < 0,001). In two cases, RTV detected on MRI that was not detected intra-operatively with IOUS could be reviewed in detail to recheck its appearance. CONCLUSIONS: Post-operative comparative analyses between IOUS and MRI is a valuable tool for novel ultrasound users, as it enhances the amount of feedback provided by cases and could accelerate the learning process, flattening this technique's learning curve.
Assuntos
Neoplasias Encefálicas , Curva de Aprendizado , Imageamento por Ressonância Magnética , Neuronavegação , Humanos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Masculino , Neuronavegação/métodos , Pessoa de Meia-Idade , Feminino , Adulto , Idoso , Procedimentos Neurocirúrgicos/métodos , Procedimentos Neurocirúrgicos/educação , Monitorização Intraoperatória/métodos , Ultrassonografia de Intervenção/métodosRESUMO
BACKGROUND: The questions of whether the spatial resolution of navigated 3D-ultrasound (3D-US) power-Doppler angiography imaging rendered by existing 3D-US systems is sufficient for the intraoperative visualization of cerebral aneurysms, and in what percentage of cases, are largely unanswered. A study on this topic is lacking in the literature. METHODS: From 2015 to 2022, we performed 86 surgeries on 83 aneurysm patients. Navigated 3D-US was used at the discretion of the operating neurosurgeons when available (i.e., not being used during parallel tumor surgeries). Twenty-five aneurysms (15 ruptured) were operated on using 3D-US; 22 aneurysms were located at the middle cerebral artery (MCA). Patient 3D-US power-Doppler angiography images and surgical reports were retrospectively reviewed to assess the intraoperative ultrasound visibility of aneurysms. RESULTS: In 20 patients (80%) the aneurysms were successfully visualized. In five patients (20%), the aneurysms visualization was insufficient or absent. Nineteen of 22 aneurysms (86.4%) were visualized in the MCA aneurysm subgroup. We observed no association between aneurysm visibility and aneurysm size or the presence of subarachnoid hemorrhage. In the subgroup of MCA aneurysms, no association between aneurysm visibility and the presence of subarachnoid hemorrhage was found; a trend toward poor sonographic visibility of smaller aneurysms was observed (p = 0.09). CONCLUSIONS: Our initial data show that intraoperative 3D-US power-Doppler angiography, rendered by current navigated 3D-US systems, clearly depicts the majority of aneurysms in the MCA aneurysm subgroup. However, future prospective studies performed on a higher number of aneurysms localized at various anatomic sites are needed to confirm our initial findings and determine their potential clinical relevance.