RESUMO
In response to increasing global warming, extreme heat stress significantly alters photosynthetic production. While numerous studies have investigated the temperature effects on photosynthesis, factors like vapour pressure deficit (VPD), leaf nitrogen, and feedback of sink limitation during and after extreme heat stress remain underexplored. This study assessed photosynthesis calculations in seven rice growth models using observed maximum photosynthetic rate (Pmax ) during and after short-term extreme heat stress in multi-year environment-controlled experiments. Biochemical models (FvCB-type) outperformed light response curve-based models (LRC-type) when incorporating observed leaf nitrogen, photosynthetically active radiation, temperatures, and intercellular CO2 concentration (Ci ) as inputs. Prediction uncertainty during heat stress treatment primarily resulted from variation in temperatures and Ci . Improving FVPD (the slope for the linear effect of VPD on Ci /Ca ) to be temperature-dependent, rather than constant as in original models, significantly improved Ci prediction accuracy under heat stress. Leaf nitrogen response functions led to model variation in leaf photosynthesis predictions after heat stress, which was mitigated by calibrated nitrogen response functions based on active photosynthetic nitrogen. Additionally, accounting for observed differences in carbohydrate accumulation between panicles and stems during grain filling improved the feedback of sink limitation, reducing Ci overestimation under heat stress treatments.
Assuntos
Aquecimento Global , Resposta ao Choque Térmico , Nitrogênio , Oryza , Fotossíntese , Folhas de Planta , Dióxido de Carbono/fisiologia , Grão Comestível , Resposta ao Choque Térmico/fisiologia , Temperatura Alta/efeitos adversos , Modelos Biológicos , Nitrogênio/fisiologia , Oryza/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , TemperaturaRESUMO
The connection between soil nitrogen availability, leaf nitrogen, and photosynthetic capacity is not perfectly understood. Because these three components tend to be positively related over large spatial scales, some posit that soil nitrogen positively drives leaf nitrogen, which positively drives photosynthetic capacity. Alternatively, others posit that photosynthetic capacity is primarily driven by above-ground conditions. Here, we examined the physiological responses of a non-nitrogen-fixing plant (Gossypium hirsutum) and a nitrogen-fixing plant (Glycine max) in a fully factorial combination of light by soil nitrogen availability to help reconcile these competing hypotheses. Soil nitrogen stimulated leaf nitrogen in both species, but the relative proportion of leaf nitrogen used for photosynthetic processes was reduced under elevated soil nitrogen in all light availability treatments due to greater increases in leaf nitrogen content than chlorophyll and leaf biochemical process rates. Leaf nitrogen content and biochemical process rates in G. hirsutum were more responsive to changes in soil nitrogen than those in G. max, probably due to strong G. max investments in root nodulation under low soil nitrogen. Nonetheless, whole-plant growth was significantly enhanced by increased soil nitrogen in both species. Light availability consistently increased relative leaf nitrogen allocation to leaf photosynthesis and whole-plant growth, a pattern that was similar between species. These results suggest that the leaf nitrogen-photosynthesis relationship varies under different soil nitrogen levels and that these species preferentially allocated more nitrogen to plant growth and non-photosynthetic leaf processes, rather than photosynthesis, as soil nitrogen increased.
Assuntos
Nitrogênio , Solo , Nitrogênio/fisiologia , Fotossíntese/fisiologia , Clorofila , Plantas , Fertilização , Folhas de PlantaRESUMO
The plasticity of growth and development in response to environmental changes is one of the essential aspects of plant behavior. Cytokinins play an important role as signaling molecules in the long-distance communication between organs in systemic growth regulation in response to nitrogen. The spatial distribution of the expression sites of cytokinin biosynthesis genes leads to structural differences in the molecular species transported through the xylem and phloem, giving root-borne trans-hydroxylated cytokinins, namely trans-zeatin (tZ) type, a specialized efficacy in regulating shoot growth. Furthermore, root-to-shoot translocation via the xylem, tZ, and its precursor, the tZ riboside, controls different sets of shoot growth traits to fine-tune shoot growth in response to nitrogen availability. In addition to nitrogen, photosynthetically generated sugars positively regulate de novo cytokinin biosynthesis in the roots, and contribute to plant growth under elevated CO2 conditions. In shoot-to-root signaling, cytokinins also play a role in the regulation of nutrient acquisition and root system growth in cooperation with other types of signaling molecules, such as C-TERMINALLY ENCODED PEPTIDE DOWNSTREAMs. As cytokinin is a key regulator for the maintenance of shoot apical meristem, deepening our understanding of the regulatory mechanisms of cytokinin biosynthesis and transport in response to nitrogen is important not only for basic comprehension of plant growth, but also to ensure the stability of agricultural production.
Assuntos
Citocininas/biossíntese , Nitrogênio/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Transdução de Sinais , Transporte Biológico , Citocininas/metabolismo , Citocininas/fisiologia , Nitrogênio/fisiologia , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/fisiologiaRESUMO
Microalgae accumulate triacylglycerol (TAG) during nutrient deprivation and break it down after nutrient resupply, and these processes involve dramatic shifts in cellular carbon allocation. Due to the importance of algae in the global carbon cycle, and the potential of algal lipids as feedstock for chemical and fuel production, these processes are of both ecophysiological and biotechnological importance. However, the metabolism of TAG is not well understood, particularly the contributions of fatty acids (FAs) from different membrane lipids to TAG accumulation and the fate of TAG FAs during degradation. Here, we used isotopic labeling time course experiments on Chlamydomonas reinhardtii to track FA synthesis and transfer between lipid pools during nitrogen (N)-deprivation and resupply. When cells were labeled before N-deprivation, total levels of label in cellular FAs were unchanged during subsequent N-deprivation and later resupply, despite large fluxes into and out of TAG and membrane lipid pools. Detailed analyses of FA levels and labeling revealed that about one-third of acyl chains accumulating in TAG during N-deprivation derive from preexisting membrane lipids, and in total, at least 45% of TAG FAs passed through membrane lipids at one point. Notably, most acyl chains in membrane lipids during recovery after N-resupply come from TAG. Fluxes of polyunsaturated FAs from plastidic membranes into TAG during N-deprivation were particularly noteworthy. These findings demonstrate a high degree of integration of TAG and membrane lipid metabolism and highlight a role for TAG in storage and supply of membrane lipid components.
Assuntos
Membrana Celular/metabolismo , Proliferação de Células/fisiologia , Chlamydomonas reinhardtii/metabolismo , Ácidos Graxos/metabolismo , Nitrogênio/deficiência , Nitrogênio/fisiologia , Triglicerídeos/metabolismoRESUMO
Nitrogen (N) and phosphorus (P) are among the most important macronutrients for plant growth and development, and the most widely used as fertilizers. Understanding how plants sense and respond to N and P deficiency is essential to optimize and reduce the use of chemical fertilizers. Strigolactones (SLs) are phytohormones acting as modulators and sensors of plant responses to P deficiency. In the present work, we assess the potential role of SLs in N starvation and in the N-P signalling interplay. Physiological, transcriptional and metabolic responses were analysed in wild-type and SL-deficient tomato plants grown under different P and N regimes, and in plants treated with a short-term pulse of the synthetic SL analogue 2'-epi-GR24. The results evidence that plants prioritize N over P status by affecting SL biosynthesis. We also show that SLs modulate the expression of key regulatory genes of phosphate and nitrate signalling pathways, including the N-P integrators PHO2 and NIGT1/HHO. The results support a key role for SLs as sensors during early plant responses to both N and phosphate starvation and mediating the N-P signalling interplay, indicating that SLs are involved in more physiological processes than so far proposed.
Assuntos
Compostos Heterocíclicos com 3 Anéis/metabolismo , Lactonas/metabolismo , Nitrogênio/fisiologia , Fósforo/fisiologia , Transdução de Sinais , Solanum lycopersicum/fisiologiaRESUMO
The Chlamydomonas reinhardtii Compromised Hydrolysis of Triacylglycerols7 (CHT7) protein has been previously implicated in the regulation of DNA metabolism and cell-cycle-related gene expression during nitrogen (N) deprivation, and its predicted protein interaction domains are necessary for function. Here, we examined impacts of the cht7 mutation during the cell division cycle under nutrient deficiency in light-dark synchronized cultures. We explored the potential mechanisms affecting CHT7 complex activities during the cell cycle and N starvation, with a focus on the possible interaction between CHT7 and the C. reinhardtii retinoblastoma tumor suppressor (RB) protein homolog MAT3. Notably, the absence of CHT7 did not negatively impact the synchrony of cell division and cell cycle progression during diel growth. Although the majority of CHT7 and MAT3/RB proteins were observed in separate complexes by blue native-PAGE, the two proteins coimmunoprecipitated both during synchronized growth and following N deprivation, suggesting the presence of low abundance subcomplexes containing CHT7 and MAT3/RB. Furthermore, we observed several phosphorylated isoforms of CHT7 under these conditions. To test the potential role of phosphorylation on the structure and function of CHT7, we performed site-directed mutagenesis of previously identified phosphorylated amino acids within CHT7. These phosphorylated residues were dispensable for CHT7 function, but phosphorylated variants of CHT7 persisted, indicating that yet-unidentified residues within CHT7 are also likely phosphorylated. Based on the interaction of CHT7 and MAT3/RB, we postulate the presence of a low-abundance or transient regulatory complex in C. reinhardtii that may be similar to DREAM-like complexes in other organisms.
Assuntos
Adaptação Ocular/fisiologia , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/fisiologia , Adaptação à Escuridão/fisiologia , Estágios do Ciclo de Vida/genética , Estágios do Ciclo de Vida/fisiologia , Nitrogênio/fisiologia , Adaptação Ocular/genética , Adaptação à Escuridão/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , MutaçãoRESUMO
Nitrogen (N) element is essential nutrient, and affect metabolism of secondary metabolites in higher plants. Ascorbate peroxidase (APX) plays an important role in ascorbic acid (AsA) metabolism of tea plant. However, the roles of cytosolic ascorbate peroxidase 1 (CsAPX1) in AsA metabolism under N deficiency stress in tea plant remains unclear in detail. In this work, nitrogen regulatory protein P-II (CsGLB1) and CsAPX1 were identified by isobaric tags for relative and absolute quantitation (iTRAQ) from tea plant. The cell growth rates in transgenic Escherichia coli overexpressing CsAPX1 and CsGLB1 were higher than empty vector under N sufficiency condition. Phenotype of shoots and roots, AsA accumulation, and expression levels of AtAPX1 and AtGLB1 genes were changed in transgenic Arabidopsis hosting CsAPX1 under N deficiency stress. These findings suggested that cytosolic CsAPX1 acted a regulator in AsA accumulation through cooperating with GLB1 under N deficiency stress in tea plant.
Assuntos
Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Camellia sinensis/metabolismo , Nitrogênio/fisiologia , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascorbato Peroxidases/genética , Camellia sinensis/enzimologia , Camellia sinensis/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas PII Reguladoras de Nitrogênio/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Estresse Fisiológico/genéticaRESUMO
BACKGROUND: Plants are always exposed to dynamic light. The photosynthetic light use efficiency of leaves is lower in dynamic light than in uniform irradiance. Research on the influence of environmental factors on dynamic photosynthesis is very limited. Nitrogen is critical for plants, especially for photosynthesis. Low nitrogen (LN) decreases ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and thus limits photosynthesis. The decrease in Rubisco also delays photosynthetic induction in LN leaves; therefore, we hypothesized that the difference of photosynthetic CO2 fixation between uniform and dynamic light will be greater in LN leaves compared to leaves with sufficient nitrogen supply. RESULTS: To test this hypothesis, soybean plants were grown under low or high nitrogen (HN), and the photosynthetic gas exchange, enzyme activity and protein amount in leaves were measured under uniform and dynamic light. Unexpectedly, dynamic light caused less photosynthetic suppression, rather than more, in LN leaves than in HN leaves. The underlying mechanism was also clarified. Short low-light (LL) intervals did not affect Rubisco activity but clearly deactivated fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7-bisphosphatase (SBPase), indicating that photosynthetic induction after a LL interval depends on the reactivation of FBPase and SBPase rather than Rubisco. In LN leaves, the amount of Rubisco decreased more than FBPase and SBPase, so FBPase and SBPase were present in relative excess. A lower fraction of FBPase and SBPase needs to be activated in LN leaves for photosynthesis recovery during the high-light phase of dynamic light. Therefore, photosynthetic recovery is faster in LN leaves than in HN leaves, which relieves the photosynthetic suppression caused by dynamic light in LN leaves. CONCLUSIONS: Contrary to our expectations, dynamic light caused less photosynthetic suppression, rather than more, in LN leaves than in HN leaves of soybean. This is the first report of a stress condition alleviating the photosynthetic suppression caused by dynamic light.
Assuntos
Glycine max/fisiologia , Nitrogênio/deficiência , Fotossíntese/efeitos da radiação , Luz , Nitrogênio/fisiologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Ribulose-Bifosfato Carboxilase/efeitos dos fármacos , Ribulose-Bifosfato Carboxilase/efeitos da radiação , Glycine max/efeitos dos fármacos , Glycine max/efeitos da radiação , Estresse FisiológicoRESUMO
Potassium (K+) is an essential cation in all organisms that influences crop production and ecosystem stability. Although most soils are rich in K minerals, relatively little K+ is present in forms that are available to plants. Moreover, leaching and run-off from the upper soil layers contribute to K+ deficiencies in agricultural soils. Hence, the demand for K fertilizer is increasing worldwide. K+ regulates multiple processes in cells and organs, with K+ deficiency resulting in decreased plant growth and productivity. Here, we discuss the complexity of the reactive oxygen species-calcium-hormone signalling network that is responsible for the sensing of K+ deficiency in plants, together with genetic approaches using K+ transporters that have been used to increase K+ use efficiency (KUE) in plants, particularly under environmental stress conditions such as salinity and heavy metal contamination. Publicly available rice transcriptome data are used to demonstrate the two-way relationship between K+ and nitrogen nutrition, highlighting how each nutrient can regulate the uptake and root to shoot translocation of the other. Future research directions are discussed in terms of this relationship, as well as prospects for molecular approaches for the generation of improved varieties and the implementation of new agronomic practices. An increased knowledge of the systems that sense and take up K+, and their regulation, will not only improve current understanding of plant K+ homeostasis but also facilitate new research and the implementation of measures to improve plant KUE for sustainable food production.
Assuntos
Homeostase , Nitrogênio/fisiologia , Nutrientes/fisiologia , Oryza/fisiologia , Fenômenos Fisiológicos Vegetais , Potássio/fisiologia , Mudança ClimáticaRESUMO
Nitrogen contributes to plant defense responses by the regulation of plant primary metabolism during plant-pathogen interactions. Based on biochemical, physiological, bioinformatic and transcriptome approaches, we investigated how different nitrogen forms (ammonium vs. nitrate) regulate the physiological response of cucumber (Cucumis sativus) to Fusarium oxysporum f. sp. cucumerinum (FOC) infection. The metabolic profile revealed that nitrate-grown plants accumulated more organic acids, while ammonium-grown plants accumulated more amino acids; FOC infection significantly increased levels of both amino acids and organic acids in the roots of ammonium-grown plants. Transcriptome analysis showed that genes related to carbon metabolism were mostly up-regulated in plants grown with nitrate, whereas in ammonium-grown plants the up-regulated genes were mostly those that were related to primary nitrogen metabolism. Root FOC colonization and disease incidence were positively correlated with levels of root amino acids and negatively correlated with levels of root organic acids. In conclusion, organic acid metabolism and expression of related genes increased under nitrate, whereas ammonium increased the level of amino acids and expression of related genes; these altered levels of organic acids and amino acids resulted in different tolerances to FOC infection depending on the nitrogen forms supplied.
Assuntos
Cucumis sativus/microbiologia , Interações Hospedeiro-Patógeno , Nitrogênio/fisiologia , Doenças das Plantas/microbiologia , Aminoácidos/metabolismo , Compostos de Amônio/metabolismo , Carbono/metabolismo , Cucumis sativus/metabolismo , Fusarium , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/fisiologia , Nitratos/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologiaRESUMO
Many studies show that lifespans of various model organisms can be extended by limiting the quantities of nutrients that are necessary for proliferation. In Schizosaccharomyces pombe, the Ecl1 family genes have been associated with lifespan control and are necessary for cell responses to nutrient depletion, but their functions and mechanisms of action remain uncharacterized. Herein, we show that leucine depletion extends the chronological lifespan (CLS) of leucine-auxotrophic cells. Furthermore, depletion of leucine extended CLS and caused cell miniaturization and cell cycle arrest at the G1 phase, and all of these processes depended on Ecl1 family genes. Although depletion of leucine raises the expression of ecl1+ by about 100-fold in leucine-auxotrophic cells, these conditions did not affect ecl1+ expression in leucine-auxotrophic fil1 mutants that were isolated in deletion set screens using 79 mutants disrupting a transcription factor. Fil1 is a GATA-type zinc finger transcription factor that reportedly binds directly to the upstream regions of ecl1+ and ecl2+. Accordingly, we suggest that Ecl1 family genes are induced in response to environmental stresses, such as oxidative stress and heat stress, or by nutritional depletion of nitrogen or sulfur sources or the amino acid leucine. We also propose that these genes play important roles in the maintenance of cell survival until conditions that favor proliferation are restored.
Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Leucina/fisiologia , Proteínas Nucleares/biossíntese , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/fisiologia , Fatores de Transcrição/fisiologia , Pontos de Checagem da Fase G1 do Ciclo Celular , Família Multigênica , Nitrogênio/fisiologia , Proteínas Nucleares/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/biossíntese , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Transcrição/genéticaRESUMO
The phenomenon of delayed flowering after the application of nitrogen (N) fertilizer has long been known in agriculture, but the detailed molecular basis for this phenomenon is largely unclear. Here we used a modified method of suppression-subtractive hybridization to identify two key factors involved in N-regulated flowering time control in Arabidopsis thaliana, namely ferredoxin-NADP(+)-oxidoreductase and the blue-light receptor cryptochrome 1 (CRY1). The expression of both genes is induced by low N levels, and their loss-of-function mutants are insensitive to altered N concentration. Low-N conditions increase both NADPH/NADP(+) and ATP/AMP ratios, which in turn affect adenosine monophosphate-activated protein kinase (AMPK) activity. Moreover, our results show that the AMPK activity and nuclear localization are rhythmic and inversely correlated with nuclear CRY1 protein abundance. Low-N conditions increase but high-N conditions decrease the expression of several key components of the central oscillator (e.g., CCA1, LHY, and TOC1) and the flowering output genes (e.g., GI and CO). Taken together, our results suggest that N signaling functions as a modulator of nuclear CRY1 protein abundance, as well as the input signal for the central circadian clock to interfere with the normal flowering process.
Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Criptocromos/fisiologia , Ferredoxina-NADP Redutase/metabolismo , Flores/fisiologia , Nitrogênio/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Relógios Circadianos , Mutação , NADP/metabolismo , Técnicas de Hibridização SubtrativaRESUMO
PURPOSE: To study the relationship between liquid nitrogen loss and temperature in cryostorage dewars and develop an early-warning alarm for impending tank failure. METHODS: Cryostorage dewars were placed on custom-engineered scales, and weight and temperature data were continuously monitored in the setting of slow, medium, and fast rate-loss of LN2 to simulate three scenarios of tank failure. RESULTS: LN2 Tank weights and temperatures were continuously monitored and recorded, with a calculated alarm trigger set at 10% weight loss and temperature of - 185 °C. With an intact tank, a 10% loss in LN2 occurred in 4.2-4.9 days. Warming to - 185 °C occurred in 37.8-43.7 days, over 30 days after the weight-based alarm was triggered. Full evaporation of LN2 required ~ 36.8 days. For the medium rate-loss simulation, a 10% loss in LN2 occurred in 0.8 h. Warming to - 185 °C occurred in 3.7-4.8 h, approximately 3 h after the weight-based alarm was triggered. For the fast rate-loss simulation, a 10% weight loss occurred within 15 s, and tanks were depleted in under 3 min. Tank temperatures began to rise immediately and at a relatively constant rate of 43.9 °C/h and 51.6 °C/h. Temperature alarms would have sounded within 0.37 and 0.06 h after the breech. CONCLUSIONS: This study demonstrates that a weight-based alarm system can detect tank failures prior to a temperature-based system. Weight-based monitoring could serve as a redundant safety mechanism for added protection of cryopreserved reproductive tissues.
Assuntos
Criopreservação/métodos , Nitrogênio/fisiologia , Preservação do Sêmen/métodos , Feminino , Humanos , Nitrogênio/química , Motilidade dos Espermatozoides/fisiologiaRESUMO
BACKGROUND: Nitrogen (N) is a key macronutrient required for plant growth and development. In this study, watermelon plants were grown under hydroponic conditions at 0.2 mM N, 4.5 mM N, and 9 mM N for 14 days. RESULTS: Dry weight and photosynthetic assimilation at low N (0.2 mM) was reduced by 29 and 74% compared with high N (9 mM). The photochemical activity (Fv/Fm) was also reduced from 0.78 at high N to 0.71 at low N. The N concentration in the leaf, stem, and root of watermelon under low N conditions was reduced by 68, 104, and 108%, respectively compared with 9 mM N treatment after 14 days of N treatment. In the leaf tissues of watermelon grown under low N conditions, 9598 genes were differentially expressed, out of which 4533 genes (47.22%) were up-regulated whereas, 5065 genes (52.78%) were down-regulated compared with high N. Similarly in the root tissues, 3956 genes were differentially expressed, out of which 1605 genes were up-regulated (40.57%) and 2351 genes were down-regulated (59.43%), compared with high N. Our results suggest that leaf tissues are more sensitive to N deficiency compared with root tissues. The gene ontology (GO) analysis showed that the availability of N significantly affected 19 biological processes, 8 cell component metabolic pathways, and 3 molecular functions in the leaves; and 13 biological processes, 12 molecular functions, and 5 cell component metabolic pathways in the roots of watermelon. The low affinity nitrate transporters, high affinity nitrate transporters, ammonium transporters, genes related with nitrogen assimilation, and chlorophyll and photosynthesis were expressed differentially in response to low N. Three nitrate transporters (Cla010066, Cla009721, Cla012765) substantially responded to low nitrate supply in the root and leaf tissues. Additionally, a large number of transcription factors (1365) were involved in adaptation to low N availability. The major transcription factor families identified in this study includes MYB, AP2-EREBP, bHLH, C2H2 and NAC. CONCLUSION: Candidate genes identified in this study for nitrate uptake and transport can be targeted and utilized for further studies in watermelon breeding and improvement programs to improve N uptake and utilization efficiency.
Assuntos
Citrullus/genética , Nitrogênio/fisiologia , Transcriptoma , Clorofila/genética , Clorofila/metabolismo , Citrullus/química , Citrullus/crescimento & desenvolvimento , Citrullus/metabolismo , Citocininas/genética , Citocininas/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Nitratos/metabolismo , Nitrogênio/análise , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
MAIN CONCLUSION: Different nitrogen forms affect different metabolic pathways in lichens. In particular, the most relevant changes in protein expression were observed in the fungal partner, with NO 3- mostly affecting the energetic metabolism and NH 4+ affecting transport and regulation of proteins and the energetic metabolism much more than NO 3- did. Excess deposition of reactive nitrogen is a well-known agent of stress for lichens, but which symbiont is most affected and how, remains a mystery. Using proteomics can expand our understanding of stress effects on lichens. We investigated the effects of different doses and forms of reactive nitrogen, with and without supplementary phosphorus and potassium, on the proteome of the lichen Cladonia portentosa growing in a 'real-world' simulation of nitrogen deposition. Protein expression changed with the nitrogen treatments but mostly in the fungal partner, with NO3- mainly affecting the energetic metabolism and NH4+ also affecting the protein synthesis machinery. The photobiont mainly responded overexpressing proteins involved in energy production. This suggests that in response to nitrogen stress, the photobiont mainly supports the defensive mechanisms initiated by the mycobiont with an increased energy production. Such surplus energy is then used by the cell to maintain functionality in the presence of NO3-, while a futile cycle of protein production can be hypothesized to be induced by NH4+ excess. External supply of potassium and phosphorus influenced differently the responses of particular enzymes, likely reflecting the many processes in which potassium exerts a regulatory function.
Assuntos
Líquens/metabolismo , Nitrogênio/metabolismo , Amônia/metabolismo , Respiração Celular/fisiologia , Clorofila/metabolismo , Clorofila A , Eletroforese em Gel Bidimensional , Metabolismo Energético/fisiologia , Líquens/fisiologia , Espectrometria de Massas , Nitratos/metabolismo , Nitrogênio/fisiologia , Fotossíntese , ProteômicaRESUMO
Bundle-sheath leakiness (Ï) is a key parameter of the CO2-concentrating mechanism of C4 photosynthesis and is related to leaf-level intrinsic water use efficiency (WUEi). This work studied short-term dynamic responses of Ï to alterations of atmospheric CO2 concentration in Cleistogenes squarrosa, a perennial grass, grown at high (1.6 kPa) or low (0.6 kPa) vapour pressure deficit (VPD) combined with high or low N supply in controlled environment experiments. Ï was determined by concurrent measurements of photosynthetic gas exchange and on-line carbon isotope discrimination, using a new protocol. Growth at high VPD led to an increase of Ï by 0.13 and a concurrent increase of WUEi by 14%, with similar effects at both N levels. Ï responded dynamically to intercellular CO2 concentration (C i), increasing with C i Across treatments, Ï was negatively correlated to the ratio of CO2 saturated assimilation rate to carboxylation efficiency (a proxy of the relative activities of Rubisco and phosphoenolpyruvate carboxylase) indicating that the long-term environmental effect on Ï was related to the balance between C3 and C4 cycles. Our study revealed considerable dynamic and long-term variation in Ï of C. squarrosa, suggesting that Ï should be determined when carbon isotope discrimination is used to assess WUEi Also, the data indicate a trade-off between WUEi and energetic efficiency in C. squarrosa.
Assuntos
Nitrogênio/fisiologia , Fotossíntese , Folhas de Planta/fisiologia , Poaceae/fisiologia , Água/fisiologia , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismoRESUMO
Nitrogen (N) and phosphorus (P) deposition are increasing worldwide largely due to increased fertilizer use and fossil fuel combustion. Most work with N and P deposition in natural ecosystems has focused on temperate, highly industrialized, regions. Tropical regions are becoming more developed, releasing large amounts of these nutrients into the atmosphere. Nutrient enrichment in nutrient-poor systems such as tropical montane forest can represent a relatively large shift in nutrient availability, especially for sensitive microorganisms such as arbuscular mycorrhizal fungi (AMF). These symbiotic fungi are particularly critical, given their key role in ecosystem processes affecting plant community structure and function.To better understand the consequences of nutrient deposition in plant communities, a long-term nutrient addition experiment was set up in a tropical montane forest in the Andes of southern Ecuador. In this study, we investigated the impacts of 7 years of elevated N and P on AMF root colonization potential (AMF-RCP) through a greenhouse bait plant method in which we quantified root colonization. We also examined the relationship between AMF-RCP and rarefied tree diversity.After 7 years of nutrient addition, AMF-RCP was negatively correlated with soil P, positively correlated with soil N, and positively correlated with rarefied tree diversity. Our results show that AMF in this tropical montane forest are directly affected by soil N and P concentrations, but may also be indirectly impacted by shifts in rarefied tree diversity. Our research also highlights the need to fully understand the benefits and drawbacks of using different sampling methods (e.g., AMF-RCP versus direct root sampling) to robustly examine AMF-plant interactions in the future.
Assuntos
Florestas , Micorrizas/fisiologia , Nitrogênio/fisiologia , Fósforo/fisiologia , Equador , Fungos , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do SoloRESUMO
Backround: Nitrogen narcosis impairs cognitive function, a fact relevant during SCUBA-diving. Oxygen-enriched air (nitrox) became popular in recreational diving, while evidence of its advantages over air is limited. AIM: Compare effects of nitrox28 and air on two psychometric tests. METHODS: In this prospective, double-blind, open-water study, 108 advanced divers (38 females) were randomized to an air or a nitrox-group for a 60-min dive to 24 m salt water. Breathing gas effects on cognitive performance were assessed during the dive using a short- and long-term memory test and a number connection test. RESULTS: Nitrox28 divers made fewer mistakes only on the long-term memory test (p = 0.038). Female divers remembered more items than male divers (p < 0.001). There were no significant differences in the number connection test between the groups. CONCLUSION: Likely owing to the comparatively low N2 reduction and the conservative dive, beneficial nitrox28 effects to diver performance were moderate but could contribute to diving safety.
Assuntos
Cognição , Mergulho/fisiologia , Nitrogênio/fisiologia , Oxigênio/fisiologia , Adulto , Idoso , Método Duplo-Cego , Feminino , Humanos , Masculino , Memória , Pessoa de Meia-Idade , Estudos Prospectivos , Psicometria , Adulto JovemRESUMO
Adaptation to local resource availability depends on responses in growth rate and nutrient acquisition. The growth rate hypothesis (GRH) suggests that growing fast should impair competitive abilities for phosphorus and nitrogen due to high demand for biosynthesis. However, in microorganisms, size influences both growth and uptake rates, which may mask trade-offs and instead generate a positive relationship between these traits (size hypothesis, SH). Here, we evolved a gradient of maximum growth rate (µmax) from a single bacterium ancestor to test the relationship among µmax, competitive ability for nutrients and cell size, while controlling for evolutionary history. We found a strong positive correlation between µmax and competitive ability for phosphorus, associated with a trade-off between µmax and cell size: strains selected for high µmax were smaller and better competitors for phosphorus. Our results strongly support the SH, while the trade-offs expected under GRH were not apparent. Beyond plasticity, unicellular populations can respond rapidly to selection pressure through joint evolution of their size and maximum growth rate. Our study stresses that physiological links between these traits tightly shape the evolution of competitive strategies.
Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Pseudomonas fluorescens/citologia , Pseudomonas fluorescens/genética , Nitrogênio/fisiologia , Fenótipo , Fósforo/fisiologiaRESUMO
MAIN CONCLUSION: AtNPF3.1 gene expression is promoted by limiting nitrogen nutrition. Atnpf3.1 mutants are affected in hypocotyl elongation and seed germination under conditions of low-nitrate availability. The NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER (NPF) family encodes nitrate or peptides transporters, some of which are also able to transport hormones. AtNPF3.1 has been described as a nitrate/nitrite/gibberellin transporter. Until now only its gibberellins (GAs) transport capacity have been proven in planta. We further analyzed its substrate specificity towards different GA species using a yeast heterologous system which revealed that (1) NPF3.1 transported not only bioactive GAs but also their precursors and metabolites and (2) the GAs' import activity of NPF3.1 was not affected by the presence of exogenous nitrate. Gene expression analysis along with germination assays and hypocotyl length measurements of loss of function mutants was used to understand the in planta role of NPF3.1. GUS staining revealed that this gene is expressed mainly in the endodermis of roots and hypocotyls, in shoots, stamens, and dry seeds. Germination assays in the presence of paclobutrazol, a GA biosynthesis inhibitor, revealed that the germination rate of npf3.1 mutants was lower compared to wild type when GA was added at the same time. Likewise, hypocotyl length measurements showed that the npf3.1 mutants were less sensitive to exogenous GA addition in the presence of paclobutrazol, compared to wild type. Moreover, this phenotype was observed only when plants were grown on low-nitrate supply. In addition, NPF3.1 gene expression was upregulated by low exogenous nitrate concentrations and the npf3.1 mutants exhibited a not yet described GA-related phenotype under these conditions. All together, these results indicated that NPF3.1 is indeed involved in GAs transport in planta under low-nitrate conditions.