Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.960
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Biol ; 21(3): e3001979, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36881558

RESUMO

The invention of fossil fuel-derived plastics changed and reshaped society for the better; however, their mass production has created an unprecedented accumulation of waste and an environmental crisis. Scientists are searching for better ways to reduce plastic waste than the current methods of mechanical recycling and incineration, which are only partial solutions. Biological means of breaking down plastics have been investigated as alternatives, with studies mostly focusing on using microorganisms to biologically degrade sturdy plastics like polyethylene (PE). Unfortunately, after a few decades of research, biodegradation by microorganisms has not provided the hoped-for results. Recent studies suggest that insects could provide a new avenue for investigation into biotechnological tools, with the discovery of enzymes that can oxidize untreated PE. But how can insects provide a solution that could potentially make a difference? And how can biotechnology revolutionize the plastic industry to stop ongoing/increasing contamination?


Assuntos
Plásticos , Polietileno , Contaminação de Medicamentos
2.
Environ Microbiol ; 26(6): e16658, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843592

RESUMO

Plastic pollution is a vast and increasing problem that has permeated the environment, affecting all aspects of the global food web. Plastics and microplastics have spread to soil, water bodies, and even the atmosphere due to decades of use in a wide range of applications. Plastics include a variety of materials with different properties and chemical characteristics, with polyethylene being a dominant fraction. Polyethylene is also an extremely persistent compound with slow rates of photodegradation or biodegradation. In this study, we developed a method to isolate communities of microbes capable of biodegrading a polyethylene surrogate. This method allows us to study potential polyethylene degradation over much shorter time periods. Using this method, we enriched several communities of microbes that can degrade the polyethylene surrogate within weeks. We also identified specific bacterial strains with a higher propensity to degrade compounds similar to polyethylene. We provide a description of the method, the variability and efficacy of four different communities, and key strains from these communities. This method should serve as a straightforward and adaptable tool for studying polyethylene biodegradation.


Assuntos
Bactérias , Biodegradação Ambiental , Polietileno , Polietileno/metabolismo , Polietileno/química , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Microbiota , Microbiologia do Solo
3.
Environ Microbiol ; 26(1): e16563, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151777

RESUMO

Plastic substrates introduced to the environment during the Anthropocene have introduced new pathways for microbial selection and dispersal. Some plastic-colonising microorganisms have adapted phenotypes for plastic degradation (selection), while the spatial transport (dispersal) potential of plastic colonisers remains controlled by polymer-specific density, hydrography and currents. Plastic-degrading enzyme abundances have recently been correlated with concentrations of plastic debris in open ocean environments, making it critical to better understand colonisation of hydrocarbon degraders with plastic degradation potential in urbanised watersheds where plastic pollution often originates. We found that microbial colonisation by reputed hydrocarbon degraders on microplastics (MPs) correlated with a spatial contaminant gradient (New York City/Long Island waterways), polymer types, temporal scales, microbial domains and putative cell activity (DNA vs. RNA). Hydrocarbon-degrading taxa enriched on polyethylene and polyvinyl chloride substrates relative to other polymers and were more commonly recovered in samples proximal to New York City. These differences in MP colonisation could indicate phenotypic adaptation processes resulting from increased exposure to urban plastic runoff as well as differences in carbon bioavailability across polymer types. Shifts in MP community potential across urban coastal contaminant gradients and polymer types improve our understanding of environmental plastic discharge impacts toward biogeochemical cycling across the global ocean.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Poluição Ambiental , Polietileno , Hidrocarbonetos , Monitoramento Ambiental
4.
Anal Chem ; 96(5): 2135-2141, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38252409

RESUMO

A facile route for exponential magnification of transconductance (gm) in an organic photoelectrochemical transistor (OPECT) is still lacking. Herein, photoresponsive hydrogen-bonded organic frameworks (PR-HOFs) have been shown to be efficient for gm magnification in a typical poly(ethylene dioxythiophene):poly(styrenesulfonate) OPECT. Specifically, 450 nm light stimulation of 1,3,6,8-tetrakis (p-benzoic acid) pyrene (H4TBAPy)-based HOF could efficiently modulate the device characteristics, leading to the considerable gm magnification over 78 times from 0.114 to 8.96 mS at zero Vg. In linkage with a DNA nanomachine-assisted steric hindrance amplification strategy, the system was then interfaced with the microRNA-triggered structural DNA evolution toward the sensitive detection of a model target microRNA down to 0.1 fM. This study first reveals HOFs-enabled efficient gm magnification in organic electronics and its application for sensitive biomolecular detection.


Assuntos
Ácido Benzoico , MicroRNAs , Hidrogênio , Polietileno , DNA
5.
Appl Environ Microbiol ; 90(2): e0201623, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38214515

RESUMO

Global warming has led to a high incidence of extreme heat events, and the frequent occurrence of extreme heat events has had extensive and far-reaching impacts on wetland ecosystems. The widespread distribution of plastics in the environment, including polyethylene (PE), polylactic acid (PLA), and tire particles (TPs), has caused various environmental problems. Here, high-throughput sequencing techniques and metabolomics were used for the first time to investigate the effects of three popular microplastic types: PE, PLA, and TP, on the sediment microbiome and the metabolome at both temperatures. The microplastics were incorporated into the sediment at a concentration of 3% by weight of the dry sediment (wt/wt), to reflect environmentally relevant conditions. Sediment enzymatic activity and physicochemical properties were co-regulated by both temperatures and microplastics producing significant differences compared to controls. PE and PLA particles inhibited bacterial diversity at low temperatures and promoted bacterial diversity at high temperatures, and TP particles promoted both at both temperatures. For bacterial richness, only PLA showed inhibition at low temperature; all other treatments showed promotion. PE, PLA, and TP microplastics changed the community structure of sediment bacteria, forming two clusters at low and high temperatures. Furthermore, PE, PLA, and TP changed the sediment metabolic profiles, producing differential metabolites such as lipids and molecules, organic heterocyclic compounds, and organic acids and their derivatives, especially TP had the most significant effect. These findings contribute to a more comprehensive understanding of the potential impact of microplastic contamination.IMPORTANCEIn this study, we added 3% (wt/wt) microplastic particles, including polyethylene, polylactic acid, and tire particles, to natural sediments under simulated laboratory conditions. Subsequently, we simulated the sediment microbial and ecosystem responses under different temperature conditions by incubating them for 60 days at 15°C and 35°C, respectively. After synthesizing these results, our study strongly suggests that the presence of microplastics in sediment ecosystems and exposure under different temperature conditions may have profound effects on soil microbial communities, enzyme activities, and metabolite profiles. This is important for understanding the potential hazards of microplastic contamination on terrestrial ecosystems and for developing relevant environmental management strategies.


Assuntos
Microbiota , Poluentes Químicos da Água , Plásticos , Microplásticos/química , Microplásticos/farmacologia , Polietileno/análise , Polietileno/farmacologia , Ecossistema , Temperatura , Poluentes Químicos da Água/análise , Sedimentos Geológicos/microbiologia , Poliésteres , Metaboloma , Monitoramento Ambiental
6.
Appl Environ Microbiol ; 90(8): e0091524, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-38984844

RESUMO

Humans and animals encounter a summation of exposures during their lifetime (the exposome). In recent years, the scope of the exposome has begun to include microplastics. Microplastics (MPs) have increasingly been found in locations, including in animal gastrointestinal tracts, where there could be an interaction with Salmonella enterica serovar Typhimurium, one of the commonly isolated serovars from processed chicken. However, there is limited knowledge on how gut microbiomes are affected by microplastics and if an effect would be exacerbated by the presence of a pathogen. In this study, we aimed to determine if acute exposure to microplastics in vitro altered the gut microbiome membership and activity. The microbiota response to a 24 h co-exposure to Salmonella enterica serovar Typhimurium and/or low-density polyethylene (PE) microplastics in an in vitro broiler cecal model was determined using 16S rRNA amplicon sequencing (Illumina) and untargeted metabolomics. Community sequencing results indicated that PE fiber with and without S. Typhimurium yielded a lower Firmicutes/Bacteroides ratio compared with other treatment groups, which is associated with poor gut health, and overall had greater changes to the cecal microbial community composition. However, changes in the total metabolome were primarily driven by the presence of S. Typhimurium. Additionally, the co-exposure to PE fiber and S. Typhimurium caused greater cecal microbial community and metabolome changes than either exposure alone. Our results indicate that polymer shape is an important factor in effects resulting from exposure. It also demonstrates that microplastic-pathogen interactions cause metabolic alterations to the chicken cecal microbiome in an in vitro chicken cecal mesocosm. IMPORTANCE: Researching the exposome, a summation of exposure to one's lifespan, will aid in determining the environmental factors that contribute to disease states. There is an emerging concern that microplastic-pathogen interactions in the gastrointestinal tract of broiler chickens may lead to an increase in Salmonella infection across flocks and eventually increased incidence of human salmonellosis cases. In this research article, we elucidated the effects of acute co-exposure to polyethylene microplastics and Salmonella enterica serovar Typhimurium on the ceca microbial community in vitro. Salmonella presence caused strong shifts in the cecal metabolome but not the microbiome. The inverse was true for polyethylene fiber. Polyethylene powder had almost no effect. The co-exposure had worse effects than either alone. This demonstrates that exposure effects to the gut microbial community are contaminant-specific. When combined, the interactions between exposures exacerbate changes to the gut environment, necessitating future experiments studying low-dose chronic exposure effects with in vivo model systems.


Assuntos
Ceco , Galinhas , Microbioma Gastrointestinal , Metaboloma , Polietileno , Salmonella typhimurium , Animais , Galinhas/microbiologia , Ceco/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Polietileno/metabolismo , Metaboloma/efeitos dos fármacos , Microplásticos , RNA Ribossômico 16S/genética , Salmonelose Animal/microbiologia
7.
BMC Microbiol ; 24(1): 321, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232659

RESUMO

With the development of industry and modern manufacturing, nondegradable low-density polyethylene (LDPE) has been widely used, posing a rising environmental hazard to natural ecosystems and public health. In this study, we isolated a series of LDPE-degrading fungi from landfill sites and carried out LDPE degradation experiments by combining highly efficient degrading fungi in pairs. The results showed that the mixed microorganisms composed of Alternaria sp. CPEF-1 and Trametes sp. PE2F-4 (H-3 group) had a greater degradation effect on heat-treated LDPE (T-LDPE). After 30 days of inoculation with combination strain H-3, the weight loss rate of the T-LDPE film was approximately 154% higher than that of the untreated LDPE (U-LDPE) film, and the weight loss rate reached 0.66 ± 0.06%. Environmental scanning electron microscopy (ESEM) and Fourier transform infrared spectroscopy (FTIR) were used to further investigate the biodegradation impacts of T-LDPE, including the changes on the surface and depolymerization of the LDPE films during the fungal degradation process. Our findings revealed that the combined fungal treatment is more effective at degrading T-LDPE than the single strain treatment, and it is expected that properly altering the composition of the microbial community can help lessen the detrimental impact of plastics on the environment.


Assuntos
Alternaria , Biodegradação Ambiental , Polietileno , Trametes , Alternaria/metabolismo , Polietileno/metabolismo , Trametes/metabolismo , Instalações de Eliminação de Resíduos , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Filogenia , Microbiologia do Solo
8.
Arch Microbiol ; 206(4): 188, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519709

RESUMO

Biodegradation is an eco-friendly measure to address plastic pollution. This study screened four bacterial isolates that were capable of degrading recalcitrant polymers, i.e., low-density polyethylene, polyethylene terephthalate, and polystyrene. The unique bacterial isolates were obtained from plastic polluted environment. Dermacoccus sp. MR5 (accession no. OP592184) and Corynebacterium sp. MR10 (accession no. OP536169) from Malaysian mangroves and Bacillus sp. BS5 (accession no. OP536168) and Priestia sp. TL1 (accession no. OP536170) from a sanitary landfill. The four isolates showed a gradual increase in the microbial count and the production of laccase and esterase enzymes after 4 weeks of incubation with the polymers (independent experiment set). Bacillus sp. BS5 produced the highest laccase 15.35 ± 0.19 U/mL and showed the highest weight loss i.e., 4.84 ± 0.6% for PS. Fourier transform infrared spectroscopy analysis confirmed the formation of carbonyl and hydroxyl groups as a result of oxidation reactions by enzymes. Liquid chromatography-mass spectrometry analysis showed the oxidation of the polymers to small molecules (alcohol, ethers, and acids) assimilated by the microbes during the degradation. Field emission scanning electron microscopy showed bacterial colonization, biofilm formation, and surface erosion on the polymer surface. The result provided significant insight into enzyme activities and the potential of isolates to target more than one type of polymer for degradation.


Assuntos
Bacillus , Poliestirenos , Poliestirenos/metabolismo , Polietileno/metabolismo , Polietilenotereftalatos , Lacase , Bacillus/metabolismo , Biodegradação Ambiental
9.
Malar J ; 23(1): 277, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267082

RESUMO

BACKGROUND: A quasi-experimental comparative trial will be designed in Burkina Faso. The study will compare the use and preferences for two groups types of insecticide-treated nets textile: polyester-based and polyethylene-based, according to their use and preferences in selected health districts. These health districts will be selected in three eco-climate zones (Sahelian, dry savannah and wet savannah) in the country. These findings will inform decisions on future net procurements for national malaria control programme in 2025. METHODS: Quantitative surveys and qualitative data collection will be carried out to gather information on the type of net textile most commonly used and preferred by the community. They will be performed between the end of the dry season and the early rainy season. The quantitative surveys involved household interviews with households and individuals' questionnaires, while the qualitative data collection involved in-depth individual interviews and focus group discussions to explore and clarify some key evaluation criteria. A total of 9450 insecticide-treated nets were surveyed for quantitative survey purposes. For the qualitative study, 48 in-depth individual interviews and 12 focus group discussions were carried out. A mixed model approach combining the results from quantitative surveys and qualitative studies will be used for decision-making on the type of insecticide-treated net preference. CONCLUSION: This methodological approach will be used by the National Malaria Control Programme to conduct this study on determinants of net use in Burkina Faso in order to provide robust evidence across diverse settings. This mixed-methods approach for data collection and analysis could be used in other countries to provide evidence that would help to increase the uptake of insecticide-treated nets, the main vector control tool in Africa.


Assuntos
Características da Família , Mosquiteiros Tratados com Inseticida , Malária , Controle de Mosquitos , Burkina Faso , Malária/prevenção & controle , Humanos , Controle de Mosquitos/métodos , Controle de Mosquitos/estatística & dados numéricos , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Polietileno , Poliésteres , Tomada de Decisões , Têxteis , Inquéritos e Questionários
10.
Microb Ecol ; 87(1): 88, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943017

RESUMO

Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H2-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.


Assuntos
Bactérias , Biodegradação Ambiental , Microbiota , Microplásticos , Instalações de Eliminação de Resíduos , Microplásticos/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Poluentes Químicos da Água/metabolismo , Poliésteres/metabolismo , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Estuários , Polietileno/metabolismo , Polietilenotereftalatos/metabolismo
11.
Microb Ecol ; 87(1): 101, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083238

RESUMO

Mulching is a common method increasing crop yield and achieving out-of-season production; nevertheless, their removal poses a significant environmental danger. In this scenario, the use of biodegradable plastic mulches comes up as a solution to increase the sustainability of this practice, as they can be tilled in soil without risk for the environment. In this context, it is important to study the microbial response to this practice, considering their direct involvement in plastic biodegradation. This study evaluated the biodegradation of three commercial mulch residues: one conventional non-biodegradable mulch versus two biodegradable ones (white and black compostable Mater-Bi mulches). The experiment was conducted under three incubation temperatures (room temperature 20-25 °C, 30 °C, and 45 °C) for a 6-month trial using fallow agricultural soil. Soil without plastic mulch residues was used as a control. White mater-bi biodegradable mulch residues showed higher degradation rates up to 88.90% at 30 °C, and up to 69.15% at room temperature. Furthermore, incubation at 45 °C determines the absence of degradation for all types of mulch considered. Moreover, bacterial alpha diversity was primarily influenced by plastic type and temperature, while fungal populations were mainly affected by temperature. Beta diversity was impacted by all experimental variables. Predicted functional genes crucial for degrading complex substrates, including those encoding hydrolases, cutinases, cellobiosidases, and lipases, were derived from 16S rRNA gene sequencing data. Cluster analysis based on predicted enzyme-encoding gene abundance revealed two clusters, mainly linked to sampling time. Finally, core microbiome analysis identified dominant bacterial and fungal taxa in various soil-plastic ecosystems during degradation, pinpointing species potentially involved in plastic breakdown. The present study allows an assessment of how different temperatures affect the degradation of mulch residues in soil, providing important insights for different climatic growing zones. It also fills a gap in the literature by directly comparing the effects of biodegradable and polyethylene mulches on soil microbial communities.


Assuntos
Bactérias , Biodegradação Ambiental , Fungos , Microbiota , Polietileno , Microbiologia do Solo , Solo , Temperatura , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Fungos/genética , Fungos/metabolismo , Fungos/classificação , Solo/química , Plásticos Biodegradáveis/metabolismo , RNA Ribossômico 16S/genética
12.
Fish Shellfish Immunol ; 147: 109460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382690

RESUMO

Polyethylene microplastics (PE-MPs) has become a global concern due to their widespread distribution and hazardous properties in aquatic habitats. In this study, the accumulation effect of PE-MPs in the intestine of large-scale loach (Paramisgurnus dabryanus) was explored by adding different concentrations of PE-MPs to the water, the destination of PE-MPs after breaking the intestinal barrier and the effects caused. The collected data showed that PE-MPs accumulation for 21d altered the histomorphology and antioxidant enzyme activity of the intestine, induced dysbiosis of the intestinal flora. 10 mg/L of PE-MPs induced a significant increase in the transcript levels of intestinal immunity factors in loach after 21d of exposure. Moreover, the levels of diamine oxidase (DAO) and d-lactic acid (D-Lac) in the gut and serum of loach were significantly increased after exposure to PE-MPs at all concentrations (1, 5, 10 mg/L). Subsequently, the presence of PE-MPs was detected in the blood, suggesting that the disruption of the intestinal multilayer barrier allowed PE-MPs to spill into the circulation. The accumulation of PE-MPs (1,5,10 mg/L) in the blood led to massive apoptosis and necrosis of blood cells and activated phagocytosis in response to PE-MPs invasion. To alleviate the damage, this study further exposure the effect of probiotics on PE-MPs treated loach by adding Leuconostoc mesenteroides DH (109 CFU/g) to the feed. The results showed that DH significantly increased the intestinal index and reduced the levels of DAO and D-Lac. To investigate the reason, we followed the PE-MPs in the intestine and blood of the loach and found that the number of PE-MPs particles was significantly reduced in the probiotic group, while the PE-MPs content in the feces was elevated. Thus, we concluded that DH reducing the accumulation of PE-MPs in the intestinal by increases fecal PE-MPs, which in turn mitigates the damage to the intestinal barrier caused by PE-MPs, and reduces the amount of PE-MPs in the blood. This work offers a robust analysis to understand the mechanisms of damage to the intestinal barrier by MPs and the fate of MPs after escaping the intestinal barrier and provide a new perspective on the application of probiotics in mitigating PE-MPs toxicity.


Assuntos
Cipriniformes , Leuconostoc mesenteroides , Animais , Polietileno , Microplásticos , Plásticos , Antioxidantes , Intestinos , Células Sanguíneas , Imunidade
13.
Fish Shellfish Immunol ; 145: 109375, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218424

RESUMO

As a widespread environmental pollutant, microplastics pose a great threat to the tissues and organs of aquatic animals. The carp's muscles are necessary for movement and survival. However, the mechanism of injury of polyethylene microplastics (PE-MPs) to carp muscle remains unclear. Therefore, in this study, PE-MPs with the diameter of 8 µm and the concentration of 1000 ng/L were used to feed carp for 21 days, and polyethylene microplastic treatment groups was established. The results showed that PE-MPs could cause structural abnormalities and disarrangement of muscle fibers, and aggravate oxidative stress in muscles. Exposure to PE-MPs reduced microRNA (miR-21) in muscle tissue, negatively regulated Interleukin-1 Receptor Associated Kinase 4 (IRAK4), activated Nuclear Factor Kappa-B (NF-κB) pathway, induced inflammation, and led to endoplasmic reticulum stress and apoptosis. The present study provides different targets for the prevention of muscle injury induced by polyethylene microplastics.


Assuntos
Carpas , MicroRNAs , Poluentes Químicos da Água , Animais , Polietileno , Microplásticos , Plásticos , Quinases Associadas a Receptores de Interleucina-1 , NF-kappa B , Músculos , Apoptose , Estresse do Retículo Endoplasmático , Inflamação , Estresse Oxidativo
14.
Environ Sci Technol ; 58(31): 13845-13855, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38874627

RESUMO

There is a growing concern that nanoplastic pollution may pose planetary threats to human and ecosystem health. However, a quantitative and mechanistic understanding of nanoplastic release via nanoscale mechanical degradation of bulk plastics and its interplay with photoweathering remains elusive. We developed a lateral force microscope (LFM)-based nanoscratch method to investigate mechanisms of nanoscale abrasive wear of low-density polyethylene (LDPE) surfaces by a single sand particle (simulated by a 300 nm tip) under environmentally relevant load, sliding motion, and sand size. For virgin LDPE, we found plowing as the dominant wear mechanism (i.e., deformed material pushed around the perimeter of scratch). After UVA-weathering, the wear mechanism of LDPE distinctively shifted to cutting wear (i.e., deformed material detached and pushed to the end of scratch). The shift in the mechanism was quantitatively described by a new parameter, which can be incorporated into calculating the NP release rate. We determined a 10-fold higher wear rate due to UV weathering. We also observed an unexpected resistance to initiate wear for UV-aged LDPE, likely due to nanohardness increase induced by UV. For the first time, we report 0.4-4 × 10-3 µm3/µm sliding distance/µN applied load as an initial approximate nanoplastic release rate for LDPE. Our novel findings reveal nanoplastic release mechanisms in the environment, enabling physics-based prediction of the global environmental inventory of nanoplastics.


Assuntos
Polietileno , Polietileno/química , Raios Ultravioleta , Propriedades de Superfície
15.
Environ Sci Technol ; 58(15): 6772-6780, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577774

RESUMO

The quality of chemical analysis is an important aspect of passive sampling-based environmental assessments. The present study reports on a proficiency testing program for the chemical analysis of hydrophobic organic compounds in silicone and low-density polyethylene (LDPE) passive samplers and hydrophilic compounds in polar organic chemical integrative samplers. The median between-laboratory coefficients of variation (CVs) of hydrophobic compound concentrations in the polymer phase were 33% (silicone) and 38% (LDPE), similar to the CVs obtained in four earlier rounds of this program. The median CV over all rounds was 32%. Much higher variabilities were observed for hydrophilic compound concentrations in the sorbent: 50% for the untransformed data and a factor of 1.6 after log transformation. Limiting the data to the best performing laboratories did not result in less variability. Data quality for hydrophilic compounds was only weakly related to the use of structurally identical internal standards and was unrelated to the choice of extraction solvent and extraction time. Standard deviations of the aqueous concentration estimates for hydrophobic compound sampling by the best performing laboratories were 0.21 log units for silicone and 0.27 log units for LDPE (factors of 1.6 to 1.9). The implications are that proficiency testing programs may give more realistic estimates of uncertainties in chemical analysis than within-laboratory quality control programs and that these high uncertainties should be taken into account in environmental assessments.


Assuntos
Polietileno , Poluentes Químicos da Água , Polietileno/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos , Silicones
16.
Environ Sci Technol ; 58(20): 8889-8898, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38685194

RESUMO

The slow reaction rates to chemical and photochemical degradation are well-known properties of plastics. However, large plastic surfaces exposed to environmental conditions release particles and compounds that affect ecosystems and human health. The aim of this work was to identify compounds associated with the degradation of polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC) microplastics (markers) on silica and sand and evaluate their use to screen microplastics on natural sand. Products were identified by using targeted and untargeted LC-HRMS analysis. All polymers underwent chemical oxidation on silica. PE released dicarboxylic acids (HO2C-(CH2)n-CO2H (n = 4-30), while PS released cis/trans-chalcone, trans-dypnone, 3-phenylpropiophenone, and dibenzoylmethane. PVC released dicarboxylic acids and aromatic compounds. Upon irradiation, PE was stable while PS released the same compounds as under chemical oxidation but at lower yields. Under the above condition, PVC generated HO2C-[CH2-CHCl]n-CH2-CO2H and HO2C-[CH2-CHCl]n-CO2H (n = 2-19) dicarboxylic acids. The same products were detected on sand but at a lower concentration than on silica due to better retention within the pores. Detection of markers of PE and PS on natural sand allowed us to screen microplastics by following a targeted analysis. Markers of PVC were not detected before or after thermal/photo-oxidation due to the low release of compounds and limitations associated with surface exposure/penetration of radiation.


Assuntos
Microplásticos , Plásticos , Polietileno/química , Monitoramento Ambiental , Biomarcadores Ambientais
17.
Environ Sci Technol ; 58(2): 1329-1337, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38163930

RESUMO

While it is well established that a biofilm contributes to the sinking of plastics, the underlying mechanisms of how it influences the vertical transport of plastics have not been well explained. In this context, our study dives into the intricate effects of biofouling on the settling velocity (Ws) of microplastics (MPs) within the fluid. We adopt the perspective that the biofilm is a form of surface roughness impacting the drag coefficient (Cd) and vertical settling of MPs. By advancing the biofouling process model, we simulate the temporal variations of density and biofilm thickness of biofouled floating MPs, accounting for realistic parameters and assuming a layer-by-layer growth of biofilm on plastisphere surfaces. MPs of polyethylene (PE) exhibit a quicker initiation of descent compared to their polypropylene (PP) counterparts. Furthermore, leveraging computational fluid dynamics (CFD) simulation, the method to predict the Cd of spherical MPs with surface roughness is established. By treating the thickness of the biofilm as roughness height, an explicit method to predict the Ws of biofouled MPs is derived. The settling experiments for biofouled MPs conducted not only support the combination of the biofouling model and the explicit method to predict the Ws of biofouled MPs but also enhance the prediction accuracy by introducing a ratio parameter Co to better relate the equivalent surface roughness height (k) to the biofilm thickness (σ), i.e., k = Co·σ, where the recommended value of Co for spherical PP and PE MPs is between 0.5 to 0.8. This study, thus, provides new insights into the dynamics of biofouled MPs in hydraulic ecosystems.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Ecossistema , Poluentes Químicos da Água/análise , Biofilmes , Polipropilenos , Polietileno
18.
Environ Sci Technol ; 58(32): 14496-14505, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39047231

RESUMO

Although massive studies have investigated the spatiotemporally occurring marine plastisphere, a new microbial ecosystem colonizing the surfaces of plastics, the resulting biofragmentation process and impacts of plastics on biogeochemical cycles remain largely unknown. Here, we leverage synchrotron-based Fourier transform infrared spectromicroscopy (FTIR mapping) and metagenomic sequencing to explore independent marine microcosms amended with petroleum-based polyethylene (PE) and biobased polyhydroxybutyrate (PHB) plastic films. FTIR mapping results demonstrate unequal fragmentation scenarios by which the PE plastic rarely releases oxidized fragments while PHB disintegrates quickly, gradually forming fragments composed of extracellular polymeric substances resembling plastic films. Metagenomic analysis shows the critical role of hydrocarbonoclastic lineages in the biodegradation of the two plastics by the fatty acid degradation pathway, where the PE plastics host different microbial trajectories between the plastisphere (dominated by Alcanivorax) and surrounding seawater. In contrast, the PHB addition demonstrates decreased microbial richness and diversity, consistent community composition (dominated by Phaeobacter and Marinobacter), and apparently stimulated sulfur cycle and denitrification pathways in both the plastisphere and surrounding seawater. Our study gives scientific evidence on the marine biotic processes distinguishing petroleum- and biobased plastics, highlighting marine PHB input exerting straightforward impacts on the water phase and deserving critical management practices.


Assuntos
Plásticos , Polietileno , Biodegradação Ambiental , Água do Mar/microbiologia , Água do Mar/química , Hidroxibutiratos/metabolismo , Poliésteres/química
19.
Environ Sci Technol ; 58(29): 13047-13055, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38977269

RESUMO

Quantification of microplastics in soil is needed to understand their impact and fate in agricultural areas. Often, low sample volume and removal of organic matter (OM) limit representative quantification. We present a method which allows simultaneous quantification of microplastics in homogenized, large environmental samples (>1 g) and tested polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) (200-400 µm) overestimation by fresh and diagenetically altered OM in agricultural soils using a new combination of large-volume pyrolysis adsorption with thermal desorption-gas chromatography-tandem mass spectrometry (TD-GC-MS/MS). Characteristic MS/MS profiles for PE, PET, and PS were derived from plastic pyrolysis and allowed for a new mass separation of PET. Volume-defined standard particles (125 × 125 × 20 µm3) were developed with the respective weight (PE: 0.48 ± 0.12, PET: 0.50 ± 0.10, PS: 0.31 ± 0.08 µg), which can be spiked into solid samples. Diagenetically altered OM contained compounds that could be incorrectly identified as PE and suggest a mathematical correction to account for OM contribution. With a standard addition method, we quantified PS, PET, and PEcorrected in two agricultural soils. This provides a base to simultaneously quantify a variety of microplastics in many environmental matrices and agricultural soil.


Assuntos
Agricultura , Cromatografia Gasosa-Espectrometria de Massas , Plásticos , Polietileno , Pirólise , Poluentes do Solo , Solo , Polietileno/química , Solo/química , Poluentes do Solo/análise , Espectrometria de Massas em Tandem , Microplásticos/análise , Polietilenotereftalatos/química , Monitoramento Ambiental/métodos
20.
Environ Sci Technol ; 58(32): 14158-14168, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39088650

RESUMO

The widespread use of plastic products in daily life has raised concerns about the health hazards associated with nanoplastics (NPs). When exposed, NPs are likely to infiltrate the bloodstream, interact with plasma proteins, and trigger macrophage recognition and clearance. In this study, we focused on establishing a correlation between the unique protein coronal signatures of high-density (HDPE) and low-density (LDPE) polyethylene (PE) NPs with their ultimate impact on macrophage recognition and cytotoxicity. We observed that low-density and high-density lipoprotein receptors (LDLR and SR-B1), facilitated by apolipoproteins, played an essential role in PE-NP recognition. Consequently, PE-NPs activated the caspase-3/GSDME pathway and ultimately led to pyroptosis. Advanced imaging techniques, including label-free scattered light confocal imaging and cryo-soft X-ray transmission microscopy with 3D-tomographic reconstruction (nano-CT), provided powerful insights into visualizing NPs-cell interactions. These findings underscore the potential risks of NPs to macrophages and introduce analytical methods for studying the behavior of NPs in biological systems.


Assuntos
Macrófagos , Polietileno , Coroa de Proteína , Macrófagos/metabolismo , Coroa de Proteína/metabolismo , Coroa de Proteína/química , Animais , Camundongos , Nanopartículas/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA