Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.275
Filtrar
1.
J Neurosci ; 43(9): 1627-1642, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36697259

RESUMO

Administration of a nitric oxide (NO) donor triggers migraine attacks, but the mechanisms by which this occurs are unknown. Reactive nitroxidative species, including NO and peroxynitrite (PN), have been implicated in nociceptive sensitization, and neutralizing PN is antinociceptive. We determined whether PN contributes to nociceptive responses in two distinct models of migraine headache. Female and male mice were subjected to 3 consecutive days of restraint stress or to dural stimulation with the proinflammatory cytokine interleukin-6. Following resolution of the initial poststimulus behavioral responses, animals were tested for hyperalgesic priming using a normally non-noxious dose of the NO donor sodium nitroprusside (SNP) or dural pH 7.0, respectively. We measured periorbital von Frey and grimace responses in both models and measured stress-induced changes in 3-nitrotyrosine (3-NT) expression (a marker for PN activity) and trigeminal ganglia (TGs) mitochondrial function. Additionally, we recorded the neuronal activity of TGs in response to the PN generator SIN-1 [5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride]. We then tested the effects of the PN decomposition catalysts Fe(III)5,10,15,20-tetrakis(N-methylpyridinium-4-yl) porphyrin (FeTMPyP) and FeTPPS [Fe(III)5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato chloride], or the PN scavenger MnTBAP [Mn(III)tetrakis(4-benzoic acid)porphyrin] against these behavioral, molecular, and neuronal changes. Neutralizing PN attenuated stress-induced periorbital hypersensitivity and priming to SNP, with no effect on priming to dural pH 7.0. These compounds also prevented stress-induced increases in 3-NT expression in both the TGs and dura mater, and attenuated TG neuronal hyperexcitability caused by SIN-1. Surprisingly, FeTMPyP attenuated changes in TG mitochondrial function caused by SNP in stressed males only. Together, these data strongly implicate PN in migraine mechanisms and highlight the therapeutic potential of targeting PN.SIGNIFICANCE STATEMENT Among the most reliable experimental triggers of migraine are nitric oxide donors. The mechanisms by which nitric oxide triggers attacks are unclear but may be because of reactive nitroxidative species such as peroxynitrite. Using mouse models of migraine headache, we show that peroxynitrite-modulating compounds attenuate behavioral, neuronal, and molecular changes caused by repeated stress and nitric oxide donors (two of the most common triggers of migraine in humans). Additionally, our results show a sex-specific regulation of mitochondrial function by peroxynitrite following stress, providing novel insight into the ways in which peroxynitrite may contribute to migraine-related mechanisms. Critically, our data underscore the potential in targeting peroxynitrite formation as a novel therapeutic for the treatment of migraine headache.


Assuntos
Transtornos de Enxaqueca , Ácido Peroxinitroso , Ratos , Humanos , Camundongos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Doadores de Óxido Nítrico , Óxido Nítrico , Cloretos , Nitroprussiato
2.
Eur J Neurosci ; 59(7): 1604-1620, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359910

RESUMO

Levodopa (L-DOPA) is the classical gold standard treatment for Parkinson's disease. However, its chronic administration can lead to the development of L-DOPA-induced dyskinesias (LIDs). Dysregulation of the nitric oxide-cyclic guanosine monophosphate pathway in striatal networks has been linked to deficits in corticostriatal transmission in LIDs. This study investigated the effects of the nitric oxide (NO) donor sodium nitroprusside (SNP) on behavioural and electrophysiological outcomes in sham-operated and 6-hydroxydopamine-lesioned rats chronically treated with vehicle or L-DOPA, respectively. In sham-operated animals, systemic administration of SNP increased the spike probability of putative striatal medium spiny neurons (MSNs) in response to electrical stimulation of the primary motor cortex. In 6-hydroxydopamine-lesioned animals, SNP improved the stepping test performance without exacerbating abnormal involuntary movements. Additionally, SNP significantly increased the responsiveness of putative striatal MSNs in the dyskinetic striatum. These findings highlight the critical role of the NO signalling pathway in facilitating the responsiveness of striatal MSNs in both the intact and dyskinetic striata. The study suggests that SNP has the potential to enhance L-DOPA's effects in the stepping test without exacerbating abnormal involuntary movements, thereby offering new possibilities for optimizing Parkinson's disease therapy. In conclusion, this study highlights the involvement of the NO signalling pathway in the pathophysiology of LIDs.


Assuntos
Discinesias , Doença de Parkinson , Ratos , Animais , Levodopa/efeitos adversos , Nitroprussiato/farmacologia , Oxidopamina/toxicidade , Neurônios Espinhosos Médios , Óxido Nítrico/metabolismo , Discinesias/metabolismo , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Antiparkinsonianos/efeitos adversos
3.
BMC Plant Biol ; 24(1): 95, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331719

RESUMO

BACKGROUND: Spirodela polyrrhiza is a simple floating aquatic plant with great potential in synthetic biology. Sodium nitroprusside (SNP) stimulates plant development and increases the biomass and flavonoid content in some plants. However, the molecular mechanism of SNP action is still unclear. RESULTS: To determine the effect of SNP on growth and metabolic flux in S. polyrrhiza, the plants were treated with different concentrations of SNP. Our results showed an inhibition of growth, an increase in starch, soluble protein, and flavonoid contents, and enhanced antioxidant enzyme activity in plants after 0.025 mM SNP treatment. Differentially expressed transcripts were analysed in S. polyrrhiza after 0.025 mM SNP treatment. A total of 2776 differentially expressed genes (1425 upregulated and 1351 downregulated) were identified. The expression of some genes related to flavonoid biosynthesis and NO biosynthesis was upregulated, while the expression of some photosynthesis-related genes was downregulated. Moreover, SNP stress also significantly influenced the expression of transcription factors (TFs), such as ERF, BHLH, NAC, and WRKY TFs. CONCLUSIONS: Taken together, these findings provide novel insights into the mechanisms of underlying the SNP stress response in S. polyrrhiza and show that the metabolic flux of fixed CO2 is redirected into the starch synthesis and flavonoid biosynthesis pathways after SNP treatment.


Assuntos
Plantas , Transcriptoma , Nitroprussiato/farmacologia , Antioxidantes , Perfilação da Expressão Gênica , Flavonoides , Amido
4.
BMC Plant Biol ; 24(1): 678, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39014343

RESUMO

Cut flowers deteriorate rapidly after harvest, lasting mere days. To extend their vase life, various postharvest techniques are employed. Due to limited knowledge about the postharvest physiology of Alstroemeria cut flowers and the specific role of secondary compounds and antioxidant systems in their protection, this study investigated the optimal dosage of sodium nitroprusside (SNP) as a nitric oxide (NO) donor to enhance quality and antioxidant defenses. Preharvest foliar application of SNP at 0, 50, 100, and 200 µM followed by short-term pulsing treatments upon harvest at the same concentrations were applied in a factorial design. Results revealed that a preharvest 100 µM SNP treatment combined with a 50 µM postharvest pulse significantly increased the total amount of phenols (over 20%), antioxidant capacity (more than doubled), and the activity of two antioxidant enzymes (ascorbate peroxidase by over 35% and guaiacol peroxidase by about 20%). Notably, this combination also diminished ion leakage (by about 20%), ultimately extending the vase life by more than 40% compared to untreated plants. Therefore, SNP application at these specific dosages proves effective in bolstering Alstroemeria cut flower quality and vase life through enhanced total phenols and a strengthened antioxidant system.


Assuntos
Antioxidantes , Flores , Nitroprussiato , Nitroprussiato/farmacologia , Flores/efeitos dos fármacos , Flores/fisiologia , Antioxidantes/metabolismo , Fenóis/metabolismo , Doadores de Óxido Nítrico/farmacologia , Peroxidase/metabolismo , Ascorbato Peroxidases/metabolismo
5.
BMC Plant Biol ; 24(1): 730, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085769

RESUMO

Despite the considerable efforts reported so far to enhance seed priming, novel ideas are still needed to be suggested to this sustainable sector of agri-seed industry. This could be the first study addressing the effect of nitric oxide (NO) under open field conditions. The impacts of seed redox-priming using sodium nitroprusside (SNP) and osmo-priming with calcium chloride (CaCl2), both applied individually or successively, were investigated under salinity stress conditions on wheat plants (Triticum aestivum L.). Various parameters, including water relations, growth, yield, photosynthetic pigments, and antioxidant activities (enzymatic and non-enzymatic), were recorded to assess the outcomes of these priming agents on mitigating the negative impacts of salinity stress on wheat plants. Water consumptive use (ETa) and irrigation water applied (IWA) decreased with seeds priming. Successive priming with SNP + CaCl2 induced the greatest values of crop water productivity (CWP), irrigation water productivity (IWP), seed index, grain yield and grain nitrogen content.Under salinity stress, the dry weight of plants was decreased. However, hydro-priming and successive chemical priming agents using combinations of calcium chloride and sodium nitroprusside (CaCl2 + SNP & SNP + CaCl2) preserved growth under salinity stress.Individual priming with sodium nitroprusside (SNP) and calcium chloride (CaCl2) resulted in the lowest recorded content of sodium in the shoot, with a value of 2 ppm. On the other hand, successive priming using CaCl2 + SNP or SNP + CaCl2 induced the contents of potassium in the shoot, with values of 40 ppm and 39 ppm, respectively. Malondialdehyde decreased in shoot significantly withapplicationof priming agents. Successive priming with CaCl2 + SNP induced the highest proline contents in shoot (6 µg/ g FW). The highest value of phenolics and total antioxidants contents in shoot were recorded under successive priming using CaCl2 + SNP and SNP + CaCl2.Priming agents improved the activities of ascorbate peroxidase and catalase enzymes. The successive priming improved water relations (ETa, IWA, CWP and IWP) and wheat growth and productivity under salinity stress more than individual priming treatments.


Assuntos
Antioxidantes , Cloreto de Cálcio , Óxido Nítrico , Nitroprussiato , Espécies Reativas de Oxigênio , Tolerância ao Sal , Triticum , Triticum/metabolismo , Triticum/efeitos dos fármacos , Triticum/fisiologia , Triticum/crescimento & desenvolvimento , Antioxidantes/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Cálcio/farmacologia , Nitroprussiato/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Sementes/metabolismo , Cálcio/metabolismo
6.
Exp Physiol ; 109(6): 841-846, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460126

RESUMO

We sought to investigate possible impaired hyperaemia during dynamic handgrip exercise (HGE) in young healthy individuals who had recovered from COVID-19. We tested the vascular function in individuals recovered from COVID-19 using a nitric oxide donor (i.e., sodium nitroprusside; SNP), which could revert a possible impaired endothelial function during HGE. Further, we tested whether individuals who recovered from COVID-19 would present exaggerated brachial vascular resistance under an adrenergic agonist (i.e., phenylephrine; PHE) stimuli during HGE. Participants were distributed into two groups: healthy controls (Control; men: n = 6, 30 ± 3 years, 26 ± 1 kg/m2; and women: n = 5, 25 ± 1 years, 25 ± 1 kg/m2) and subjects recovered from COVID-19 (post-COVID; men: n = 6, 29 ± 3 years, 25 ± 1 kg/m2; and women: n = 10, 32 ± 4 years, 22 ± 1 kg/m2). Participants in the post-COVID group tested positive (RT-PCR) 12-14 weeks before the protocol. Heart rate (HR), brachial blood pressure (BP), brachial blood flow (BBF) and vascular conductance (BVC) at rest were not different between groups. The HGE increased HR (Control: Δ9 ± 0.4 bpm; and post-COVID: Δ11 ± 0.4 bpm) and BP (Control: Δ6 ± 1 mmHg; and post-COVID: Δ12 ± 0.6 mmHg) in both groups. Likewise, BBF (Control: Δ632 ± 38 ml/min; and post-COVID: Δ620 ± 27 ml/min) and BVC (Control: Δ6.6 ± 0.4 ml/min/mmHg; and post-COVID: Δ6.1 ± 0.3 ml/min/mmHg) increased during HGE. SNP did not change HGE-induced hyperaemia but did decrease BP, which induced a reflex-related increase in HR. PHE infusion also did not change the HGE-induced hyperaemia but raised BP and reduced HR. In conclusion, exercise-induced hyperaemia is preserved in healthy young subjects 12-14 weeks after recovery from COVID-19 infection.


Assuntos
COVID-19 , Exercício Físico , Força da Mão , Hiperemia , Humanos , COVID-19/fisiopatologia , Masculino , Feminino , Força da Mão/fisiologia , Hiperemia/fisiopatologia , Adulto , Exercício Físico/fisiologia , Resistência Vascular/fisiologia , Frequência Cardíaca/fisiologia , Nitroprussiato/farmacologia , Pressão Sanguínea/fisiologia , Fenilefrina/farmacologia , SARS-CoV-2 , Artéria Braquial/fisiopatologia , Voluntários Saudáveis
7.
Exp Physiol ; 109(5): 779-790, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38445814

RESUMO

Endothelial dysfunction develops with age and may precede cardiovascular disease. Animal data suggest that T-type calcium channels play an important role in endothelial function, but data from humans are lacking. This study included 15 healthy, sedentary, elderly males for a double blinded, randomized controlled trial. For 8 weeks, they were given 40 mg/day of either efonidipine (L- and T-type calcium channel blocker (CCB)) or nifedipine (L-type CCB). Vascular function was evaluated by graded femoral arterial infusions of acetylcholine (ACh; endothelium-dependent vasodilator) and sodium nitroprusside (endothelium-independent vasodilator) both with and without co-infusion of N-acetylcysteine (NAC; antioxidant). We measured leg blood flow and mean arterial pressure and calculated leg vascular conductance to evaluate the leg vascular responses. Despite no significant change in blood pressure in either group, we observed higher leg blood flow responses (Δ 0.43 ± 0.45 l/min, P = 0.006) and leg vascular conductance (Δ 5.38 ± 5.67 ml/min/mmHg, P = 0.005) to intra-arterial ACh after efonidipine, whereas there was no change in the nifedipine group, and no differences between groups. We found no upregulation of endothelial nitric oxide synthase in vastus lateralis muscle biopsies within or between groups. Smooth muscle cell responsiveness was unaltered by efonidipine or nifedipine. Intravenous co-infusion of NAC did not affect endothelium-dependent vasodilatation in either of the CCB groups. These results suggest that 8 weeks' inhibition of T- and L-type calcium channels augments endothelium-dependent vasodilatory function in healthy elderly males. Further studies are required to elucidate if T-type calcium channel inhibition can counteract endothelial dysfunction.


Assuntos
Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo T , Endotélio Vascular , Nifedipino , Nitrofenóis , Humanos , Masculino , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo T/efeitos dos fármacos , Idoso , Bloqueadores dos Canais de Cálcio/farmacologia , Nifedipino/farmacologia , Projetos Piloto , Método Duplo-Cego , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Di-Hidropiridinas/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Vasodilatadores/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia , Compostos Organofosforados/farmacologia , Acetilcolina/farmacologia , Perna (Membro)/irrigação sanguínea , Nitroprussiato/farmacologia , Pessoa de Meia-Idade
8.
Vis Neurosci ; 41: E002, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38725382

RESUMO

Animal models of retinal degeneration are critical for understanding disease and testing potential therapies. Inducing degeneration commonly involves the administration of chemicals that kill photoreceptors by disrupting metabolic pathways, signaling pathways, or protein synthesis. While chemically induced degeneration has been demonstrated in a variety of animals (mice, rats, rabbits, felines, 13-lined ground squirrels (13-LGS), pigs, chicks), few studies have used noninvasive high-resolution retinal imaging to monitor the in vivo cellular effects. Here, we used longitudinal scanning light ophthalmoscopy (SLO), optical coherence tomography, and adaptive optics SLO imaging in the euthermic, cone-dominant 13-LGS (46 animals, 52 eyes) to examine retinal structure following intravitreal injections of chemicals, which were previously shown to induce photoreceptor degeneration, throughout the active season of 2019 and 2020. We found that iodoacetic acid induced severe pan-retinal damage in all but one eye, which received the lowest concentration. While sodium nitroprusside successfully induced degeneration of the outer retinal layers, the results were variable, and damage was also observed in 50% of contralateral control eyes. Adenosine triphosphate and tunicamycin induced outer retinal specific damage with varying results, while eyes injected with thapsigargin did not show signs of degeneration. Given the variability of damage we observed, follow-up studies examining the possible physiological origins of this variability are critical. These additional studies should further advance the utility of chemically induced photoreceptor degeneration models in the cone-dominant 13-LGS.


Assuntos
Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana , Sciuridae , Tomografia de Coerência Óptica , Animais , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Modelos Animais de Doenças , Injeções Intravítreas , Oftalmoscopia , Nitroprussiato/farmacologia , Feminino , Masculino
9.
Brain ; 146(2): 448-454, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36299248

RESUMO

Migraine is thought to involve sensitization of the trigeminal nociceptive system. In preclinical pain models, activation of MNK-eIF4E signalling contributes to nociceptor sensitization and the development of persistent pain. Despite these observations, the role of MNK signalling in migraine remains unclear. Here, we investigate whether activation of MNK contributes to hypersensitivity in two rodent models of migraine. Female and male wild-type (WT) and MNK1 knock-out mice were subjected to repeated restraint stress or a dural injection of interleukin-6 (IL-6) and tested for periorbital hypersensitivity and grimacing. Upon returning to baseline thresholds, stressed mice were administered a low dose of the nitric oxide donor sodium nitroprusside and mice previously injected with IL-6 were given a second dural injection of pH 7.0 to test for hyperalgesic priming. MNK1 knock-out mice were significantly less hypersensitive than the WT following dural IL-6 and did not prime to pH 7.0 or sodium nitroprusside. Furthermore, treatment with the selective MNK inhibitor, eFT508, in WT mice prevented hypersensitivity caused by dural IL-6 or pH 7.0. Together, these results implicate MNK-eIF4E signalling in the development of pain originating from the dura and strongly suggest that targeting MNK inhibition may have significant therapeutic potential as a treatment for migraine.


Assuntos
Fator de Iniciação 4E em Eucariotos , Transtornos de Enxaqueca , Camundongos , Masculino , Feminino , Animais , Nitroprussiato , Interleucina-6 , Hiperalgesia/etiologia , Dor , Camundongos Knockout
10.
Plant Cell Rep ; 43(6): 152, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806834

RESUMO

KEY MESSAGE: Sodium nitroprusside mediates drought stress responses in tomatoes by modulating nitrosative and oxidative pathways, highlighting the interplay between nitric oxide, hydrogen sulfide, and antioxidant systems for enhanced drought tolerance. While nitric oxide (NO), a signalling molecule, enhances plant tolerance to abiotic stresses, its precise contribution to improving tomato tolerance to drought stress (DS) through modulating oxide-nitrosative processes is not yet fully understood. We aimed to examine the interaction of NO and nitrosative signaling, revealing how sodium nitroprusside (SNP) could mitigate the effects of DS on tomatoes. DS-seedlings endured 12% polyethylene glycol (PEG) in a 10% nutrient solution (NS) for 2 days, then transitioned to half-strength NS for 10 days alongside control plants. DS reduced total plant dry weight, chlorophyll a and b, Fv/Fm, leaf water potential (ΨI), and relative water content, but improved hydrogen peroxide (H2O2), proline, and NO content. The SNP reduced the DS-induced H2O2 generation by reducing thiol (-SH) and the carbonyl (-CO) groups. SNP increased not only NO but also the activity of L-cysteine desulfhydrase (L-DES), leading to the generation of H2S. Decreases in S-nitrosoglutathione reductase (GSNOR) and NADPH oxidase (NOX) suggest a potential regulatory mechanism in which S-nitrosylation [formation of S-nitrosothiol (SNO)] may influence protein function and signaling pathways during DS. Moreover, SNP improved ascorbate (AsA) and glutathione (GSH) and reduced oxidized glutathione (GSSG) levels in tomato plants under drought. Furthermore, the interaction of NO and H2S, mediated by L-DES activity, may serve as a vital cross-talk mechanism impacting plant responses to DS. Understanding these signaling interactions is crucial for developing innovative drought-tolerance strategies in crops.


Assuntos
Secas , Peróxido de Hidrogênio , Óxido Nítrico , Nitroprussiato , Solanum lycopersicum , Nitroprussiato/farmacologia , Solanum lycopersicum/fisiologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Glutationa/metabolismo , Antioxidantes/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/fisiologia , Plântula/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Nitrosação/efeitos dos fármacos , Clorofila/metabolismo
11.
J Nanobiotechnology ; 22(1): 199, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654266

RESUMO

Considering the high recrudescence and the long-lasting unhealed large-sized wound that affect the aesthetics and cause dysfunction after resection of maxillofacial malignant skin tumors, a groundbreaking strategy is urgently needed. Photothermal therapy (PTT), which has become a complementary treatment of tumors, however, is powerless in tissue defect regeneration. Therefore, a novel multifunctional sodium nitroprusside and Fe2+ ions loaded microneedles (SNP-Fe@MNs) platform was fabricated by accomplishing desirable NIR-responsive photothermal effect while burst releasing nitric oxide (NO) after the ultraviolet radiation for the ablation of melanoma. Moreover, the steady releasing of NO in the long term by the platform can exert its angiogenic effects via upregulating multiple related pathways to promote tissue regeneration. Thus, the therapeutic dilemma caused by postoperative maxillofacial skin malignancies could be conquered through promoting tumor cell apoptosis via synergistic PTT-gas therapy and subsequent regeneration process in one step. The bio-application of SNP-Fe@MNs could be further popularized based on its ideal bioactivity and appealing features as a strategy for synergistic therapy of other tumors occurred in skin.


Assuntos
Melanoma , Óxido Nítrico , Terapia Fototérmica , Neoplasias Cutâneas , Animais , Terapia Fototérmica/métodos , Camundongos , Neoplasias Cutâneas/terapia , Melanoma/terapia , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Linhagem Celular Tumoral , Agulhas , Humanos , Nitroprussiato/farmacologia , Apoptose/efeitos dos fármacos , Pele , Ferro/química , Raios Ultravioleta
12.
J Nanobiotechnology ; 22(1): 439, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39061033

RESUMO

Skin wound infection has become a notable medical threat. Herein, the polysaccharide-based injectable hydrogels with multifunctionality were developed by a simple and fast gelation process not only to inactivate bacteria but also to accelerate bacteria-infected wound healing. Sodium nitroprusside (SNP) loaded PCN-224 nanoparticles were introduced into the polymer matrix formed by the dynamic and reversible coordinate bonds between Ag+ with carboxyl and amino or hydroxyl groups on carboxymethyl chitosan (CMCS), hydrogen bonds and electrostatic interactions in the polymer to fabricate SNP@PCN@Gel hydrogels. SNP@PCN@Gel displayed interconnected porous structure, excellent self-healing capacity, low cytotoxicity, good blood compatibility, and robust antibacterial activity. SNP@PCN@Gel could produce reactive oxygen species (ROS) and NO along with Fe2+, and showed long-term sustained release of Ag+, thereby effectively killing bacteria by synergistic photothermal (hyperthermia), photodynamic (ROS), chemodynamic (Fenton reaction), gas (NO) and ion (Ag+ and -NH3+ in CMCS) therapy. Remarkably, the hydrogels significantly promoted granulation tissue formation, reepithelization, collagen deposition and angiogenesis as well as wound contraction in bacteria-infected wound healing. Taken together, the strategy represented a general method to engineer the unprecedented photoactivatable "all-in-one" hydrogels with enhanced antibacterial activity and paved a new way for development of antibiotic alternatives and wound dressing.


Assuntos
Antibacterianos , Quitosana , Hidrogéis , Cicatrização , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Animais , Nitroprussiato/farmacologia , Nitroprussiato/química , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Humanos , Prata/química , Prata/farmacologia , Nanopartículas/química , Infecção dos Ferimentos/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
13.
Pediatr Crit Care Med ; 25(6): 538-546, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299930

RESUMO

OBJECTIVES: Postoperative hypertension frequently occurs after surgery for congenital heart disease. Given safety concerns when using calcium channel blockers in infants along with the cost and side-effect profile of nitroprusside, we retrospectively assessed our experience of using nicardipine and nitroprusside for postoperative blood pressure control in infants who underwent surgery for congenital heart disease. We also investigated the cost difference between the medications. DESIGN: This study was a single-center retrospective, pre-post chart review of patients who had surgery for congenital heart disease between 2016 and 2020. The primary aim was a noninferiority comparison of achievement of blood pressure goal at 1-hour post-initiation of an antihypertensive agent. Secondary comparisons included achievement of blood pressure goal at 2 hours after medication initiation, Vasoactive-Inotropic Score (VIS), and blood transfusion, crystalloid volume, and calcium needs. SETTING: Academic quaternary-care center. PATIENTS: Infants under 1 year old who required treatment for hypertension with nitroprusside ( n = 71) or nicardipine ( n = 52) within 24 hours of surgery for congenital heart disease. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We failed to identify any difference in proportion of patients that achieved blood pressure control at 1-hour after medication initiation (nitroprusside 52% vs. nicardipine 54%; p = 0.86), with nicardipine noninferior to nitroprusside within a 15% margin. Of patients who did not achieve control at 1-hour post-medication initiation, receiving nicardipine was associated with blood pressure control at 2 hours post-medication initiation (79% vs. 38%; p = 0.003). We also failed to identify an association between antihypertensive types and mean VIS scores, blood transfusion volumes, crystalloid volumes, and quantities of calcium administered. Index cost of using nitroprusside was 16 times higher than using nicardipine, primarily due to difference in wholesale cost. CONCLUSIONS: In our experience of achieving blood pressure control in infants after surgery for congenital heart disease (2016-2020), antihypertensive treatment with nicardipine was noninferior to nitroprusside. Furthermore, nicardipine use was significantly less expensive than nitroprusside. Our contemporary practice is therefore to use nicardipine in preference to nitroprusside.


Assuntos
Anti-Hipertensivos , Cardiopatias Congênitas , Hipertensão , Nicardipino , Nitroprussiato , Complicações Pós-Operatórias , Humanos , Nicardipino/uso terapêutico , Nicardipino/administração & dosagem , Nicardipino/economia , Estudos Retrospectivos , Nitroprussiato/uso terapêutico , Nitroprussiato/administração & dosagem , Nitroprussiato/economia , Lactente , Cardiopatias Congênitas/cirurgia , Feminino , Masculino , Recém-Nascido , Anti-Hipertensivos/economia , Anti-Hipertensivos/uso terapêutico , Anti-Hipertensivos/administração & dosagem , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/economia , Hipertensão/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Bloqueadores dos Canais de Cálcio/economia , Bloqueadores dos Canais de Cálcio/administração & dosagem , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Pressão Sanguínea/efeitos dos fármacos , Vasodilatadores/uso terapêutico , Vasodilatadores/administração & dosagem , Vasodilatadores/economia , Custos e Análise de Custo
14.
J Plant Res ; 137(3): 521-543, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460108

RESUMO

The present study examined the regulatory mechanism of hydrogen sulfide (H2S) and nitric oxide (NO) in nickel (Ni) stressed cyanobacteria viz., Nostoc muscorum and Anabaena sp. by analyzing growth, photosynthetic pigments, biochemical components (protein and carbohydrate), exopolysaccharides (EPS), inorganic nitrogen content, and activity of enzymes comprised in nitrogen metabolism and Ni accumulation. The 1 µM Ni substantially diminished growth by 18% and 22% in N. muscorum and Anabaena sp. respectively, along with declining the pigment contents (Chl a/Car ratio and phycobiliproteins), and biochemical components. It also exerted negative impacts on inorganic uptake of nitrate and nitrite contents; nitrate reductase and nitrite reductase; and ammonium assimilating enzymes (glutamine synthetase, glutamate synthase, and glutamate dehydrogenase exhibited a reverse trend) activities. Nonetheless, the adverse impact of Ni can be mitigated through the exogenous supplementation of NaHS [sodium hydrosulfide (8 µM); H2S donor] and SNP [sodium nitroprusside (10 µM); NO donor] which showed substantial improvement on growth, pigments, nitrogen metabolism, and EPS layer and noticeably occurred as a consequence of a substantial reduction in Ni accumulation content which minimized the toxicity effects. The accumulation of Ni on both the cyanobacterial cell surface (EPS layer) are confirmed by the SEM-EDX analysis. Further, the addition of NO scavenger (PTIO; 20 µM) and inhibitor of NO (L-NAME; 100 µM); and H2S scavenger (HT; 20 µM) and H2S inhibitor (PAG; 50 µM) reversed the positive responses of H2S and NO and damages were more prominent under Ni stress thereby, suggesting the downstream signaling of H2S on NO-mediated alleviation. Thus, this study concludes the crosstalk mechanism of H2S and NO in the mitigation of Ni-induced toxicity in rice field cyanobacteria.


Assuntos
Sulfeto de Hidrogênio , Níquel , Óxido Nítrico , Nitrogênio , Oryza , Óxido Nítrico/metabolismo , Níquel/metabolismo , Sulfeto de Hidrogênio/metabolismo , Nitrogênio/metabolismo , Oryza/metabolismo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Nostoc muscorum/metabolismo , Polissacarídeos Bacterianos/metabolismo , Anabaena/metabolismo , Anabaena/efeitos dos fármacos , Anabaena/crescimento & desenvolvimento , Estresse Fisiológico , Nitroprussiato/farmacologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-37989399

RESUMO

Arterial pressure (Pa) regulation is essential to adequately distribute nutrients to metabolizing tissues, remove wastes and avoid lesions associated with hypertension. In vertebrates, short-term Pa regulation is achieved through the baroreflex, which elicits inversely proportional changes in heart rate (fH) and vascular resistance to restore Pa. The cardiac limb of this reflex has been reported in all vertebrate groups studied to date: teleosts, amphibians, snakes, lizards, crocodiles, birds and mammals - which led to the suggestion that the baroreflex is an ancient trait present in all vertebrate species. However, it is not clear whether more basal groups of vertebrates, such as cyclostomes, elasmobranchs and chondrosteans, manifest baroreflex regulation of fH. Thus, the aim of this study was to determine whether the white sturgeon (Acipenser transmontanus; Chondrostei: Acipenseridae) exhibits a cardiac baroreflex. To do so, we induced Pa perturbations through injections of phenylephrine, sodium nitroprusside (SNP) and saline solution (hypervolemia), and examined possible fH baroreflex responses. We also investigated whether fH responses triggered by fright and chemoreflex were present in this species, in order to confirm the potential of sturgeon to perform reflexive cardiac adjustments. The findings indicate that A. transmontanus exhibits reflex bradycardia in response to fright and chemoreceptor stimulation, illustrating its capacity for short-term cardiac regulation. However, this species does not display baroreflex control of fH across its physiological range. This dissociation suggests that while the nervous and cardiovascular systems of A. transmontanus are primed for rapid reflex responses, a cardiac baroreflex mechanism remains absent.


Assuntos
Barorreflexo , Sistema Cardiovascular , Animais , Pressão Sanguínea/fisiologia , Barorreflexo/fisiologia , Reflexo , Bradicardia , Fenilefrina/farmacologia , Frequência Cardíaca/fisiologia , Nitroprussiato/farmacologia , Mamíferos
16.
Neurocrit Care ; 41(2): 434-444, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38649651

RESUMO

BACKGROUND: We performed an analysis of a large intensive care unit electronic database to provide preliminary estimates of various blood pressure parameters in patients with acute stroke receiving intravenous (IV) antihypertensive medication and determine the relationship with in-hospital outcomes. METHODS: We identified the relationship between pre-treatment and post-treatment systolic blood pressure (SBP) and heart rate (HR)-related variables and in-hospital mortality and acute kidney injury in patients with acute stroke receiving IV clevidipine, nicardipine, or nitroprusside using data provided in the Medical Information Mart for Intensive Care (MIMIC) IV database. RESULTS: A total of 1830 patients were treated with IV clevidipine (n = 64), nicardipine (n = 1623), or nitroprusside (n = 143). The standard deviations [SDs] of pre-treatment SBP (16.3 vs. 13.7, p ≤ 0.001) and post-treatment SBP (15.4 vs. 14.4, p = 0.004) were higher in patients who died compared with those who survived, particularly in patients with intracerebral hemorrhage (ICH). The mean SBP was significantly lower post treatment compared with pre-treatment values for clevidipine (130.7 mm Hg vs. 142.5 mm Hg, p = 0.006), nicardipine (132.8 mm Hg vs. 141.6 mm Hg, p ≤ 0.001), and nitroprusside (126.2 mm Hg vs. 139.6 mm Hg, p ≤ 0.001). There were no differences in mean SDs post treatment compared with pre-treatment values for clevidipine (14.5 vs. 13.5, p = 0.407), nicardipine (14.2 vs. 14.6, p = 0.142), and nitroprusside (14.8 vs. 14.8, p = 0.997). The SDs of pre-treatment and post-treatment SBP were not significantly different in patients with ischemic stroke treated with IV clevidipine, nicardipine, or nitroprusside or for patients with ICH treated with IV clevidipine or nitroprusside. However, patients with ICH treated with IV nicardipine had a significantly higher SD of post-treatment SBP (13.1 vs. 14.2, p = 0.0032). CONCLUSIONS: We found that SBP fluctuations were associated with in-hospital mortality in patients with acute stroke. IV antihypertensive medication reduced SBP but did not reduce SBP fluctuations in this observational study. Our results highlight the need for optimizing therapeutic interventions to reduce SBP fluctuations in patients with acute stroke.


Assuntos
Anti-Hipertensivos , Pressão Sanguínea , Frequência Cardíaca , Nicardipino , Nitroprussiato , Acidente Vascular Cerebral , Humanos , Feminino , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/uso terapêutico , Masculino , Idoso , Nicardipino/administração & dosagem , Pessoa de Meia-Idade , Pressão Sanguínea/efeitos dos fármacos , Nitroprussiato/administração & dosagem , Infusões Intravenosas , Acidente Vascular Cerebral/tratamento farmacológico , Frequência Cardíaca/efeitos dos fármacos , Piridinas/administração & dosagem , Piridinas/uso terapêutico , Idoso de 80 Anos ou mais , Mortalidade Hospitalar , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Hemorragia Cerebral/tratamento farmacológico
17.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39201581

RESUMO

Marinobufagenin (MBG) is implicated in chronic kidney disease, where it removes Fli1-induced inhibition of the collagen-1. We hypothesized that (i) in nephrectomized rats, aortic fibrosis develops due to elevated plasma MBG and inhibited Fli1, and (ii) that the antibody to MBG reduces collagen-1 and improves vasodilatation. A partial nephrectomy was performed in male Sprague-Dawley rats. Sham-operated animals comprised the control group. At 5 weeks following nephrectomy, rats were administered the vehicle (n = 8), or the anti-MBG antibody (n = 8). Isolated aortic rings were tested for their responsiveness to sodium nitroprusside following endothelin-1-induced constriction. In nephrectomized rats, there was an increase in the intensity of collagen staining in the aortic wall vs. the controls. In antibody-treated rats, the structure of bundles of collagen fibers had ordered organization. Western blots of the aorta had lower levels of Fli1 (arbitrary units, 1 ± 0.05 vs. 0.2 ± 0.01; p < 0.001) and greater collagen-1 (arbitrary units, 1 ± 0.01 vs. 9 ± 0.4; p < 0.001) vs. the control group. Administration of the MBG antibody to rats reversed the effect of the nephrectomy on Fli1 and collagen-1 proteins. Aortic rings pretreated with endothelin-1 exhibited 50% relaxation following the addition of sodium nitroprusside (EC50 = 0.28 µmol/L). The responsiveness of the aortic rings obtained from nephrectomized rats was markedly reduced (EC50 = 3.5 mol/L) compared to the control rings. Treatment of rats with the antibody restored vasorelaxation. Thus, the anti-MBG antibody counteracts the Fli1-collagen-1 system and reduces aortic fibrosis.


Assuntos
Bufanolídeos , Fibrose , Ratos Sprague-Dawley , Insuficiência Renal Crônica , Vasodilatação , Animais , Masculino , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Vasodilatação/efeitos dos fármacos , Ratos , Bufanolídeos/farmacologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Anticorpos/farmacologia , Nefrectomia , Nitroprussiato/farmacologia , Proteína Proto-Oncogênica c-fli-1/metabolismo , Colágeno Tipo I/metabolismo , Endotelina-1/metabolismo
18.
J Sci Food Agric ; 104(15): 9540-9547, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39056272

RESUMO

BACKGROUND: The role of nitric oxide (NO) in plant stress tolerance, as well as in increasing post-harvest quality, has been extensively demonstrated in several fruits and vegetable crops; however, the effects of its pre-harvest application on post-harvest quality are still poorly documented. Therefore, the pre-harvest application of NO in red beet (Beta vulgaris subsp. vulgaris) plants cultivated under well-watered and drought conditions was evaluated to assess whether it improves the post-harvest quality of their storage roots. Red beet plants cultivated under well-watered (80% of water holding capacity) or drought condition (15% of water holding capacity) were sprayed weekly with water (control) or 100 µmol L-1 sodium nitroprusside (SNP), an NO donor. Sixty-six days after sowing, red beet roots were harvested, and root yield, total sugar yield, reducing sugars, non-reducing sugars, proteins, lipids, root ashes, root moisture, soluble solids, titratable acidity, pH, vitamin C, total phenolics, total betalains, betacyanins, betaxanthins and antioxidant capacity were determined. RESULTS: While drought led to a reduction in root yield, sugars, lipids and titratable acidity, it increased phenolic compounds, betalains and the antioxidant capacity of beets. SNP reversed the negative effects of drought on sugar, lipid and organic acid contents and increased antioxidant capacity independent of stress. CONCLUSION: Pre-harvest SNP treatment reversed drought-induced yield reductions in beets, while boosting bioactive compounds and antioxidant capacity. It also enhanced vitamin C content independently, indicating its dual role in stress mitigation and beet quality improvement. Future research should explore other crops and stress conditions. © 2024 Society of Chemical Industry.


Assuntos
Beta vulgaris , Secas , Nitroprussiato , Raízes de Plantas , Nitroprussiato/farmacologia , Beta vulgaris/crescimento & desenvolvimento , Beta vulgaris/química , Beta vulgaris/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Antioxidantes/metabolismo , Antioxidantes/análise , Ácido Ascórbico/análise , Água/metabolismo , Água/análise , Fenóis/análise , Fenóis/metabolismo
19.
Biochem Biophys Res Commun ; 649: 79-86, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758482

RESUMO

Glutathione transferases are detoxification enzymes with multifaceted roles, including a role in the metabolism and scavenging of nitric oxide (NO) compounds in cells. Here, we explored the ability of Trametes versicolor glutathione transferases (GSTs) from the Omega class (TvGSTOs) to bind metal-nitrosyl compounds. TvGSTOs have been studied previously for their ligandin role and are interesting models to study protein‒ligand interactions. First, we determined the X-ray structure of the TvGSTO3S isoform bound to the dinitrosyl glutathionyl iron complex (DNGIC), a physiological compound involved in the storage of nitric oxide. Our results suggested a different binding mode compared to the one previously described in human GST Pi 1 (GSTP1). Then, we investigated the manner in which TvGSTO3S binds three nonphysiological metal-nitrosyl compounds with different metal cores (iron, ruthenium and osmium). We assayed sodium nitroprusside, a well-studied vasodilator used in cases of hypertensive crises or heart failure. Our results showed that the tested GST can bind metal-nitrosyls at two distinct binding sites. Thermal shift analysis with six isoforms of TvGSTOs identified TvGSTO6S as the best interactant. Using the Griess method, TvGSTO6S was found to improve the release of nitric oxide from sodium nitroprusside in vitro, whereas the effects of human GST alpha 1 (GSTA1) and GSTP1 were moderate. Our results open new structural perspectives for understanding the interactions of glutathione transferases with metal-nitrosyl compounds associated with the biochemical mechanisms of NO uptake/release in biological systems.


Assuntos
Óxido Nítrico , Trametes , Humanos , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Trametes/metabolismo , Glutationa Transferase/metabolismo , Ferro/metabolismo , Glutationa/metabolismo
20.
BMC Plant Biol ; 23(1): 166, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36977975

RESUMO

BACKGROUND: Glasswort (Salicornia persica) is identified as a halophyte plant, which is one of the most tolerant plants to salt conditions. The seed oil of the plant contains about 33% oil. In the present study, the effects of sodium nitroprusside (SNP; 0, 0.1, 0.2, and 0.4 mM) and potassium nitrate (KNO3; 0, 0.5, and 1%) were evaluated on several characteristics of glasswort under salinity stress (0, 10, 20, and 40 dS/m). RESULTS: morphological features, phenological traits, and yield parameters such as plant height, number of days to flowering, seed oil, biological yield, and seed yield significantly decreased in response to severe salt stress. However, the plants needed an optimal salinity concentration (20 dS/m NaCl) to obtain high amounts of seed oil and seed yield. The results also showed that a high level of salinity (40 dS/m NaCl) caused a decrease in plant oil and yield. In addition, by increasing the exogenous application of SNP and KNO3, the seed oil and seed yield increased. CONCLUSIONS: The application of SNP and KNO3 were effective in protecting S. persica plants from the deleterious effects of severe salt stress (40 dS/m NaCl), thereby restoring the activity of antioxidant enzymes, increasing the proline content, and maintaining cell membrane stability. It seems that both factors, i.e. SNP and KNO3, can be applied as mitigators of salt stress in plants.


Assuntos
Chenopodiaceae , Cloreto de Sódio , Nitroprussiato/farmacologia , Cloreto de Sódio/farmacologia , Estresse Salino , Óleos de Plantas , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA