RESUMO
Dynamic instability, the stochastic switching between growth and shrinkage, is essential for microtubule function. This behavior is driven by GTP hydrolysis in the microtubule lattice and is inhibited by anticancer agents like Taxol. We provide insight into the mechanism of dynamic instability, based on high-resolution cryo-EM structures (4.7-5.6 Å) of dynamic microtubules and microtubules stabilized by GMPCPP or Taxol. We infer that hydrolysis leads to a compaction around the E-site nucleotide at longitudinal interfaces, as well as movement of the α-tubulin intermediate domain and H7 helix. Displacement of the C-terminal helices in both α- and ß-tubulin subunits suggests an effect on interactions with binding partners that contact this region. Taxol inhibits most of these conformational changes, allosterically inducing a GMPCPP-like state. Lateral interactions are similar in all conditions we examined, suggesting that microtubule lattice stability is primarily modulated at longitudinal interfaces.
Assuntos
Guanosina Trifosfato/metabolismo , Microtúbulos/química , Tubulina (Proteína)/química , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Guanosina Trifosfato/análogos & derivados , Humanos , Hidrólise , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Paclitaxel/metabolismo , Conformação Proteica , Tubulina (Proteína)/metabolismoAssuntos
Autobiografias como Assunto , Paclitaxel/metabolismo , Antineoplásicos Fitogênicos/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Feminino , Células HeLa , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Microtúbulos/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêuticoRESUMO
Uncoordinated protein 45A (UNC-45A) is the only known ATP-independent microtubule (MT)-severing protein. Thus, it severs MTs via a novel mechanism. In vitro and in cells, UNC-45A-mediated MT severing is preceded by the appearance of MT bends. While MTs are stiff biological polymers, in cells, they often curve, and the result of this curving can be breaking off. The contribution of MT-severing proteins on MT lattice curvature is largely undefined. Here, we show that UNC-45A curves MTs. Using in vitro biophysical reconstitution and total internal fluorescence microscopy analysis, we show that UNC-45A is enriched in the areas where MTs are curved versus the areas where MTs are straight. In cells, we show that UNC-45A overexpression increases MT curvature and its depletion has the opposite effect. We also show that this effect occurs is independent of actomyosin contractility. Lastly, we show for the first time that in cells, Paclitaxel straightens MTs, and that UNC-45A can counteracts the MT-straightening effects of the drug.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Microtúbulos , Paclitaxel , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Paclitaxel/farmacologia , Paclitaxel/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismoRESUMO
Taxol is a potent drug used in various cancer treatments. Its complex structure has prompted extensive research into its biosynthesis. However, certain critical steps, such as the formation of the oxetane ring, which is essential for its activity, have remained unclear. Previous proposals suggested that oxetane formation follows the acetylation of taxadien-5α-ol. Here, we proposed that the oxetane ring is formed by cytochrome P450-mediated oxidation events that occur prior to C5 acetylation. To test this hypothesis, we analyzed the genomic and transcriptomic information for Taxus species to identify cytochrome P450 candidates and employed two independent systems, yeast (Saccharomyces cerevisiae) and plant (Nicotiana benthamiana), for their characterization. We revealed that a single enzyme, CYP725A4, catalyzes two successive epoxidation events, leading to the formation of the oxetane ring. We further showed that both taxa-4(5)-11(12)-diene (endotaxadiene) and taxa-4(20)-11(12)-diene (exotaxadiene) are precursors to the key intermediate, taxologenic oxetane, indicating the potential existence of multiple routes in the Taxol pathway. Thus, we unveiled a long-elusive step in Taxol biosynthesis.
Assuntos
Sistema Enzimático do Citocromo P-450 , Taxus , Sistema Enzimático do Citocromo P-450/metabolismo , Paclitaxel/metabolismo , Éteres Cíclicos , Catálise , Taxus/genética , Taxus/metabolismoRESUMO
Paclitaxel (PTX, or Taxol), a chemotherapeutic agent widely employed in the treatment of various cancers, undergoes metabolic transformations through the cytochrome P450 enzymes CYP3A4 and CYP2C8. CYP3A4 catalyzes the aromatic hydroxylation reaction of PTX, whereas CYP2C8 demonstrates a distinct reactivity pattern, producing 6α-hydroxypaclitaxel via alkane hydroxylation. Despite the significant impact of PTX metabolism on its anticancer efficacy, the detailed mechanisms underlying these transformations have remained largely unclear. In this study, we employed hybrid quantum mechanics and molecular mechanics (QM/MM) calculations to elucidate the mechanism of PTX metabolism by human CYP2C8. Our QM/MM results reveal that the hydroxylation of PTX by CYP2C8 follows an atypical rebound mechanism. Either of the two hydrogen atoms at the C6 position of PTX can be abstracted, leading to a common radical intermediate. Although the subsequent rebound barrier is unusually high, stereochemical scrambling is unlikely, as the rebound barrier for the formation of the 6α-hydroxylated PTXâthe actual productâis significantly lower than that for the 6ß-hydroxylated metabolite. Thus, product selectivity is determined by the non-rate-determining rebound step. Furthermore, the hydroxyl group at the C7 position of PTX plays a catalytic role by facilitating the hydrogen abstraction and rebound steps. Our study also confirms a pronounced stability of the transition state in the high-spin sextet spin state, enabled by the enzyme's specific substrate positioning.
Assuntos
Citocromo P-450 CYP2C8 , Ligação de Hidrogênio , Paclitaxel , Paclitaxel/química , Paclitaxel/metabolismo , Hidroxilação , Humanos , Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP2C8/química , Teoria Quântica , Biocatálise , Catálise , Estrutura MolecularRESUMO
Paclitaxel is one of the most effective anticancer drugs ever developed. Although the most sustainable approach to its production is provided by plant cell cultures, the yield is limited by bottleneck enzymes in the taxane biosynthetic pathway: baccatin-aminophenylpropanoyl-13-O-transferase (BAPT) and 3'-N-debenzoyltaxol N-benzoyltransferase (DBTNBT). With the aim of enhancing paclitaxel production by overcoming this bottleneck, we obtained distinct lines of Taxus baccata in vitro roots, each independently overexpressing either of the two flux-limiting genes, BAPT or DBTNBT, through a Rhizobium rhizogenes A4-mediated transformation. Due to the slow growth rate of the transgenic Taxus roots, they were dedifferentiated to obtain callus lines and establish cell suspensions. The transgenic cells were cultured in a two-stage system and stimulated for taxane production by a dual elicitation treatment with 1 µm coronatine plus 50 mm of randomly methylated-ß-cyclodextrins. A high overexpression of BAPT (59.72-fold higher at 48 h) and DBTNBT (61.93-fold higher at 72 h) genes was observed in the transgenic cell cultures, as well as an improved taxane production. Compared to the wild type line (71.01 mg/L), the DBTNBT line produced more than four times higher amounts of paclitaxel (310 mg/L), while the content of this taxane was almost doubled in the BAPT line (135 mg/L). A transcriptional profiling of taxane biosynthetic genes revealed that GGPPS, TXS and DBAT genes were the most reactive to DBTNBT overexpression and the dual elicitation, their expression increasing gradually and constantly. The same genes exhibited a pattern of isolated peaks of expression in the elicited BAPT-overexpressing line.
Assuntos
Paclitaxel , Taxus , Paclitaxel/metabolismo , Taxus/genética , Taxus/metabolismo , Células Cultivadas , Taxoides/farmacologia , Taxoides/metabolismoRESUMO
In the quest for innovative cancer therapeutics, paclitaxel remains a cornerstone in clinical oncology. However, its complex biosynthetic pathway, particularly the intricate oxygenation steps, has remained a puzzle in the decades following the characterization of the last taxane hydroxylase. The high divergence and promiscuity of enzymes involved have posed significant challenges. In this study, we adopted an innovative approach, combining in silico methods and functional gene analysis, to shed light on this elusive pathway. Our molecular docking investigations using a library of potential ligands uncovered TB574 as a potential missing enzyme in the paclitaxel biosynthetic pathway, demonstrating auspicious interactions. Complementary in vivo assays utilizing engineered S. cerevisiae strains as novel microbial cell factory consortia not only validated TB574's critical role in forging the elusive paclitaxel intermediate, T5αAc-1ß,10ß-diol, but also achieved the biosynthesis of paclitaxel precursors at an unprecedented yield including T5αAc-1ß,10ß-diol with approximately 40 mg/L. This achievement is highly promising, offering a new direction for further exploration of a novel metabolic engineering approaches using microbial consortia. In conclusion, our study not only furthers study the roles of previously uncharacterized enzymes in paclitaxel biosynthesis but also forges a path for pioneering advancements in the complete understanding of paclitaxel biosynthesis and its heterologous production. The characterization of T1ßOH underscores a significant leap forward for future advancements in paclitaxel production using heterologous systems to improve cancer treatment and pharmaceutical production, thereby holding immense promise for enhancing the efficacy of cancer therapies and the efficiency of pharmaceutical manufacturing.
Assuntos
Paclitaxel , Saccharomyces cerevisiae , Paclitaxel/biossíntese , Paclitaxel/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Simulação de Acoplamento Molecular , Engenharia Metabólica , Taxoides/metabolismo , Hidrocarbonetos Aromáticos com PontesRESUMO
BACKGROUND: Paclitaxel (PTX), which is a first-line chemotherapy drug used to treat various types of cancers, exhibits peripheral neuropathy as a common side effect that is difficult to treat. Protein arginine methyltransferase 5 (PRMT 5) is a key regulator of the chemotherapy response, as chemotherapy drugs induce PRMT5 expression. However, little is known about the PRMT5-mediated epigenetic mechanisms involved in PTX-induced neuropathic allodynia. METHODS: Sprague-Dawley rats were intraperitoneally given PTX to induce neuropathic pain. Biochemical analyses were conducted to measure the protein expression levels in the dorsal root ganglion (DRG) of the animals. The von Frey test and hot plate test were used to evaluate nociceptive behaviors. RESULTS: PTX increased the PRMT5 (mean difference [MD]: 0.68, 95% confidence interval [CI], 0.88-0.48; P < .001 for vehicle)-mediated deposition of histone H3R2 dimethyl symmetric (H3R2me2s) at the transient receptor potential vanilloid 1 ( Trpv1 ) promoter in the DRG. PRMT5-induced H3R2me2s recruited WD repeat domain 5 (WDR5) to increase trimethylation of lysine 4 on histone H3 (H3K4me3) at Trpv1 promoters, thus resulting in TRPV1 transcriptional activation (MD: 0.65, 95% CI, 0.82-0.49; P < .001 for vehicle) in DRG in PTX-induced neuropathic pain. Moreover, PTX increased the activity of NADPH oxidase 4 (NOX4) (MD: 0.66, 95% CI, 0.81-0.51; P < .001 for vehicle), PRMT5-induced H3R2me2s, and WDR5-mediated H3K4me3 in the DRG in PTX-induced neuropathic pain. Pharmacological antagonism and the selective knockdown of PRMT5 in DRG neurons completely blocked PRMT5-mediated H3R2me2s, WDR5-mediated H3K4me3, or TRPV1 expression and neuropathic pain development after PTX injection. Remarkably, NOX4 inhibition not only attenuated allodynia behavior and reversed the above-mentioned signaling but also reversed NOX4 upregulation via PTX. CONCLUSIONS: Thus, the NOX4/PRMT5-associated epigenetic mechanism in DRG has a dominant function in the transcriptional activation of TRPV1 in PTX-induced neuropathic pain.
Assuntos
Antineoplásicos , Neuralgia , Ratos , Animais , Paclitaxel/toxicidade , Paclitaxel/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/farmacologia , Ratos Sprague-Dawley , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Hiperalgesia/metabolismo , Gânglios Espinais , Canais de Cátion TRPV/genética , Antineoplásicos/efeitos adversos , Neuralgia/induzido quimicamente , Neuralgia/genética , Neuralgia/metabolismo , Epigênese GenéticaRESUMO
Taxol (common name: paclitaxel) is an extremely important component of drugs for the treatment of various cancers. Thirty years after the discovery of its effectiveness, a metabolic precursor of Taxol (10-deacetylbaccatin III) is still primarily extracted from needles of European yew trees. In order to meet the considerable demand, hopes were pinned on the possibilities of biotechnological production from the very beginning. In 1993, as if by chance, Taxol was supposedly discovered in fungi that grow endobiotically in yew trees. This finding aroused hopes of biotechnological use to produce fungal Taxol in large quantities in fermenters. It never came to that. Instead, a confusing flood of publications emerged that claimed to have detected Taxol in more and more eukaryotic and even prokaryotic species. However, researchers never reproduced these rather puzzling results, and they could certainly not be applied on an industrial scale. This paper will show that some of the misguided approaches were apparently based on a seemingly careless handling of sparse evidence and on at least questionable publications. Apparently, the desired gold rush of commercial exploitation was seductive. Scientific skepticism as an indispensable core of good scientific practice was often neglected, and the peer review process has not exerted its corrective effect. Self-critical reflection and more healthy skepticism could help to reduce the risk of such aberrations in drug development. This article uses this case study as a striking example to show what can be learned from the Taxol case in terms of research ethics and the avoidance of questionable research practices.
Assuntos
Fungos , Paclitaxel , Metabolismo Secundário , Biotecnologia , Fungos/metabolismo , Paclitaxel/isolamento & purificação , Paclitaxel/metabolismoRESUMO
Microtubules are dynamic cytoskeletal polymers that spontaneously switch between phases of growth and shrinkage. The probability of transitioning from growth to shrinkage, termed catastrophe, increases with microtubule age, but the underlying mechanisms are poorly understood. Here, we set out to test whether microtubule lattice defects formed during polymerization can affect growth at the plus end. To generate microtubules with lattice defects, we used microtubule-stabilizing agents that promote formation of polymers with different protofilament numbers. By employing different agents during nucleation of stable microtubule seeds and the subsequent polymerization phase, we could reproducibly induce switches in protofilament number and induce stable lattice defects. Such drug-induced defects led to frequent catastrophes, which were not observed when microtubules were grown in the same conditions but without a protofilament number mismatch. Microtubule severing at the site of the defect was sufficient to suppress catastrophes. We conclude that structural defects within the microtubule lattice can exert effects that can propagate over long distances and affect the dynamic state of the microtubule end.
Assuntos
Microtúbulos/metabolismo , Moduladores de Tubulina/metabolismo , Fenômenos Biológicos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/ultraestrutura , Paclitaxel/metabolismo , Polimerização , Ligação Proteica , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/químicaRESUMO
In this study, an engineered strain of Saccharomyces cerevisiae was used to produce taxadiene, a precursor in the biosynthetic pathway of the anticancer drug paclitaxel. Taxadiene was recovered in situ with the polymeric adsorbent Diaion © HP-20. Here we tested two bioreactor configurations and adsorbent concentrations to maximize the production and recovery of taxadiene. An external recovery configuration (ERC) was performed with the integration of an expanded bed adsorption column, whereas the internal recovery configuration (IRC) consisted in dispersed beads inside the bioreactor vessel. Taxadiene titers recovered in IRC were higher to ERC by 3.4 and 3.5 fold by using 3% and 12% (w/v) adsorbent concentration respectively. On the other hand, cell growth kinetics were faster in ERC which represents an advantage in productivity (mg of taxadiene/L*h). High resin bead concentration (12% w/v) improved the partition of taxadiene onto the beads up to 98%. This result represents an advantage over previous studies using a 3% resin concentration where the partition of taxadiene on the beads was around 50%. This work highlights the potential of in situ product recovery to improve product partition, reduce processing steps and promote cell growth. Nevertheless, a careful design of bioreactor configuration and process conditions is critical.
Assuntos
Diterpenos , Saccharomyces cerevisiae , Adsorção , Diterpenos/metabolismo , Paclitaxel/metabolismo , Saccharomyces cerevisiae/metabolismoRESUMO
Oxetane synthase (TmCYP1), a novel cytochrome P450 enzyme from Taxus×media cell cultures, has been functionally characterized to efficiently catalyse the formation of the oxetane ring in tetracyclic taxoids. Transient expression of TmCYP1 in Nicotiana benthamiana using 2α,5α,7ß,9α,10ß,13α-hexaacetoxytaxa-4(20),11(12)-diene (1) as a substrate led to the production of a major oxetane derivative, 1ß-dehydroxybaccatin IV (1 a), and a minor 4ß,20-epoxide derivative, baccatin I (1 b). However, feeding the substrate decinnamoyltaxinine J (2), a 5-deacetylated derivative of 1, yielded only 5α-deacetylbaccatin I (2 b), a 4ß,20-epoxide. A possible reaction mechanism was proposed on the basis of substrate-feeding, 2H and 18O isotope labelling experiments, and density functional theory calculations. This reaction could be an intramolecular oxidation-acetoxyl rearrangement and the construction of the oxetane ring may occur through a concerted process; however, the 4ß,20-epoxide might be a shunt product. In this process, the C5-O-acetyl group in substrate is crucial for the oxetane ring formation but not for the 4(20)-epoxy ring formation by TmCYP1. These findings provide a better understanding of the enzymatic formation of the oxetane ring in paclitaxel biosynthesis.
Assuntos
Sistema Enzimático do Citocromo P-450 , Éteres Cíclicos , Paclitaxel , Sistema Enzimático do Citocromo P-450/metabolismo , Paclitaxel/biossíntese , Paclitaxel/química , Paclitaxel/metabolismo , Éteres Cíclicos/química , Éteres Cíclicos/metabolismo , Taxus/enzimologia , Taxus/metabolismo , Biocatálise , Nicotiana/metabolismo , Nicotiana/enzimologia , Estrutura MolecularRESUMO
Cytochrome P450 monooxygenases (CYP450s) play an important role in the biosynthesis of natural products by activating inert C-H bonds and inserting hydroxyl groups. However, the activities of most plant-derived CYP450s are extremely low, limiting the heterologous biosynthesis of natural products. Traditional enzyme engineering methods, either rational or screening-based, are not suitable for CYP450s because of the lack of crystal structures and high-throughput screening methods for this class of enzymes. CYP725A4 is the first hydroxylase involved in the biosynthesis pathway of Taxol. Its low activity, promiscuity, and multispecificity make it a bottleneck in Taxol biosynthesis. Here, we identified key amino acids that affect the in vivo activity of CYP725A4 by constructing the ancestral enzymes of CYP725A4. We obtained positive mutants that showed an improved yield of hydroxylated products based on the key amino acids identified, providing guidance for the modification of other CYP450s involved in the biosynthesis of natural products.
Assuntos
Aminoácidos , Produtos Biológicos , Aminoácidos/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Paclitaxel/química , Paclitaxel/metabolismoRESUMO
Chemotherapy resistance remains a major obstacle in the treatment of esophageal cancer. Previous researches have shown that an increase in exosomal PD-L1 expression was positively associated with a more advanced clinical stage, a poorer prognosis as well as drug resistance in patients with esophageal squamous cell carcinoma (ESCC). To explore the role of exosomal PD-L1 in ESCC, we performed bioinformatics analysis as well as several in vitro/in vivo functional experiments in a parental sensitive cell line EC-9706 and its derivative, a paclitaxel-resistant subline EC-9706R, and found that the exosomal PD-L1 from EC-9706R was higher than that from EC-9706. Moreover, exosomes from EC-9706R significantly increased invasion, migration and chemoresistance of EC-9706. Anti-PD-L1 treatment in combination with chemotherapy also led to reduced tumor burden in vivo. Inhibition of the release of exosomes by GW4869 or inhibition of STAT3 phosphorylation by stattic could effectively reverse the resistance to paclitaxel mediated by exosomal PD-L1. Furthermore, we found that PD-L1, miR-21, and multidrug resistance (MDR1) gene are involved in the process of exosomal transfer. Moreover, PD-L1 could enhance miR-21 expression by increasing the enrichment of STAT3 on miR-21 promoter. Our results suggested that exosomal PD-L1 may contribute to drug resistance to paclitaxel by regulating the STAT3/miR-21/PTEN/Akt axis and promote tumorigenic phenotype. This study provides a novel potential therapeutic approach to reverse chemoresistance and tumor progression through exosomal PD-L1 in ESCC patients.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Exossomos , MicroRNAs , Humanos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Exossomos/genética , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Paclitaxel/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proliferação de Células/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismoRESUMO
Secondary (specialized) metabolites, produced by bacteria, fungi, plants, and other organisms, exhibit enormous structural variation, and consequently display a wide range of biological activities. Secondary metabolism improves and modulates the phenotype of the host producer. Furthermore, these biological activities have resulted in the use of secondary metabolites in a variety of industrial and pharmaceutical applications. Metabolic engineering presents a powerful strategy to improve access to these valuable molecules. A critical overview of engineering approaches in secondary metabolism is presented, both in heterologous and native hosts. The recognition of the increasing role of compartmentalization in metabolic engineering is highlighted. Engineering approaches to modify the structure of key secondary metabolite classes are also critically evaluated.
Assuntos
Enzimas/metabolismo , Engenharia Metabólica/métodos , Metabolismo Secundário/fisiologia , Artemisininas/metabolismo , Bactérias/genética , Bactérias/metabolismo , Enzimas/genética , Eritromicina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fungos/genética , Fungos/metabolismo , Redes e Vias Metabólicas , Paclitaxel/metabolismo , Plantas/genética , Plantas/metabolismo , Engenharia de Proteínas/métodos , Streptomyces/genética , Streptomyces/metabolismoRESUMO
Paclitaxel (PTX) is heralded as one of the most successful natural-product drugs for the treatment of refractory cancers. In humans, the hepatic metabolic transformation of PTX is primarily mediated by two cytochrome P450 enzymes (P450s): CYP3A4 and CYP2C8. The impact of P450 metabolism on the anticancer effectiveness of PTX is significant. However, the precise mechanism underlying selective P450-catalyzed reactions in PTX metabolism remains elusive. To address this knowledge gap, we conducted molecular docking and molecular dynamics simulations using multiple crystal structures of CYP3A4, which originally contained other ligands. These methods enabled us to determine the most plausible binding structure of PTX within the enzyme. By further employing hybrid quantum mechanics and molecular mechanics calculations, we successfully identified two primary pathways for the reaction between compound I (Cpd I) of CYP3A4 and PTX. One of these pathways involves the formation of an epoxide, while the other proceeds through a ketone intermediate.
Assuntos
Citocromo P-450 CYP3A , Paclitaxel , Humanos , Citocromo P-450 CYP3A/metabolismo , Paclitaxel/metabolismo , Hidroxilação , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Catálise , Microssomos Hepáticos/metabolismoRESUMO
The microtubule system plays an important role in the mitosis and growth of eukaryotic cells, and it is considered as an appealing and highly successful molecular target for cancer treatment. In fact, microtubule targeting agents, such as paclitaxel and vinblastine, have been approved by FDA for tumor therapy, which have achieved significant therapeutic effects and sales performance. At present, microtubule targeting agents mainly include microtubule-destabilizing agents, microtubule-stabilizing agents, and a few tubulin degradation agents. Although there are few reports about tubulin degradation agents at present, tubulin degradation agents show great potential in overcoming multidrug resistance and reducing neurotoxicity. In addition, some natural drugs could specifically degrade tubulin in tumor cells, but have no effect in normal cells, thus showing a good biosafety profile. Therefore, tubulin degradation agents might exhibit a better application. Currently, some small molecules have been designed to promote tubulin degradation with potent antiproliferative activities, showing the potential for cancer treatment. In this work, we reviewed the reports on tubulin degradation, and focused on the degradation mechanism and important functional groups of chemically synthesized compounds, hoping to provide help for the degradation design of tubulin.
Assuntos
Antineoplásicos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos , Antineoplásicos/química , Vimblastina/metabolismo , Vimblastina/farmacologia , Paclitaxel/metabolismo , Moduladores de Tubulina/químicaRESUMO
BACKGROUND: The microtubule-stabilizing drug paclitaxel (PTX) is an important chemotherapeutic agent for cancer treatment and causes peripheral neuropathy as a common side effect that substantially impacts the functional status and quality of life of patients. The mechanistic role for NIMA-related kinase 2 (NEK2) in the progression of PTX-induced neuropathic pain has not been established. METHODS: Adult male Sprague-Dawley rats intraperitoneally received PTX to induce neuropathic pain. The protein expression levels in the dorsal root ganglion (DRG) of animals were measured by biochemical analyses. Nociceptive behaviors were evaluated by von Frey tests and hot plate tests. RESULTS: PTX increased phosphorylation of the important microtubule dynamics regulator NEK2 in DRG neurons and induced profound neuropathic allodynia. PTX-activated phosphorylated NEK2 (pNEK2) increased jumonji domain-containing 3 (JMJD3) protein, a histone demethylase protein, to specifically catalyze the demethylation of the repressive histone mark H3 lysine 27 trimethylation (H3K27me3) at the Trpv1 gene, thereby enhancing transient receptor potential vanilloid subtype-1 (TRPV1) expression in DRG neurons. Moreover, the pNEK2-dependent PTX response program is regulated by enhancing p90 ribosomal S6 kinase 2 (RSK2) phosphorylation. Conversely, intrathecal injections of kaempferol (a selective RSK2 activation antagonist), NCL 00017509 (a selective NEK2 inhibitor), NEK2-targeted siRNA, GSK-J4 (a selective JMJD3 inhibitor), or capsazepine (an antagonist of TRPV1 receptor) into PTX-treated rats reversed neuropathic allodynia and restored silencing of the Trpv1 gene, suggesting the hierarchy and interaction among phosphorylated RSK2 (pRSK2), pNEK2, JMJD3, H3K27me3, and TRPV1 in the DRG neurons in PTX-induced neuropathic pain. CONCLUSIONS: pRSK2/JMJD3/H3K27me3/TRPV1 signaling in the DRG neurons plays as a key regulator for PTX therapeutic approaches.
Assuntos
Antineoplásicos , Neuralgia , Humanos , Ratos , Masculino , Animais , Paclitaxel/efeitos adversos , Paclitaxel/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Ratos Sprague-Dawley , Gânglios Espinais , Fosfatos/efeitos adversos , Fosfatos/metabolismo , Histonas/metabolismo , Qualidade de Vida , Canais de Cátion TRPV , Neuralgia/induzido quimicamente , Neuralgia/genética , Neuralgia/metabolismo , Antineoplásicos/efeitos adversos , Neurônios/metabolismo , Epigênese Genética , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismoRESUMO
Chemotherapeutic drugs can cause reproductive damage by affecting sperm quality and other aspects of male fertility. Stem cells are thought to alleviate the damage caused by chemotherapy drugs and to play roles in reproductive protection and treatment. This study aimed to explore the effects of human umbilical cord mesenchymal stem cells (hUC-MSCs) on alleviating paclitaxel (PTX)-induced spermatogenesis and male fertility defects. An in vivo PTX-induced mice model was constructed to evaluate the reproductive toxicity and protective roles of hUC-MSCs in male fertility improvement. A 14 day PTX treatment regimen significantly attenuated mice spermatogenesis and sperm quality, including affecting spermatogenesis, reducing sperm counts, and decreasing sperm motility. hUC-MSCs treatment could significantly improve sperm functional indicators. Mating experiments with normal female mice and examination of embryo development at 7.5 days post-coitum (dpc) showed that hUC-MSCs restored male mouse fertility that was reduced by PTX. In IVF experiments, PTX impaired sperm fertility and blastocyst development, but hUC-MSCs treatment rescued these indicators. hUC-MSCs' protective role was also displayed through the increased expression of the fertility-related proteins HSPA2 and HSPA4L in testes with decreased expression in the PTX-treated group. These changes might be related to the PTX-induced decreases in expression of the germ cell proliferation protein PCNA and the meiosis proteins SYCP3, MLH1, and STRA8, which were restored after hUC-MSCs treatment. In the PTX-treated group, the expression of testicular antioxidant proteins SIRT1, NRF2, CAT, SOD1, and PRDX6 was significantly decreased, but hUC-MSCs could maintain these expressions and reverse PTX-related increases in BAX/BCL2 ratios. hUC-MSCs may be a promising agent with antioxidant and anti-apoptosis characteristics that can maintain sperm quality following chemotherapy treatment.
Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Masculino , Camundongos , Feminino , Animais , Paclitaxel/efeitos adversos , Paclitaxel/metabolismo , Antioxidantes/metabolismo , Cordão Umbilical , Motilidade dos Espermatozoides , Sêmen , Espermatogênese , FertilidadeRESUMO
As a malignant head and neck cancer, nasopharyngeal carcinoma (NPC) has high morbidity. Parkin expression has been reported to be reduced in NPC tissues and its upregulation could enhance paclitaxel-resistant cell cycle arrest. This study was performed to explore the possible mechanism of Parkin related to B-cell lymphoma-2 (Bcl-2)/adenovirus E1B 19 kDa interacting protein 3 (BNIP3)/BNIP3-like (NIX)-mediated mitochondrial autophagy in NPC cells. Initially, after Parkin overexpression or silencing, cell viability and proliferation were evaluated by lactate dehydrogenase and colony formation assays. JC-1 staining was used to assess the mitochondrial membrane potential. In addition, the levels of cellular reactive oxygen species (ROS) and mitochondrial ROS were detected using DCFH-DA staining and mitochondrial ROS (MitoSOX) red staining. The expression of proteins was measured using Western blot. Results showed that Parkin overexpression inhibited, whereas Parkin knockdown promoted the proliferation of paclitaxel-treated NPC cells. Besides, Parkin overexpression induced, whereas Parkin knockdown inhibited mitochondrial apoptosis in paclitaxel-treated NPC cells, as evidenced by the changes of Cytochrome C (mitochondria), Cytochrome C (cytoplasm), BAK, and Bcl-2 expression. Moreover, the levels of ROS, mitochondrial membrane potential, and LC3II/LC3I in paclitaxel-treated C666-1 cells were hugely elevated by Parkin overexpression and were all declined by Parkin knockdown in CNE-3 cells. Furthermore, Parkin upregulation activated, whereas Parkin downregulation inactivated BNIP3/NIX signaling. Further, BNIP3 silencing or overexpression reversed the impacts of Parkin upregulation or downregulation on the proliferation and mitochondrial apoptosis of paclitaxel-treated NPC cells. Particularly, Mdivi-1 (mitophagy inhibitor) or rapamycin (an activator of autophagy) exerted the same effects on NPC cells as BNIP3 silencing or overexpression, respectively. Collectively, Parkin overexpression activated BNIP3/NIX-mediated mitochondrial autophagy to enhance sensitivity to paclitaxel in NPC.