Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 835
Filtrar
1.
Annu Rev Biochem ; 90: 789-815, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33770448

RESUMO

The human microbiome encodes a second genome that dwarfs the genetic capacity of the host. Microbiota-derived small molecules can directly target human cells and their receptors or indirectly modulate host responses through functional interactions with other microbes in their ecological niche. Their biochemical complexity has profound implications for nutrition, immune system development, disease progression, and drug metabolism, as well as the variation in these processes that exists between individuals. While the species composition of the human microbiome has been deeply explored, detailed mechanistic studies linking specific microbial molecules to host phenotypes are still nascent. In this review, we discuss challenges in decoding these interaction networks, which require interdisciplinary approaches that combine chemical biology, microbiology, immunology, genetics, analytical chemistry, bioinformatics, and synthetic biology. We highlight important classes of microbiota-derived small molecules and notable examples. An understanding of these molecular mechanisms is central to realizing the potential of precision microbiome editing in health, disease, and therapeutic responses.


Assuntos
Metagenômica/métodos , Microbiota/fisiologia , Peptídeos/metabolismo , Policetídeos/metabolismo , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Humanos , Microbiota/genética , Fenótipo
2.
Annu Rev Biochem ; 87: 503-531, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925265

RESUMO

Polyketides are a large family of structurally complex natural products including compounds with important bioactivities. Polyketides are biosynthesized by polyketide synthases (PKSs), multienzyme complexes derived evolutionarily from fatty acid synthases (FASs). The focus of this review is to critically compare the properties of FASs with iterative aromatic PKSs, including type II PKSs and fungal type I nonreducing PKSs whose chemical logic is distinct from that of modular PKSs. This review focuses on structural and enzymological studies that reveal both similarities and striking differences between FASs and aromatic PKSs. The potential application of FAS and aromatic PKS structures for bioengineering future drugs and biofuels is highlighted.


Assuntos
Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Animais , Biocatálise , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Ácido Graxo Sintases/classificação , Humanos , Modelos Moleculares , Mimetismo Molecular , Estrutura Molecular , Policetídeo Sintases/classificação , Policetídeos/química , Policetídeos/metabolismo , Domínios Proteicos , Homologia Estrutural de Proteína , Especificidade por Substrato
3.
Nature ; 603(7900): 315-320, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197633

RESUMO

Colibactin is a chemically unstable small-molecule genotoxin that is produced by several different bacteria, including members of the human gut microbiome1,2. Although the biological activity of colibactin has been extensively investigated in mammalian systems3, little is known about its effects on other microorganisms. Here we show that colibactin targets bacteria that contain prophages, and induces lytic development through the bacterial SOS response. DNA, added exogenously, protects bacteria from colibactin, as does expressing a colibactin resistance protein (ClbS) in non-colibactin-producing cells. The prophage-inducing effects that we observe apply broadly across different phage-bacteria systems and in complex communities. Finally, we identify bacteria that have colibactin resistance genes but lack colibactin biosynthetic genes. Many of these bacteria are infected with predicted prophages, and we show that the expression of their ClbS homologues provides immunity from colibactin-triggered induction. Our study reveals a mechanism by which colibactin production could affect microbiomes and highlights a role for microbial natural products in influencing population-level events such as phage outbreaks.


Assuntos
Bactérias , Toxinas Bacterianas , Peptídeos , Policetídeos , Prófagos , Ativação Viral , Bactérias/efeitos dos fármacos , Bactérias/virologia , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Bacteriólise/efeitos dos fármacos , Interações Microbianas/efeitos dos fármacos , Peptídeos/metabolismo , Peptídeos/farmacologia , Policetídeos/metabolismo , Policetídeos/farmacologia , Prófagos/efeitos dos fármacos , Prófagos/fisiologia , Resposta SOS em Genética/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos
4.
Mol Microbiol ; 121(1): 18-25, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961029

RESUMO

Where does one draw the line between primary and secondary metabolism? The answer depends on the perspective. Microbial secondary metabolites (SMs) were at first believed not to be very important for the producers because they are dispensable for growth under laboratory conditions. However, such compounds become important in natural niches of the organisms, and some are of prime importance for humanity. Polyketides are an important group of SMs with aflatoxin as a well-known and well-characterized example. In Aspergillus spp., all 34 afl genes encoding the enzymes for aflatoxin biosynthesis are located in close vicinity on chromosome III in a so-called gene cluster. This led to the assumption that most genes required for polyketide biosynthesis are organized in gene clusters. Recent research, however, revealed an enormous complexity of the biosynthesis of different polyketides, ranging from individual polyketide synthases to a gene cluster producing several compounds, or to several clusters with additional genes scattered in the genome for the production of one compound. Research of the last decade furthermore revealed a huge potential for SM biosynthesis hidden in fungal genomes, and methods were developed to wake up such sleeping genes. The analysis of organismic interactions starts to reveal some of the ecological functions of polyketides for the producing fungi.


Assuntos
Aflatoxinas , Policetídeos , Metabolismo Secundário/genética , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Genoma Fúngico , Policetídeos/metabolismo , Família Multigênica , Aflatoxinas/metabolismo , Genes Fúngicos
5.
Proc Natl Acad Sci U S A ; 119(43): e2116122119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252029

RESUMO

Low-molecular-weight natural products from microbes are indispensable in the development of potent drugs. However, their biological roles within an ecological context often remain elusive. Here, we shed light on natural products from eukaryotic microorganisms that have the ability to transition from single cells to multicellular organisms: the social amoebae. These eukaryotes harbor a large number of polyketide biosynthetic genes in their genomes, yet virtually none of the corresponding products can be isolated or characterized. Using complementary molecular biology approaches, including CRISPR-Cas9, we generated polyketide synthase (pks5) inactivation and overproduction strains of the social amoeba Dictyostelium discoideum. Differential, untargeted metabolomics of wild-type versus mutant fruiting bodies allowed us to pinpoint candidate metabolites derived from the amoebal PKS5. Extrachromosomal expression of the respective gene led to the identification of a yellow polyunsaturated fatty acid. Analysis of the temporospatial production pattern of this compound in conjunction with detailed bioactivity studies revealed the polyketide to be a spore germination suppressor.


Assuntos
Amoeba , Produtos Biológicos , Dictyostelium , Policetídeos , Amoeba/genética , Produtos Biológicos/metabolismo , Dictyostelium/fisiologia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(11): e2121180119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254905

RESUMO

SignificanceIn a polymicrobial battlefield where different species compete for nutrients and colonization niches, antimicrobial compounds are the sword and shield of commensal microbes in competition with invading pathogens and each other. The identification of an Escherichia coli-produced genotoxin, colibactin, and its specific targeted killing of enteric pathogens and commensals, including Vibrio cholerae and Bacteroides fragilis, sheds light on our understanding of intermicrobial interactions in the mammalian gut. Our findings elucidate the mechanisms through which genotoxins shape microbial communities and provide a platform for probing the larger role of enteric multibacterial interactions regarding infection and disease outcomes.


Assuntos
Cólera/microbiologia , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Interações Microbianas , Mutagênicos/metabolismo , Vibrio cholerae/fisiologia , Animais , Antibiose , Cólera/mortalidade , Dano ao DNA , Modelos Animais de Doenças , Escherichia coli/fisiologia , Humanos , Camundongos , Peptídeos/metabolismo , Peptídeos/farmacologia , Policetídeos/metabolismo , Policetídeos/farmacologia , Prognóstico , Espécies Reativas de Oxigênio , Vibrio cholerae/efeitos dos fármacos
7.
Genomics ; 116(4): 110880, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38857812

RESUMO

The implementation of several global microbiome studies has yielded extensive insights into the biosynthetic potential of natural microbial communities. However, studies on the distribution of several classes of ribosomally synthesized and post-translationally modified peptides (RiPPs), non-ribosomal peptides (NRPs) and polyketides (PKs) in different large microbial ecosystems have been very limited. Here, we collected a large set of metagenome-assembled bacterial genomes from marine, freshwater and terrestrial ecosystems to investigate the biosynthetic potential of these bacteria. We demonstrate the utility of public dataset collections for revealing the different secondary metabolite biosynthetic potentials among these different living environments. We show that there is a higher occurrence of RiPPs in terrestrial systems, while in marine systems, we found relatively more terpene-, NRP-, and PK encoding gene clusters. Among the many new biosynthetic gene clusters (BGCs) identified, we analyzed various Nif-11-like and nitrile hydratase leader peptide (NHLP) containing gene clusters that would merit further study, including promising products, such as mersacidin-, LAP- and proteusin analogs. This research highlights the significance of public datasets in elucidating the biosynthetic potential of microbes in different living environments and underscores the wide bioengineering opportunities within the RiPP family.


Assuntos
Bactérias , Produtos Biológicos , Família Multigênica , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Produtos Biológicos/metabolismo , Peptídeos/metabolismo , Peptídeos/genética , Processamento de Proteína Pós-Traducional , Metagenoma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ecossistema , Genoma Bacteriano , Microbiota , Policetídeos/metabolismo
8.
BMC Genomics ; 25(1): 555, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831295

RESUMO

BACKGROUND: The search for new bioactive natural compounds with anticancer activity is still of great importance. Even though their potential for diagnostics and treatment of cancer has already been proved, the availability is still limited. Hypericin, a naphthodianthrone isolated essentially from plant source Hypericum perforatum L. along with other related anthraquinones and bisanthraquinones belongs to this group of compounds. Although it has been proven that hypericin is synthesized by the polyketide pathway in plants, none of the candidate genes coding for key enzymes has been experimentally validated yet. Despite the rare occurrence of anthraquinones in plants, their presence in microorganisms, including endophytic fungi, is quite common. Unlike plants, several biosynthetic genes grouped into clusters (BGCs) in fungal endophytes have already been characterized. RESULTS: The aim of this work was to predict, identify and characterize the anthraquinone BGCs in de novo assembled and functionally annotated genomes of selected endophytic fungal isolates (Fusarium oxysporum, Plectosphaerella cucumerina, Scedosporium apiospermum, Diaporthe eres, Canariomyces subthermophilus) obtained from different tissues of Hypericum spp. The number of predicted type I polyketide synthase (PKS) BGCs in the studied genomes varied. The non-reducing type I PKS lacking thioesterase domain and adjacent discrete gene encoding protein with product release function were identified only in the genomes of C. subthermophilus and D. eres. A candidate bisanthraquinone BGC was predicted in C. subthermophilus genome and comprised genes coding the enzymes that catalyze formation of the basic anthraquinone skeleton (PKS, metallo-beta-lactamase, decarboxylase, anthrone oxygenase), putative dimerization enzyme (cytochrome P450 monooxygenase), other tailoring enzymes (oxidoreductase, dehydrogenase/reductase), and non-catalytic proteins (fungal transcription factor, transporter protein). CONCLUSIONS: The results provide an insight into genetic background of anthraquinone biosynthesis in Hypericum-borne endophytes. The predicted bisanthraquinone gene cluster represents a basis for functional validation of the candidate biosynthetic genes in a simple eukaryotic system as a prospective biotechnological alternative for production of hypericin and related bioactive anthraquinones.


Assuntos
Antraquinonas , Endófitos , Hypericum , Família Multigênica , Policetídeos , Hypericum/microbiologia , Hypericum/genética , Hypericum/metabolismo , Policetídeos/metabolismo , Endófitos/genética , Endófitos/metabolismo , Antraquinonas/metabolismo , Fungos/genética , Genoma Fúngico , Simulação por Computador , Policetídeo Sintases/genética , Perileno/análogos & derivados , Perileno/metabolismo , Antracenos/metabolismo , Genômica , Filogenia
9.
J Am Chem Soc ; 146(9): 6114-6124, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38389455

RESUMO

Microorganisms are remarkable chemists capable of assembling complex molecular architectures that penetrate cells and bind biomolecular targets with exquisite selectivity. Consequently, microbial natural products have wide-ranging applications in medicine and agriculture. How the "blind watchmaker" of evolution creates skeletal diversity is a key question in natural products research. Comparative analysis of biosynthetic pathways to structurally related metabolites is an insightful approach to addressing this. Here, we report comparative biosynthetic investigations of gladiolin, a polyketide antibiotic from Burkholderia gladioli with promising activity against multidrug-resistant Mycobacterium tuberculosis, and etnangien, a structurally related antibiotic produced by Sorangium cellulosum. Although these metabolites have very similar macrolide cores, their C21 side chains differ significantly in both length and degree of saturation. Surprisingly, the trans-acyltransferase polyketide synthases (PKSs) that assemble these antibiotics are almost identical, raising intriguing questions about mechanisms underlying structural diversification in this important class of biosynthetic assembly line. In vitro reconstitution of key biosynthetic transformations using simplified substrate analogues, combined with gene deletion and complementation experiments, enabled us to elucidate the origin of all the structural differences in the C21 side chains of gladiolin and etnangien. The more saturated gladiolin side chain arises from a cis-acting enoylreductase (ER) domain in module 1 and in trans recruitment of a standalone ER to module 5 of the PKS. Remarkably, module 5 of the gladiolin PKS is intrinsically iterative in the absence of the standalone ER, accounting for the longer side chain in etnangien. These findings have important implications for biosynthetic engineering approaches to the creation of novel polyketide skeletons.


Assuntos
Produtos Biológicos , Imidazóis , Macrolídeos , Polienos , Policetídeos , Sulfonamidas , Tiofenos , Policetídeo Sintases/metabolismo , Aciltransferases , Antibacterianos , Policetídeos/metabolismo , Produtos Biológicos/metabolismo
10.
Microbiology (Reading) ; 170(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38314762

RESUMO

The biosynthetic machinery for the production of colibactin is encoded by 19 genes (clbA - S) within the pks pathogenicity island harboured by many E. coli of the B2-phylogroup. Colibactin is a potent genotoxic metabolite which causes DNA-damage and which has potential roles in microbial competition and fitness of pks+ bacteria. Colibactin has also been strongly implicated in the development of colorectal cancer. Given the genotoxicity of colibactin and the metabolic cost of its synthesis, the regulatory system governing the clb cluster is accordingly highly complex, and many of the mechanisms remain to be elucidated. In this review we summarise the current understanding of regulation of colibactin biosynthesis by internal molecular components and how these factors are modulated by signals from the external environment.


Assuntos
Proteínas de Escherichia coli , Policetídeos , Escherichia coli/genética , Escherichia coli/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteínas de Escherichia coli/metabolismo , Policetídeos/metabolismo
11.
PLoS Pathog ; 18(9): e1010766, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067266

RESUMO

Wound infections are often polymicrobial in nature, biofilm associated and therefore tolerant to antibiotic therapy, and associated with delayed healing. Escherichia coli and Staphylococcus aureus are among the most frequently cultured pathogens from wound infections. However, little is known about the frequency or consequence of E. coli and S. aureus polymicrobial interactions during wound infections. Here we show that E. coli kills Staphylococci, including S. aureus, both in vitro and in a mouse excisional wound model via the genotoxin, colibactin. Colibactin biosynthesis is encoded by the pks locus, which we identified in nearly 30% of human E. coli wound infection isolates. While it is not clear how colibactin is released from E. coli or how it penetrates target cells, we found that the colibactin intermediate N-myristoyl-D-Asn (NMDA) disrupts the S. aureus membrane. We also show that the BarA-UvrY two component system (TCS) senses the environment created during E. coli and S. aureus mixed species interaction, leading to upregulation of pks island genes. Further, we show that BarA-UvrY acts via the carbon storage global regulatory (Csr) system to control pks expression. Together, our data demonstrate the role of colibactin in interspecies competition and show that it is regulated by BarA-UvrY TCS during interspecies competition.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Proteínas de Membrana , Fosfotransferases , Policetídeos , Staphylococcus aureus , Fatores de Transcrição , Animais , Antibacterianos/metabolismo , Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Mutagênicos/metabolismo , N-Metilaspartato/metabolismo , Peptídeos , Fosfotransferases/genética , Policetídeos/metabolismo , Staphylococcus/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Fatores de Transcrição/metabolismo , Infecção dos Ferimentos/microbiologia
12.
Microb Cell Fact ; 23(1): 149, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790014

RESUMO

BACKGROUND: Streptomyces is renowned for its robust biosynthetic capacity in producing medically relevant natural products. However, the majority of natural products biosynthetic gene clusters (BGCs) either yield low amounts of natural products or remain cryptic under standard laboratory conditions. Various heterologous production hosts have been engineered to address these challenges, and yet the successful activation of BGCs has still been limited. In our search for a valuable addition to the heterologous host panel, we identified the strain Streptomyces sp. A4420, which exhibited rapid initial growth and a high metabolic capacity, prompting further exploration of its potential. RESULTS: We engineered a polyketide-focused chassis strain based on Streptomyces sp. A4420 (CH strain) by deleting 9 native polyketide BGCs. The resulting metabolically simplified organism exhibited consistent sporulation and growth, surpassing the performance of most existing Streptomyces based chassis strains in standard liquid growth media. Four distinct polyketide BGCs were chosen and expressed in various heterologous hosts, including the Streptomyces sp. A4420 wild-type and CH strains, alongside Streptomyces coelicolor M1152, Streptomyces lividans TK24, Streptomyces albus J1074, and Streptomyces venezuelae NRRL B-65442. Remarkably, only the Streptomyces sp. A4420 CH strain demonstrated the capability to produce all metabolites under every condition outperforming its parental strain and other tested organisms. To enhance visualization and comparison of the tested strains, we developed a matrix-like analysis involving 15 parameters. This comprehensive analysis unequivocally illustrated the significant potential of the new strain to become a popular heterologous host. CONCLUSION: Our engineered Streptomyces sp. A4420 CH strain exhibits promising attributes for the heterologous expression of natural products with a focus on polyketides, offering an alternative choice in the arsenal of heterologous production strains. As genomics and cloning strategies progress, establishment of a diverse panel of heterologous production hosts will be crucial for expediting the discovery and production of medically relevant natural products derived from Streptomyces.


Assuntos
Produtos Biológicos , Engenharia Metabólica , Família Multigênica , Policetídeos , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Produtos Biológicos/metabolismo , Policetídeos/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Streptomyces lividans/genética , Streptomyces lividans/metabolismo , Vias Biossintéticas/genética
13.
Appl Microbiol Biotechnol ; 108(1): 332, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734756

RESUMO

Histone acetylation modifications in filamentous fungi play a crucial role in epigenetic gene regulation and are closely linked to the transcription of secondary metabolite (SM) biosynthetic gene clusters (BGCs). Histone deacetylases (HDACs) play a pivotal role in determining the extent of histone acetylation modifications and act as triggers for the expression activity of target BGCs. The genus Chaetomium is widely recognized as a rich source of novel and bioactive SMs. Deletion of a class I HDAC gene of Chaetomium olivaceum SD-80A, g7489, induces a substantial pleiotropic effect on the expression of SM BGCs. The C. olivaceum SD-80A ∆g7489 strain exhibited significant changes in morphology, sporulation ability, and secondary metabolic profile, resulting in the emergence of new compound peaks. Notably, three polyketides (A1-A3) and one asterriquinone (A4) were isolated from this mutant strain. Furthermore, our study explored the BGCs of A1-A4, confirming the function of two polyketide synthases (PKSs). Collectively, our findings highlight the promising potential of molecular epigenetic approaches for the elucidation of novel active compounds and their biosynthetic elements in Chaetomium species. This finding holds great significance for the exploration and utilization of Chaetomium resources. KEY POINTS: • Deletion of a class I histone deacetylase activated secondary metabolite gene clusters. • Three polyketides and one asterriquinone were isolated from HDAC deleted strain. • Two different PKSs were reported in C. olivaceum SD-80A.


Assuntos
Chaetomium , Histona Desacetilases , Família Multigênica , Policetídeos , Metabolismo Secundário , Chaetomium/genética , Chaetomium/enzimologia , Chaetomium/metabolismo , Metabolismo Secundário/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Policetídeos/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Vias Biossintéticas/genética , Epigênese Genética
14.
Chem Pharm Bull (Tokyo) ; 72(5): 475-479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38749722

RESUMO

Heterologous expression of natural compound biosynthetic gene clusters (BGCs) is a robust approach for not only revealing the biosynthetic mechanisms leading to the compounds, but also for discovering new products from uncharacterized BGCs. We established a heterologous expression technique applicable to huge biosynthetic gene clusters for generating large molecular secondary metabolites such as type-I polyketides. As an example, we targeted concanamycin BGC from Streptomyces neyagawaensis IFO13477 (the cluster size of 99 kbp), and obtained a bacterial artificial chromosome (BAC) clone with an insert size of 211 kbp that contains the entire concanamycin BGC. Interestingly, heterologous expression for this BAC clone resulted in two additional aromatic polyketides, ent-gephyromycin, and a new compound designated as JBIR-157, together with the expected concanamycin. Bioinformatic and biochemical analyses revealed that a cryptic biosynthetic gene cluster in this BAC clone was responsible for the production of these type-II polyketide synthases (PKS) compounds. Here, we describe the production, isolation, and structure elucidation of JBIR-157, determined primarily by a series of NMR spectral analyses.


Assuntos
Família Multigênica , Policetídeos , Streptomyces , Policetídeos/química , Policetídeos/metabolismo , Policetídeos/isolamento & purificação , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/química , Estrutura Molecular , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Conformação Molecular
15.
Angew Chem Int Ed Engl ; 63(4): e202312476, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37856285

RESUMO

Megasynthases, such as type I fatty acid and polyketide synthases (FASs and PKSs), are multienzyme complexes responsible for producing primary metabolites and complex natural products. Fatty acids (FAs) and polyketides (PKs) are built by assembling and modifying small acyl moieties in a stepwise manner. A central aspect of FA and PK biosynthesis involves the shuttling of substrates between the domains of the multienzyme complex. This essential process is mediated by small acyl carrier proteins (ACPs). The ACPs must navigate to the different catalytic domains within the multienzyme complex in a particular order to guarantee the fidelity of the biosynthesis pathway. However, the precise mechanisms underlying ACP-mediated substrate shuttling, particularly the factors contributing to the programming of the ACP movement, still need to be fully understood. This Review illustrates the current understanding of substrate shuttling, including concepts of conformational and specificity control, and proposes a confined ACP movement within type I megasynthases.


Assuntos
Proteína de Transporte de Acila , Policetídeos , Proteína de Transporte de Acila/metabolismo , Ácidos Graxos , Complexos Multienzimáticos/química , Policetídeos/metabolismo , Policetídeo Sintases/metabolismo
16.
Plant J ; 111(6): 1509-1526, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35883135

RESUMO

Pollen development includes a series of biological events that require precise gene regulation. Although several transcription factors (TFs) have been shown to play roles in maintaining pollen fertility, the major regulatory networks underlying tapetum development and pollen wall formation are largely unknown. Herein, we report that ABERRANT MICROSPORE DEVELOPMENT1 (AMD1), a protein annotated previously as unknown protein, is required for tapetum development and pollen exine patterning in rice (Oryza sativa L.). AMD1 encodes a grass-specific protein exhibiting transactivation activity in the nucleus and is spatiotemporally expressed in the tapetum and microspores during pollen development. Further biochemical assays indicate that AMD1 directly activates the transcription of DEFECTIVE POLLEN WALL (DPW) and POLYKETIDE SYNTHASE2 (OsPKS2), which are both implicated in sporopollenin biosynthesis during exine formation. Additionally, AMD1 directly interacts with TAPETUM DEGENERATION RETARDATION (TDR), a key TF involved in the regulation of tapetum degradation and exine formation. Taken together, we demonstrate that AMD1 is an important regulatory component involved in the TDR-mediated regulatory pathway to regulate sporopollenin biosynthesis, tapetum degradation, and exine formation for pollen development. Our work provides insights into the regulatory network of rice sexual reproduction and a useful target for genetic engineering of new male-sterile lines for hybrid rice breeding.


Assuntos
Oryza , Policetídeos , Biopolímeros , Carotenoides , Fertilidade , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Pólen/metabolismo , Policetídeos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
J Am Chem Soc ; 145(16): 8822-8832, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37057992

RESUMO

Modular polyketide synthases (PKSs) are polymerases that employ α-carboxyacyl-CoAs as extender substrates. This enzyme family contains several catalytic modules, where each module is responsible for a single round of polyketide chain extension. Although PKS modules typically use malonyl-CoA or methylmalonyl-CoA for chain elongation, many other malonyl-CoA analogues are used to diversify polyketide structures in nature. Previously, we developed a method to alter an extension substrate of a given module by exchanging an acyltransferase (AT) domain while maintaining protein folding. Here, we report in vitro polyketide biosynthesis by 13 PKSs (the wild-type PKS and 12 AT-exchanged PKSs with unusual ATs) and 14 extender substrates. Our ∼200 in vitro reactions resulted in 13 structurally different polyketides, including several polyketides that have not been reported. In some cases, AT-exchanged PKSs produced target polyketides by >100-fold compared to the wild-type PKS. These data also indicate that most unusual AT domains do not incorporate malonyl-CoA and methylmalonyl-CoA but incorporate various rare extender substrates that are equal to in size or slightly larger than natural substrates. We developed a computational workflow to predict the approximate AT substrate range based on active site volumes to support the selection of ATs. These results greatly enhance our understanding of rare AT domains and demonstrate the benefit of using the proposed PKS engineering strategy to produce novel chemicals in vitro.


Assuntos
Policetídeo Sintases , Policetídeos , Policetídeo Sintases/metabolismo , Aciltransferases/química , Domínio Catalítico , Policetídeos/metabolismo , Especificidade por Substrato
18.
Nat Prod Rep ; 40(2): 470-499, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36484402

RESUMO

Covering: 2015 to 2022In this review, we discuss the recent advances in the use of isotopically labelled compounds to investigate the biosynthesis of polyketides, non-ribosomally synthesised peptides, and their hybrids. Also, we highlight the use of isotopes in the elucidation of their structures and investigation of enzyme mechanisms. The biosynthetic pathways of selected examples are presented in detail to reveal the principles of the discussed labelling experiments. The presented examples demonstrate that the application of isotopically labelled compounds is still the state of the art and can provide valuable information for the biosynthesis of natural products.


Assuntos
Produtos Biológicos , Policetídeos , Policetídeos/metabolismo , Peptídeos/química , Vias Biossintéticas , Produtos Biológicos/química
19.
Nat Prod Rep ; 40(1): 128-157, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36129067

RESUMO

Covering: up to early 2022Maleidrides are a family of polyketide-based dimeric natural products isolated from fungi. Many maleidrides possess significant bioactivities, making them attractive pharmaceutical or agrochemical lead compounds. Their unusual biosynthetic pathways have fascinated scientists for decades, with recent advances in our bioinformatic and enzymatic understanding providing further insights into their construction. However, many intriguing questions remain, including exactly how the enzymatic dimerisation, which creates the diverse core structure of the maleidrides, is controlled. This review will explore the literature from the initial isolation of maleidride compounds in the 1930s, through the first full structural elucidation in the 1960s, to the most recent in vivo, in vitro, and in silico analyses.


Assuntos
Produtos Biológicos , Policetídeos , Anidridos/metabolismo , Fungos/metabolismo , Dimerização , Vias Biossintéticas , Policetídeos/metabolismo , Produtos Biológicos/química
20.
PLoS Pathog ; 17(2): e1009310, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33630958

RESUMO

Urinary tract infections (UTIs) are among the most common outpatient infections, with a lifetime incidence of around 60% in women. We analysed urine samples from 223 patients with community-acquired UTIs and report the presence of the cleavage product released during the synthesis of colibactin, a bacterial genotoxin, in 55 of the samples examined. Uropathogenic Escherichia coli strains isolated from these patients, as well as the archetypal E. coli strain UTI89, were found to produce colibactin. In a murine model of UTI, the machinery producing colibactin was expressed during the early hours of the infection, when intracellular bacterial communities form. We observed extensive DNA damage both in umbrella and bladder progenitor cells. To the best of our knowledge this is the first report of colibactin production in UTIs in humans and its genotoxicity in bladder cells.


Assuntos
Dano ao DNA , Infecções por Escherichia coli/patologia , Peptídeos/metabolismo , Policetídeos/metabolismo , Bexiga Urinária/patologia , Infecções Urinárias/patologia , Escherichia coli Uropatogênica/isolamento & purificação , Idoso , Animais , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Mutagênicos/metabolismo , Bexiga Urinária/metabolismo , Bexiga Urinária/microbiologia , Infecções Urinárias/genética , Infecções Urinárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA