Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.150
Filtrar
1.
Cell ; 187(8): 1874-1888.e14, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38518773

RESUMO

Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Pulmão , Polissacarídeos Bacterianos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Feminino , Masculino , Camundongos , Biofilmes , Escherichia coli/fisiologia , Hipotermia/metabolismo , Hipotermia/patologia , Inflamação/metabolismo , Inflamação/patologia , Pulmão/microbiologia , Pulmão/patologia , Pneumonia/microbiologia , Pneumonia/patologia , Pseudomonas aeruginosa/fisiologia , Células Receptoras Sensoriais , Polissacarídeos Bacterianos/metabolismo , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Nociceptores/metabolismo
2.
Cell ; 181(4): 848-864.e18, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32298651

RESUMO

Chronic obstructive pulmonary disease (COPD) is a progressive condition of chronic bronchitis, small airway obstruction, and emphysema that represents a leading cause of death worldwide. While inflammation, fibrosis, mucus hypersecretion, and metaplastic epithelial lesions are hallmarks of this disease, their origins and dependent relationships remain unclear. Here we apply single-cell cloning technologies to lung tissue of patients with and without COPD. Unlike control lungs, which were dominated by normal distal airway progenitor cells, COPD lungs were inundated by three variant progenitors epigenetically committed to distinct metaplastic lesions. When transplanted to immunodeficient mice, these variant clones induced pathology akin to the mucous and squamous metaplasia, neutrophilic inflammation, and fibrosis seen in COPD. Remarkably, similar variants pre-exist as minor constituents of control and fetal lung and conceivably act in normal processes of immune surveillance. However, these same variants likely catalyze the pathologic and progressive features of COPD when expanded to high numbers.


Assuntos
Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Adulto , Idoso , Animais , Feminino , Fibrose/fisiopatologia , Humanos , Inflamação/patologia , Pulmão/metabolismo , Masculino , Metaplasia/fisiopatologia , Camundongos , Pessoa de Meia-Idade , Neutrófilos/imunologia , Pneumonia/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Análise de Célula Única/métodos , Células-Tronco/metabolismo
3.
Annu Rev Immunol ; 30: 243-70, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22224777

RESUMO

Lung dendritic cells (DCs) bridge innate and adaptive immunity, and depending on context, they also induce a Th1, Th2, or Th17 response to optimally clear infectious threats. Conversely, lung DCs can also mount maladaptive Th2 immune responses to harmless allergens and, in this way, contribute to immunopathology. It is now clear that the various aspects of DC biology can be understood only if we take into account the functional specializations of different DC subsets that are present in the lung in homeostasis or are attracted to the lung as part of the inflammatory response to inhaled noxious stimuli. Lung DCs are heavily influenced by the nearby epithelial cells, and a model is emerging whereby direct communication between DCs and epithelial cells determines the outcome of the pulmonary immune response. Here, we have approached DC biology from the perspective of viral infection and allergy to illustrate these emerging concepts.


Assuntos
Asma/imunologia , Células Dendríticas/imunologia , Influenza Humana/imunologia , Pulmão/imunologia , Imunidade Adaptativa , Alérgenos/imunologia , Animais , Asma/prevenção & controle , Células Dendríticas/metabolismo , Humanos , Pulmão/patologia , Pulmão/virologia , Camundongos , Pneumonia/imunologia , Pneumonia/patologia
4.
Nat Immunol ; 21(6): 636-648, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32424365

RESUMO

Sepsis and trauma cause inflammation and elevated susceptibility to hospital-acquired pneumonia. As phagocytosis by macrophages plays a critical role in the control of bacteria, we investigated the phagocytic activity of macrophages after resolution of inflammation. After resolution of primary pneumonia, murine alveolar macrophages (AMs) exhibited poor phagocytic capacity for several weeks. These paralyzed AMs developed from resident AMs that underwent an epigenetic program of tolerogenic training. Such adaptation was not induced by direct encounter of the pathogen but by secondary immunosuppressive signals established locally upon resolution of primary infection. Signal-regulatory protein α (SIRPα) played a critical role in the establishment of the microenvironment that induced tolerogenic training. In humans with systemic inflammation, AMs and also circulating monocytes still displayed alterations consistent with reprogramming six months after resolution of inflammation. Antibody blockade of SIRPα restored phagocytosis in monocytes of critically ill patients in vitro, which suggests a potential strategy to prevent hospital-acquired pneumonia.


Assuntos
Epigênese Genética , Inflamação/etiologia , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Animais , Biomarcadores , Reprogramação Celular , Citocinas/metabolismo , Humanos , Tolerância Imunológica , Imunofenotipagem , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos Alveolares/imunologia , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Fagocitose/imunologia , Pneumonia/etiologia , Pneumonia/metabolismo , Pneumonia/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
5.
Nat Immunol ; 21(11): 1327-1335, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32839612

RESUMO

Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-κB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/patologia , Imunidade Inata/imunologia , Peptidil Dipeptidase A/genética , Pneumonia Viral/patologia , Pneumonia/patologia , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Interferon Tipo I/imunologia , Interferon gama/imunologia , Queratina-18/genética , Leucócitos/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Monócitos/imunologia , NF-kappa B/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Pandemias , Pneumonia/genética , Pneumonia/virologia , Pneumonia Viral/imunologia , Regiões Promotoras Genéticas/genética , SARS-CoV-2 , Linfócitos T/imunologia , Células Vero , Replicação Viral/imunologia
6.
Nat Immunol ; 20(9): 1138-1149, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31427775

RESUMO

Interleukin (IL)-1R3 is the co-receptor in three signaling pathways that involve six cytokines of the IL-1 family (IL-1α, IL-1ß, IL-33, IL-36α, IL-36ß and IL-36γ). In many diseases, multiple cytokines contribute to disease pathogenesis. For example, in asthma, both IL-33 and IL-1 are of major importance, as are IL-36 and IL-1 in psoriasis. We developed a blocking monoclonal antibody (mAb) to human IL-1R3 (MAB-hR3) and demonstrate here that this antibody specifically inhibits signaling via IL-1, IL-33 and IL-36 in vitro. Also, in three distinct in vivo models of disease (crystal-induced peritonitis, allergic airway inflammation and psoriasis), we found that targeting IL-1R3 with a single mAb to mouse IL-1R3 (MAB-mR3) significantly attenuated heterogeneous cytokine-driven inflammation and disease severity. We conclude that in diseases driven by multiple cytokines, a single antagonistic agent such as a mAb to IL-1R3 is a therapeutic option with considerable translational benefit.


Assuntos
Anticorpos Bloqueadores/farmacologia , Anticorpos Monoclonais/farmacologia , Proteína Acessória do Receptor de Interleucina-1/antagonistas & inibidores , Peritonite/imunologia , Pneumonia/imunologia , Psoríase/imunologia , Células A549 , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células HEK293 , Humanos , Imiquimode/toxicidade , Inflamação/patologia , Interleucina-1/imunologia , Proteína Acessória do Receptor de Interleucina-1/imunologia , Interleucina-1beta/imunologia , Interleucina-33/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/toxicidade , Peritonite/tratamento farmacológico , Peritonite/patologia , Pneumonia/tratamento farmacológico , Pneumonia/patologia , Psoríase/tratamento farmacológico , Psoríase/patologia , Transdução de Sinais/imunologia , Ácido Úrico/toxicidade
8.
Immunity ; 54(7): 1578-1593.e5, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34051147

RESUMO

Immune profiling of COVID-19 patients has identified numerous alterations in both innate and adaptive immunity. However, whether those changes are specific to SARS-CoV-2 or driven by a general inflammatory response shared across severely ill pneumonia patients remains unknown. Here, we compared the immune profile of severe COVID-19 with non-SARS-CoV-2 pneumonia ICU patients using longitudinal, high-dimensional single-cell spectral cytometry and algorithm-guided analysis. COVID-19 and non-SARS-CoV-2 pneumonia both showed increased emergency myelopoiesis and displayed features of adaptive immune paralysis. However, pathological immune signatures suggestive of T cell exhaustion were exclusive to COVID-19. The integration of single-cell profiling with a predicted binding capacity of SARS-CoV-2 peptides to the patients' HLA profile further linked the COVID-19 immunopathology to impaired virus recognition. Toward clinical translation, circulating NKT cell frequency was identified as a predictive biomarker for patient outcome. Our comparative immune map serves to delineate treatment strategies to interfere with the immunopathologic cascade exclusive to severe COVID-19.


Assuntos
COVID-19/imunologia , SARS-CoV-2/patogenicidade , Adulto , Enzima de Conversão de Angiotensina 2/metabolismo , Apresentação de Antígeno , Biomarcadores/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , COVID-19/patologia , Feminino , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Imunidade Inata , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Células T Matadoras Naturais/imunologia , Pneumonia/imunologia , Pneumonia/patologia , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
9.
Nature ; 631(8021): 627-634, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987592

RESUMO

Fibroblasts are present throughout the body and function to maintain tissue homeostasis. Recent studies have identified diverse fibroblast subsets in healthy and injured tissues1,2, but the origins and functional roles of injury-induced fibroblast lineages remain unclear. Here we show that lung-specialized alveolar fibroblasts take on multiple molecular states with distinct roles in facilitating responses to fibrotic lung injury. We generate a genetic tool that uniquely targets alveolar fibroblasts to demonstrate their role in providing niches for alveolar stem cells in homeostasis and show that loss of this niche leads to exaggerated responses to acute lung injury. Lineage tracing identifies alveolar fibroblasts as the dominant origin for multiple emergent fibroblast subsets sequentially driven by inflammatory and pro-fibrotic signals after injury. We identify similar, but not completely identical, fibroblast lineages in human pulmonary fibrosis. TGFß negatively regulates an inflammatory fibroblast subset that emerges early after injury and stimulates the differentiation into fibrotic fibroblasts to elicit intra-alveolar fibrosis. Blocking the induction of fibrotic fibroblasts in the alveolar fibroblast lineage abrogates fibrosis but exacerbates lung inflammation. These results demonstrate the multifaceted roles of the alveolar fibroblast lineage in maintaining normal alveolar homeostasis and orchestrating sequential responses to lung injury.


Assuntos
Lesão Pulmonar Aguda , Linhagem da Célula , Fibroblastos , Pneumonia , Alvéolos Pulmonares , Fibrose Pulmonar , Animais , Feminino , Humanos , Masculino , Camundongos , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Diferenciação Celular , Fibroblastos/patologia , Fibroblastos/metabolismo , Homeostase , Pneumonia/patologia , Pneumonia/metabolismo , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Nicho de Células-Tronco , Células-Tronco/metabolismo , Células-Tronco/citologia , Células-Tronco/patologia , Fator de Crescimento Transformador beta/metabolismo
10.
Immunity ; 51(5): 899-914.e7, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31732166

RESUMO

Myocardial infarction, stroke, and sepsis trigger systemic inflammation and organism-wide complications that are difficult to manage. Here, we examined the contribution of macrophages residing in vital organs to the systemic response after these injuries. We generated a comprehensive catalog of changes in macrophage number, origin, and gene expression in the heart, brain, liver, kidney, and lung of mice with myocardial infarction, stroke, or sepsis. Predominantly fueled by heightened local proliferation, tissue macrophage numbers increased systemically. Macrophages in the same organ responded similarly to different injuries by altering expression of tissue-specific gene sets. Preceding myocardial infarction improved survival of subsequent pneumonia due to enhanced bacterial clearance, which was caused by IFNÉ£ priming of alveolar macrophages. Conversely, EGF receptor signaling in macrophages exacerbated inflammatory lung injury. Our data suggest that local injury activates macrophages in remote organs and that targeting macrophages could improve resilience against systemic complications following myocardial infarction, stroke, and sepsis.


Assuntos
Suscetibilidade a Doenças , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Biomarcadores , Contagem de Células , Suscetibilidade a Doenças/imunologia , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Isquemia/etiologia , Isquemia/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Células Musculares/imunologia , Células Musculares/metabolismo , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Pneumonia/etiologia , Pneumonia/metabolismo , Pneumonia/patologia
11.
Nature ; 603(7899): 145-151, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35045565

RESUMO

COVID-19, which is caused by infection with SARS-CoV-2, is characterized by lung pathology and extrapulmonary complications1,2. Type I interferons (IFNs) have an essential role in the pathogenesis of COVID-19 (refs 3-5). Although rapid induction of type I IFNs limits virus propagation, a sustained increase in the levels of type I IFNs in the late phase of the infection is associated with aberrant inflammation and poor clinical outcome5-17. Here we show that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, which controls immunity to cytosolic DNA, is a critical driver of aberrant type I IFN responses in COVID-19 (ref. 18). Profiling COVID-19 skin manifestations, we uncover a STING-dependent type I IFN signature that is primarily mediated by macrophages adjacent to areas of endothelial cell damage. Moreover, cGAS-STING activity was detected in lung samples from patients with COVID-19 with prominent tissue destruction, and was associated with type I IFN responses. A lung-on-chip model revealed that, in addition to macrophages, infection with SARS-CoV-2 activates cGAS-STING signalling in endothelial cells through mitochondrial DNA release, which leads to cell death and type I IFN production. In mice, pharmacological inhibition of STING reduces severe lung inflammation induced by SARS-CoV-2 and improves disease outcome. Collectively, our study establishes a mechanistic basis of pathological type I IFN responses in COVID-19 and reveals a principle for the development of host-directed therapeutics.


Assuntos
COVID-19/imunologia , COVID-19/patologia , Interferon Tipo I/imunologia , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , SARS-CoV-2/imunologia , Animais , COVID-19/metabolismo , COVID-19/virologia , Células Cultivadas , DNA Mitocondrial/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/patologia , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Imunidade Inata , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Macrófagos/imunologia , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/virologia , SARS-CoV-2/patogenicidade , Transdução de Sinais , Pele/imunologia , Pele/metabolismo , Pele/patologia
12.
PLoS Pathog ; 20(6): e1012222, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838044

RESUMO

COVID-19 has affected more than half a billion people worldwide, with more than 6.3 million deaths, but the pathophysiological mechanisms involved in lethal cases and the host determinants that determine the different clinical outcomes are still unclear. In this study, we assessed lung autopsies of 47 COVID-19 patients and examined the inflammatory profiles, viral loads, and inflammasome activation. Additionally, we correlated these factors with the patient's clinical and histopathological conditions. Robust inflammasome activation was detected in the lungs of lethal cases of SARS-CoV-2. Experiments conducted on transgenic mice expressing hACE2 and infected with SARS-CoV-2 showed that Nlrp3-/- mice were protected from disease development and lethality compared to Nlrp3+/+ littermate mice, supporting the involvement of this inflammasome in disease exacerbation. An analysis of gene expression allowed for the classification of COVID-19 patients into two different clusters. Cluster 1 died with higher viral loads and exhibited a reduced inflammatory profile than Cluster 2. Illness time, mechanical ventilation time, pulmonary fibrosis, respiratory functions, histopathological status, thrombosis, viral loads, and inflammasome activation significantly differed between the two clusters. Our data demonstrated two distinct profiles in lethal cases of COVID-19, thus indicating that the balance of viral replication and inflammasome-mediated pulmonary inflammation led to different clinical outcomes. We provide important information to understand clinical variations in severe COVID-19, a process that is critical for decisions between immune-mediated or antiviral-mediated therapies for the treatment of critical cases of COVID-19.


Assuntos
COVID-19 , Pulmão , SARS-CoV-2 , Carga Viral , Replicação Viral , COVID-19/virologia , COVID-19/mortalidade , COVID-19/imunologia , COVID-19/patologia , Animais , Humanos , Camundongos , Feminino , Masculino , Pulmão/virologia , Pulmão/patologia , Pulmão/imunologia , Pessoa de Meia-Idade , Inflamassomos/imunologia , Inflamassomos/metabolismo , Idoso , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos Transgênicos , Pneumonia/virologia , Pneumonia/mortalidade , Pneumonia/imunologia , Pneumonia/patologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Camundongos Knockout , Adulto
13.
PLoS Pathog ; 20(5): e1011669, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38781259

RESUMO

The virus severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, is the causative agent of the current COVID-19 pandemic. It possesses a large 30 kilobase (kb) genome that encodes structural, non-structural, and accessory proteins. Although not necessary to cause disease, these accessory proteins are known to influence viral replication and pathogenesis. Through the synthesis of novel infectious clones of SARS-CoV-2 that lack one or more of the accessory proteins of the virus, we have found that one of these accessory proteins, ORF8, is critical for the modulation of the host inflammatory response. Mice infected with a SARS-CoV-2 virus lacking ORF8 exhibit increased weight loss and exacerbated macrophage infiltration into the lungs. Additionally, infection of mice with recombinant SARS-CoV-2 viruses encoding ORF8 mutations found in variants of concern reveal that naturally occurring mutations in this protein influence disease severity. Our studies with a virus lacking this ORF8 protein and viruses possessing naturally occurring point mutations in this protein demonstrate that this protein impacts pathogenesis.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , SARS-CoV-2/genética , COVID-19/virologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/genética , Camundongos , Humanos , Progressão da Doença , Proteínas Virais/genética , Proteínas Virais/metabolismo , Pulmão/virologia , Pulmão/patologia , Replicação Viral , Pneumonia/virologia , Pneumonia/patologia , Chlorocebus aethiops , Mutação , Células Vero , Feminino
14.
Blood ; 142(17): 1463-1477, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37441848

RESUMO

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with high morbidity and mortality. Excessive neutrophil infiltration into the pulmonary airspace is the main cause for the acute inflammation and lung injury. Platelets have been implicated in the pathogenesis of ALI/ARDS, but the underlying mechanisms are not fully understood. Here, we show that the immunoreceptor tyrosine-based activation motif-coupled immunoglobulin-like platelet receptor, glycoprotein VI (GPVI), plays a key role in the early phase of pulmonary thrombo-inflammation in a model of lipopolysaccharide (LPS)-induced ALI in mice. In wild-type (WT) control mice, intranasal LPS application triggered severe pulmonary and blood neutrophilia, hypothermia, and increased blood lactate levels. In contrast, GPVI-deficient mice as well as anti-GPVI-treated WT mice were markedly protected from pulmonary and systemic compromises and showed no increased pulmonary bleeding. High-resolution multicolor microscopy of lung sections and intravital confocal microcopy of the ventilated lung revealed that anti-GPVI treatment resulted in less stable platelet interactions with neutrophils and overall reduced platelet-neutrophil complex (PNC) formation. Anti-GPVI treatment also reduced neutrophil crawling and adhesion on endothelial cells, resulting in reduced neutrophil transmigration and alveolar infiltrates. Remarkably, neutrophil activation was also diminished in anti-GPVI-treated animals, associated with strongly reduced formation of PNC clusters and neutrophil extracellular traps (NETs) compared with that in control mice. These results establish GPVI as a key mediator of neutrophil recruitment, PNC formation, and NET formation (ie, NETosis) in experimental ALI. Thus, GPVI inhibition might be a promising strategy to reduce the acute pulmonary inflammation that causes ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Pneumonia , Síndrome do Desconforto Respiratório , Animais , Camundongos , Lesão Pulmonar Aguda/patologia , Células Endoteliais/patologia , Inflamação/patologia , Lipopolissacarídeos/efeitos adversos , Pulmão/patologia , Infiltração de Neutrófilos , Neutrófilos/patologia , Pneumonia/patologia , Síndrome do Desconforto Respiratório/patologia
15.
Cell Mol Life Sci ; 81(1): 287, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970705

RESUMO

Lung type 2 pneumocytes (T2Ps) and alveolar macrophages (AMs) play crucial roles in the synthesis, recycling and catabolism of surfactant material, a lipid/protein fluid essential for respiratory function. The liver X receptors (LXR), LXRα and LXRß, are transcription factors important for lipid metabolism and inflammation. While LXR activation exerts anti-inflammatory actions in lung injury caused by lipopolysaccharide (LPS) and other inflammatory stimuli, the full extent of the endogenous LXR transcriptional activity in pulmonary homeostasis is incompletely understood. Here, using mice lacking LXRα and LXRß as experimental models, we describe how the loss of LXRs causes pulmonary lipidosis, pulmonary congestion, fibrosis and chronic inflammation due to defective de novo synthesis and recycling of surfactant material by T2Ps and defective phagocytosis and degradation of excess surfactant by AMs. LXR-deficient T2Ps display aberrant lamellar bodies and decreased expression of genes encoding for surfactant proteins and enzymes involved in cholesterol, fatty acids, and phospholipid metabolism. Moreover, LXR-deficient lungs accumulate foamy AMs with aberrant expression of cholesterol and phospholipid metabolism genes. Using a house dust mite aeroallergen-induced mouse model of asthma, we show that LXR-deficient mice exhibit a more pronounced airway reactivity to a methacholine challenge and greater pulmonary infiltration, indicating an altered physiology of LXR-deficient lungs. Moreover, pretreatment with LXR agonists ameliorated the airway reactivity in WT mice sensitized to house dust mite extracts, confirming that LXR plays an important role in lung physiology and suggesting that agonist pharmacology could be used to treat inflammatory lung diseases.


Assuntos
Homeostase , Receptores X do Fígado , Macrófagos Alveolares , Pneumonia , Surfactantes Pulmonares , Transdução de Sinais , Animais , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , Surfactantes Pulmonares/metabolismo , Camundongos , Pneumonia/metabolismo , Pneumonia/patologia , Macrófagos Alveolares/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pulmão/metabolismo , Pulmão/patologia , Células Epiteliais Alveolares/metabolismo , Asma/metabolismo , Asma/patologia , Asma/genética , Colesterol/metabolismo , Metabolismo dos Lipídeos , Fagocitose
16.
Am J Respir Cell Mol Biol ; 70(6): 493-506, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38386777

RESUMO

Lung inflammation, caused by acute exposure to ozone (O3), one of the six criteria air pollutants, is a significant source of morbidity in susceptible individuals. Alveolar macrophages (AMØs) are the most abundant immune cells in the normal lung, and their number increases after O3 exposure. However, the role of AMØs in promoting or limiting O3-induced lung inflammation has not been clearly defined. In this study, we used a mouse model of acute O3 exposure, lineage tracing, genetic knockouts, and data from O3-exposed human volunteers to define the role and ontogeny of AMØs during acute O3 exposure. Lineage-tracing experiments showed that 12, 24, and 72 hours after exposure to O3 (2 ppm) for 3 hours, all AMØs were of tissue-resident origin. Similarly, in humans exposed to filtered air and O3 (200 ppb) for 135 minutes, we did not observe at ∼21 hours postexposure an increase in monocyte-derived AMØs by flow cytometry. Highlighting a role for tissue-resident AMØs, we demonstrate that depletion of tissue-resident AMØs with clodronate-loaded liposomes led to persistence of neutrophils in the alveolar space after O3 exposure, suggesting that impaired neutrophil clearance (i.e., efferocytosis) leads to prolonged lung inflammation. Moreover, depletion of tissue-resident AMØs demonstrated reduced clearance of intratracheally instilled apoptotic Jurkat cells, consistent with reduced efferocytosis. Genetic ablation of MerTK (MER proto-oncogene, tyrosine kinase), a key receptor involved in efferocytosis, also resulted in impaired clearance of apoptotic neutrophils after O3 exposure. Overall, these findings underscore the pivotal role of tissue-resident AMØs in resolving O3-induced inflammation via MerTK-mediated efferocytosis.


Assuntos
Macrófagos Alveolares , Ozônio , Fagocitose , Proto-Oncogene Mas , c-Mer Tirosina Quinase , Ozônio/farmacologia , c-Mer Tirosina Quinase/metabolismo , c-Mer Tirosina Quinase/genética , Animais , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Humanos , Fagocitose/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/patologia , Camundongos Knockout , Masculino , Inflamação/metabolismo , Inflamação/patologia , Inflamação/induzido quimicamente , Apoptose/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Eferocitose
17.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L330-L343, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252635

RESUMO

Extremely preterm infants are often exposed to long durations of mechanical ventilation to facilitate gas exchange, resulting in ventilation-induced lung injury (VILI). New lung protective strategies utilizing noninvasive ventilation or low tidal volumes are now common but have not reduced rates of bronchopulmonary dysplasia. We aimed to determine the effect of 24 h of low tidal volume ventilation on the immature lung by ventilating preterm fetal sheep in utero. Preterm fetal sheep at 110 ± 1(SD) days' gestation underwent sterile surgery for instrumentation with a tracheal loop to enable in utero mechanical ventilation (IUV). At 112 ± 1 days' gestation, fetuses received either in utero mechanical ventilation (IUV, n = 10) targeting 3-5 mL/kg for 24 h, or no ventilation (CONT, n = 9). At necropsy, fetal lungs were collected to assess molecular and histological markers of lung inflammation and injury. IUV significantly increased lung mRNA expression of interleukin (IL)-1ß, IL-6, IL-8, IL-10, and tumor necrosis factor (TNF) compared with CONT, and increased surfactant protein (SP)-A1, SP-B, and SP-C mRNA expression compared with CONT. IUV produced modest structural changes to the airways, including reduced parenchymal collagen and myofibroblast density. IUV increased pulmonary arteriole thickness compared with CONT but did not alter overall elastin or collagen content within the vasculature. In utero ventilation of an extremely preterm lung, even at low tidal volumes, induces lung inflammation and injury to the airways and vasculature. In utero ventilation may be an important model to isolate the confounding mechanisms of VILI to develop effective therapies for preterm infants requiring prolonged respiratory support.NEW & NOTEWORTHY Preterm infants often require prolonged respiratory support, but the relative contribution of ventilation to the development of lung injury is difficult to isolate. In utero mechanical ventilation allows for mechanistic investigations into ventilation-induced lung injury without confounding factors associated with sustaining extremely preterm lambs ex utero. Twenty-four hours of in utero ventilation, even at low tidal volumes, increased lung inflammation and surfactant protein expression and produced structural changes to the lung parenchyma and vasculature.


Assuntos
Pneumonia , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Recém-Nascido , Ovinos , Animais , Lactente Extremamente Prematuro , Pulmão/metabolismo , Feto/metabolismo , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Colágeno/metabolismo , Pneumonia/patologia , Tensoativos/metabolismo , RNA Mensageiro/metabolismo
18.
Am J Physiol Lung Cell Mol Physiol ; 327(2): L189-L202, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810239

RESUMO

Children are susceptible to influenza infections and can experience severe disease presentation due to a lack of or limited pre-existing immunity. Despite the disproportionate impact influenza has on this population, there is a lack of focus on pediatric influenza research, particularly when it comes to identifying the pathogenesis of long-term outcomes that persist beyond the point of viral clearance. In this study, juvenile outbred male and female mice were infected with influenza and analyzed following viral clearance to determine how sex impacts the persistent inflammatory responses to influenza. It was found that females maintained a broader cytokine response in the lung following clearance of influenza, with innate, type I and type II cytokine signatures in almost all mice. Males, on the other hand, had higher levels of IL-6 and other macrophage-related cytokines, but no evidence of a type I or type II response. The immune landscape was similar in the lungs between males and females postinfection, but males had a higher regulatory T cell to TH1 ratio compared with female mice. Cytokine production positively correlated with the frequency of TH1 cells and exudate macrophages, as well as the number of cells in the bronchoalveolar lavage fluid. Furthermore, female lungs were enriched for metabolites involved in the glycolytic pathway, suggesting glycolysis is higher in female lungs compared with males after viral clearance. These data suggest juvenile female mice have persistent and excessive lung inflammation beyond the point of viral clearance, whereas juvenile males had a more immunosuppressive phenotype.NEW & NOTEWORTHY This study identifies sex-based differences in persistent lung inflammation following influenza infection in an outbred, juvenile animal model of pediatric infection. These findings indicate the importance of considering sex and age as variable in infectious disease research.


Assuntos
Citocinas , Infecções por Orthomyxoviridae , Pneumonia , Caracteres Sexuais , Animais , Feminino , Masculino , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/metabolismo , Camundongos , Citocinas/metabolismo , Pneumonia/virologia , Pneumonia/patologia , Pneumonia/imunologia , Pneumonia/metabolismo , Pulmão/virologia , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/virologia , Fatores Sexuais
19.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L40-L53, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38712443

RESUMO

Chorioamnionitis is a common antecedent of preterm birth and induces inflammation and oxidative stress in the fetal lungs. Reducing inflammation and oxidative stress in the fetal lungs may improve respiratory outcomes in preterm infants. Creatine is an organic acid with known anti-inflammatory and antioxidant properties. The objective of the study was to evaluate the efficacy of direct fetal creatine supplementation to reduce inflammation and oxidative stress in fetal lungs arising from an in utero proinflammatory stimulus. Fetal lambs (n = 51) were instrumented at 90 days gestation to receive a continuous infusion of creatine monohydrate (6 mg·kg-1·h-1) or saline for 17 days. Maternal chorioamnionitis was induced with intra-amniotic lipopolysaccharide (LPS; 1 mg, O55:H6) or saline 7 days before delivery at 110 days gestation. Tissue creatine content was assessed with capillary electrophoresis, and inflammatory markers were analyzed with Luminex Magpix and immunohistochemistry. Oxidative stress was measured as the level of protein thiol oxidation. The effects of LPS and creatine were analyzed using a two-way ANOVA. Fetal creatine supplementation increased lung creatine content by 149% (PCr < 0.0001) and had no adverse effects on lung morphology. LPS-exposed groups showed increased levels of interleukin-8 in the bronchoalveolar lavage (PLPS < 0.0001) and increased levels of CD45+ leukocytes (PLPS < 0.0001) and MPO+ (PLPS < 0.0001) cells in the lung parenchyma. Creatine supplementation significantly reduced the levels of CD45+ (PCr = 0.045) and MPO+ cells (PCr = 0.012) in the lungs and reduced thiol oxidation in plasma (PCr < 0.01) and lung tissue (PCr = 0.02). In conclusion, fetal creatine supplementation reduced markers of inflammation and oxidative stress in the fetal lungs arising from chorioamnionitis.NEW & NOTEWORTHY We evaluated the effect of antenatal creatine supplementation to reduce pulmonary inflammation and oxidative stress in the fetal lamb lungs arising from lipopolysaccharide (LPS)-induced chorioamnionitis. Fetal creatine supplementation increased lung creatine content and had no adverse effects on systemic fetal physiology and overall lung architecture. Importantly, fetuses that received creatine had significantly lower levels of inflammation and oxidative stress in the lungs, suggesting an anti-inflammatory and antioxidant benefit of creatine.


Assuntos
Corioamnionite , Creatina , Suplementos Nutricionais , Lipopolissacarídeos , Pulmão , Estresse Oxidativo , Animais , Corioamnionite/tratamento farmacológico , Corioamnionite/metabolismo , Corioamnionite/patologia , Creatina/farmacologia , Feminino , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Ovinos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pneumonia/metabolismo , Pneumonia/prevenção & controle , Pneumonia/tratamento farmacológico , Pneumonia/patologia , Modelos Animais de Doenças , Feto/metabolismo , Feto/efeitos dos fármacos
20.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L574-L588, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38440830

RESUMO

Although tobramycin increases lung function in people with cystic fibrosis (pwCF), the density of Pseudomonas aeruginosa (P. aeruginosa) in the lungs is only modestly reduced by tobramycin; hence, the mechanism whereby tobramycin improves lung function is not completely understood. Here, we demonstrate that tobramycin increases 5' tRNA-fMet halves in outer membrane vesicles (OMVs) secreted by laboratory and CF clinical isolates of P. aeruginosa. The 5' tRNA-fMet halves are transferred from OMVs into primary CF human bronchial epithelial cells (CF-HBEC), decreasing OMV-induced IL-8 and IP-10 secretion. In mouse lungs, increased expression of the 5' tRNA-fMet halves in OMVs attenuated KC (murine homolog of IL-8) secretion and neutrophil recruitment. Furthermore, there was less IL-8 and neutrophils in bronchoalveolar lavage fluid isolated from pwCF during the period of exposure to tobramycin versus the period off tobramycin. In conclusion, we have shown in mice and in vitro studies on CF-HBEC that tobramycin reduces inflammation by increasing 5' tRNA-fMet halves in OMVs that are delivered to CF-HBEC and reduce IL-8 and neutrophilic airway inflammation. This effect is predicted to improve lung function in pwCF receiving tobramycin for P. aeruginosa infection.NEW & NOTEWORTHY The experiments in this report identify a novel mechanism, whereby tobramycin reduces inflammation in two models of CF. Tobramycin increased the secretion of tRNA-fMet halves in OMVs secreted by P. aeruginosa, which reduced the OMV-LPS-induced inflammatory response in primary cultures of CF-HBEC and in mouse lung, an effect predicted to reduce lung damage in pwCF.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Pseudomonas aeruginosa , Tobramicina , Fibrose Cística/microbiologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Fibrose Cística/tratamento farmacológico , Animais , Tobramicina/farmacologia , Humanos , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Interleucina-8/metabolismo , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/microbiologia , Pulmão/patologia , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA