Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(1): 602-609, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31836694

RESUMO

Vitamin B12 (VB12) is a critical micronutrient that controls DNA metabolic pathways to maintain the host genomic stability and tissue homeostasis. We recently reported that the newly discovered commensal Propionibacterium, P. UF1, regulates the intestinal immunity to resist pathogen infection, which may be attributed in part to VB12 produced by this bacterium. Here we demonstrate that VB12 synthesized by P. UF1 is highly dependent on cobA gene-encoding uroporphyrinogen III methyltransferase, and that this vitamin distinctively regulates the cobA operon through its 5' untranslated region (5' UTR). Furthermore, conserved secondary structure and mutagenesis analyses revealed a VB12-riboswitch, cbiMCbl (140 bp), within the 5' UTR that controls the expression of downstream genes. Intriguingly, ablation of the cbiMCbl significantly dysregulates the biosynthesis of VB12, illuminating the significance of this riboswitch for bacterial VB12 biosynthesis. Collectively, our finding is an in-depth report underscoring the regulation of VB12 within the beneficial P. UF1 bacterium, through which the commensal metabolic network may improve gut bacterial cross-feeding and human health.


Assuntos
Regulação Bacteriana da Expressão Gênica , Propionibacterium/metabolismo , Riboswitch/genética , Vitamina B 12/biossíntese , Regiões 5' não Traduzidas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microbioma Gastrointestinal/fisiologia , Metiltransferases/genética , Metiltransferases/metabolismo , Mutagênese Sítio-Dirigida , Óperon/genética , Probióticos/metabolismo , Propionibacterium/genética
2.
Crit Rev Biotechnol ; 42(8): 1157-1179, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35264026

RESUMO

Propionic acid (PA) is a carboxylic acid applied in a variety of processes, such as food and feed preservative, and as a chemical intermediate in the production of polymers, pesticides and drugs. PA production is predominantly performed by petrochemical routes, but environmental issues are making it necessary to use sustainable processes based on renewable materials. PA production by fermentation with the Propionibacterium genus is a promising option in this scenario, due to the ability of this genus to consume a variety of renewable carbon sources with higher productivity than other native microorganisms. However, Propionibacterium fermentation processes present important challenges that must be faced to make this route competitive, such as: a high fermentation time, product inhibition and low PA final titer, which increase the cost of product recovery. This article summarizes the state of the art regarding strategies to improve PA production by fermentation with the Propionibacterium genus. Firstly, strategies associated with environmental fermentation conditions and nutrition requirements are discussed. Subsequently, advantages and disadvantages of various strategies proposed to improve process performance (high cell concentration by immobilization or recycle, co-culture fermentation, genome shuffling, evolutive and metabolic engineering, and in situ recovery) are evaluated.


Assuntos
Embaralhamento de DNA , Propionibacterium , Propionibacterium/genética , Propionibacterium/metabolismo , Fermentação , Propionatos/metabolismo
3.
Arch Microbiol ; 204(7): 434, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35763226

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems constitute the adaptive immune system in prokaryotes that provide resistance against invasive genetic elements. The genus Propionibacterium comprises gram-positive, facultative anaerobe, non-spore-forming bacteria, and is the source of some B group vitamins such as B12 as well as bacteriocins. Some of the selected species of the genus Propionibacterium spp. were reclassified into the three genera in 2016 (Acidipropionibacterium spp., Pseudopropionibacterium spp., Cutibacterium spp.). Therefore, this study compared CRISPR/Cas systems, Cas 1 and repeat sequences phylogeny, phage/plasmid surveys as well as insertion sequences of new genera members. In this study, a total of 34 genomes of 13 species were observed with a bioinformatic approach. CRISPR-Cas + + and CRISPRDetect were used to detect CRISPR/Cas systems, direct repeats, and spacers. 39 CRISPR-Cas systems were detected. Type I-E, Type I-U, and one incomplete III-B CRISPR-Cas subtypes were identified. Most of the strains had Cas1/Cas4 fusion proteins. Pseudopropionibacterium propionicum strains had two types I-U and one of the CRISPR loci had csx17 cas genes. Common phage invaders were Propionibacterium phage E6, G4, E1, Anatole, and Doucette. The BLSM62 similarity score of all Cas1 sequences was 48.4% while the pairwise identity of repeat sequences was 48.7%. Common insertion sequences were ISL3, IS3, IS30. The diversity analysis of the CRISPR/Cas system in the genus Propionibacterium provided a new perspective for determining the role of the CRISPR-Cas system in the evolution of new genera.


Assuntos
Bacteriófagos , Elementos de DNA Transponíveis , Bacteriófagos/genética , Sistemas CRISPR-Cas , Plasmídeos/genética , Propionibacterium/genética
4.
Food Microbiol ; 106: 104030, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690437

RESUMO

Propionibacterium freudenreichii is crucial in Swiss-type cheese manufacture. Classic propionic acid fermentation yields the nutty flavor and the typical eyes. Co-metabolism of aspartate pronounces the flavor of the cheese; however, it also increases the size of the eyes, which can induce splitting and reduce the cheese quality. Aspartase (EC 4.3.1.1) catalyzes the deamination of aspartate, yielding fumarate and ammonia. The aspartase activity varies considerably among P. freudenreichii strains. Here, the correlation between aspartase activity and the locus of aspartase-encoding genes (aspA ) and dcuA encoding the C4-dicarboxylate transporter was investigated in 46 strains to facilitate strain selection for cheese culture. Low aspartase activity was correlated with a particular genomic rearrangement: low in vitro aspartase activity always occurred in strains with gene clusters aspA - dcuA where the dcuA was frameshifted, producing a stop codon or was disrupted by an ISL3-like element. The low aspartase activity could be due to the protein sequence of the aspartase or a dysfunctional DcuA. The highest values of aspartase activity were detected in strains with aspA1 - aspA2-dcuA with a DcuA sequence sharing 99.07 - 100% identity with the DcuA sequence of strain DSM 20271 T and an additional C4-dicarboxylate transporter belonging to the DcuAB family.


Assuntos
Aspartato Amônia-Liase , Propionibacterium freudenreichii , Aspartato Amônia-Liase/metabolismo , Ácido Aspártico/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Genômica , Propionibacterium/genética , Propionibacterium/metabolismo , Propionibacterium freudenreichii/metabolismo
5.
Rev Argent Microbiol ; 54(4): 263-267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35644768

RESUMO

Acidipropionibacterium acidipropionici is widely used for many applications, such as propionic acid production, cereal silage, and also as probiotic. Due to this plethora of applications, new isolates of A. acidipropionici with improved features are being searched for. These new isolates must be accurately identified, however, most approaches become expensive and time-consuming when the number of isolates is high. On the contrary, fluorescence in situ hybridization allows the affordable, reliable, and rapid identification of microorganisms in pure cultures and environmental and medical samples. Therefore, the aim of this work was to apply a fluorescent in situ hybridization probe for the reliable identification of new A. acidipropionici isolates. To this end, probe Pap446, specific for A. acidipropionici, was validated by hybridization assays with strains of this species from different origins, other species of the same genus or family, and unrelated genera. Eight isolates with propionibacterium characteristics were obtained from milk and feces of cows. Probe Pap446, hybridized only with isolates III and VI. The identity of these isolates was further confirmed by PCR using group and species-specific primers for propionibacteria and 16S rDNA sequencing.


Assuntos
Propionibacterium , Silagem , Bovinos , Animais , Hibridização in Situ Fluorescente , Propionibacterium/genética , Silagem/microbiologia , Especificidade da Espécie
6.
Compr Rev Food Sci Food Saf ; 20(5): 4299-4323, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34355493

RESUMO

Propionic acid bacteria (PAB) is an umbrella term for a group of bacteria with the ability to produce propionic acid. In the past, due to this common feature and other phenotypic similarities, genetically heterogeneous bacteria were considered as a single genus, Propionibacterium. Members of this genus ranged from "dairy propionibacteria," which are widely known for their role in eye and flavor formation in cheese production, to "cutaneous propionibacteria," which are primarily associated with human skin. In 2016, the introduction of two new genera based on genotypic data facilitated a clear separation of cutaneous (Cutibacterium spp.) from dairy PAB (Propionibacterium spp., Acidipropionibacterium spp.). In light of these taxonomic changes, but with particular emphasis on dairy PAB, this review describes the current state of knowledge about metabolic pathways and other characteristics such as antibiotic resistance and virulence factors. In addition, the relevance of dairy PAB for the food industry and cheese production in particular is highlighted. Furthermore, methods for cultivation, detection, and enumeration are reviewed, incorporating the current taxonomy as well as the potential for routine applications.


Assuntos
Queijo , Propionibacterium , Indústria Alimentícia , Humanos , Propionatos , Propionibacterium/genética
7.
Eur J Clin Microbiol Infect Dis ; 39(8): 1605-1610, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32382853

RESUMO

The taxonomy modification of Propionibacterium sp. with the description of new species, especially Cutibacterium namnetense, raises the question of species distribution in routine clinical samples. We performed a retrospective study during 3 years before the implementation of MALDI-TOF. Two hundred sixty-nine isolates were included in the study. MALDI-TOF identification, 16S rRNA, and new developed gyrB partial sequencings were performed. The most representative species was C. acnes in 88% of the cases, regardless of the origin of the clinical sample. Eventually, we identified three C. namnetense strains, representing a 1.1% prevalence over the period of time, including two bone infections. MALDI-TOF databases should be regularly updated to incorporate new species. gyrB sequencing constitutes a both easy and relevant method to identify Cutibacterium sp. especially C. namnetense, a new player in bone infections.


Assuntos
Doenças Ósseas Infecciosas/epidemiologia , Infecções por Bactérias Gram-Positivas/epidemiologia , Propionibacterium/isolamento & purificação , Técnicas de Tipagem Bacteriana , Doenças Ósseas Infecciosas/microbiologia , DNA Bacteriano/análise , França/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Filogenia , Propionibacterium/classificação , Propionibacterium/genética , Estudos Retrospectivos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
J Am Acad Dermatol ; 82(4): 955-961, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31228520

RESUMO

BACKGROUND: Several studies have found that the microbiota of psoriatic lesions is different from that of healthy skin. OBJECTIVE: To characterize the microbiota of lesional and unaffected skin in patients with psoriasis and controls and investigate the correlation between cutaneous microbiota and clinical features of psoriasis. METHODS: Using quantitative polymerase chain reaction and 16S rRNA sequencing, we assayed the profiles of cutaneous microbiota in controls, unaffected skin, and psoriatic lesions. We also investigated the correlation of psoriasis-associated taxa with clinical characteristics. RESULTS: High bacterial load was identified in the psoriatic lesions compared with unaffected skin and controls. There was an imbalance between Cutibacterium (also known as Propionibacterium) and Corynebacterium in psoriatic skin. Lesions showed a higher proportion of Corynebacterium and a lower proportion of Cutibacterium compared with unaffected skin and controls. Corynebacterium was correlated with the severity of local lesions, whereas Cutibacterium showed correlation with the abnormity of skin capacitance. LIMITATIONS: We did not conduct a longitudinal study. CONCLUSIONS: Psoriatic lesions are characterized by higher bacterial load and imbalance between Cutibacterium and Corynebacterium.


Assuntos
Carga Bacteriana , Corynebacterium/isolamento & purificação , Microbiota/imunologia , Propionibacterium/isolamento & purificação , Psoríase/microbiologia , Adolescente , Adulto , Idoso , Corynebacterium/genética , Corynebacterium/imunologia , DNA Bacteriano/isolamento & purificação , Feminino , Humanos , Masculino , Microbiota/genética , Pessoa de Meia-Idade , Propionibacterium/genética , Propionibacterium/imunologia , Psoríase/diagnóstico , Psoríase/imunologia , Psoríase/patologia , RNA Ribossômico 16S/genética , Índice de Gravidade de Doença , Pele/microbiologia , Pele/patologia , Adulto Jovem
9.
Antonie Van Leeuwenhoek ; 113(3): 339-347, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31637662

RESUMO

A Gram-stain positive, asporogenous, aerobic, white -coloured bacterium, designated 18JY15-6T, was isolated from soil from Jeju Island, Korea. Pairwise analysis of the 16S rRNA gene sequence of strain 18JY15-6T indicated high similarity to Nocardioides phosphati DSM 104026T (97.4%), Marmoricola terrae KACC 17308T (96.7%) and Nocardioides jensenii KCTC 0074BPT (96.6%). Phylogenetic analysis revealed that strain 18JY15-6T formed a distinct lineage within the family Nocardioidaceae and is closely related to members of the genus Nocardioides. Genome sequencing of strain 18JY15-6T revealed 3221 total genes, including 3162 protein coding genes, 59 RNA and 31 pseudogenes. Growth was observed at 18-37 °C (optimal 30 °C) in R2A medium at pH 7.0. The major cellular fatty acids of strain 18JY15-6T were identified as C16:0, C18:1ω9c, C18:0 10-methyl, tuberculostearic and C17:0. The fatty acid profile of strain 18JY15-6T was more dissimilar when compared with M. terrae. The only respiratory quinone present was found to be MK-8(H4). The major polar lipids are diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. The results of phylogenetic, biochemical and chemotaxonomic characterisation allow the differentiation of strain 18JY15-6T from N. phosphati WYH11-7T, M. terrae JOS5-1T and N. jensenii NBRC 14755T which supports the conclusion that this strain represents a novel species of the genus Nocardioides, for which we propose the name Nocardioides jejuensis sp. nov. The type strain of Nocardioides jejuensis is 18JY15-6T (= KCTC 49105T = JCM 33182T).


Assuntos
Propionibacterium/classificação , Propionibacterium/isolamento & purificação , Microbiologia do Solo , DNA Bacteriano , Genoma Bacteriano , Genômica/métodos , Filogenia , Propionibacterium/genética , RNA Ribossômico 16S , Sequenciamento Completo do Genoma
10.
Antonie Van Leeuwenhoek ; 113(3): 377-388, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31630297

RESUMO

Acne is a common inflammatory skin disease, especially in adolescents. Certain Cutibacterium acnes subtypes are associated with acne, although more than one subtype of C. acnes strains may simultaneously reside on the surface of the skin of an individual. To better understand the relationship between the genomic characteristics of C. acnes subtypes and acnes, we collected 50 C. acnes strains from the facial skin of 10 people (5 healthy individuals, 5 patients with acne) in Liaoning, China and performed whole genome sequencing of all strains. We demonstrated that the six potential pathogenic C. acnes strains were all Type II subtype, and discovered 90 unique genes of the six strains related to acne using pan-genome analysis. The distribution of 2 of the 90 genes was identified by PCR in bacterial cultures collected from the facial skin of 171 individuals (55 healthy individuals, 52 patients with mild acne and 64 patients with moderate to severe acne). Both the genes were significantly associated with acne (Chi square test, P < 0.01). We conclude that Type II strains are associated with acne in Chinese patients.


Assuntos
Acne Vulgar/microbiologia , Infecções por Actinomycetales/microbiologia , Propionibacterium/classificação , China , Genoma Bacteriano , Genômica/métodos , Humanos , Tipagem de Sequências Multilocus , Filogenia , Propionibacterium/genética , Sequenciamento Completo do Genoma
11.
World J Microbiol Biotechnol ; 35(7): 101, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31236717

RESUMO

Propionibacterium acidipropionici produces propionic acid from different sugars and glycerol; the production can be improved by high cell density fermentations using immobilized cells that help to overcome the limitations of the non-productive lag phase and product inhibition. In this study, the use of stress factors to induce P. acidipropionici to form biofilm and its use as an immobilization procedure in fermentations in bioreactors for producing propionic acid was investigated. Citric acid and sodium chloride increased exopolysaccharide production, biofilm forming capacity index and trehalose production. Analysis of the expression of trehalose synthesis-related genes otsA and treY by RT-qPCR showed significantly increased expression of only treY during log phase with citric acid, while FISH analysis showed expression of treY and luxS under the influence of both stress factors. The stress factors were then used for development of microbial biofilms as immobilization procedure on Poraver® and AnoxKaldnes® carriers in recycle batch reactors for propionic acid production from 20 g/L glycerol. Highest productivities of 0.7 and 0.78 g/L/h were obtained in Poraver® reactors, and 0.39 and 0.43 g/L/h in AnoxKaldnes® reactors with citric acid and NaCl, respectively.


Assuntos
Biofilmes , Propionatos/metabolismo , Propionibacterium/metabolismo , Estresse Fisiológico , Reatores Biológicos/microbiologia , Células Imobilizadas , Fermentação , Regulação da Expressão Gênica , Genes Bacterianos , Glicerol/metabolismo , Hibridização in Situ Fluorescente , Microscopia de Força Atômica , Propionibacterium/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Trealose/metabolismo
12.
Biotechnol Bioeng ; 115(2): 483-494, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29064557

RESUMO

Acid stress induced by the accumulation of organic acids during the fermentation of propionibacteria is a severe limitation in the microbial production of propionic acid (PA). To enhance the acid resistance of strains, the tolerance mechanisms of cells must first be understood. In this study, comparative genomic and transcriptomic analyses were conducted on wild-type and acid-tolerant Propionibacterium acidipropionici to reveal the microbial response of cells to acid stress during fermentation. Combined with the results of previous proteomic and metabolomic studies, several potential acid-resistance mechanisms of P. acidipropionici were analyzed. Energy metabolism and transporter activity of cells were regulated to maintain pH homeostasis by balancing transmembrane transport of protons and ions; redundant protons were eliminated by enhancing the metabolism of certain amino acids for a relatively stable intracellular microenvironment; and protective mechanism of macromolecules were also induced to repair damage to proteins and DNA by acids. Transcriptomic data indicated that the synthesis of acetate and lactate were undesirable in the acid-resistant mutant, the expression of which was 2.21-fold downregulated. In addition, metabolomic data suggested that the accumulation of lactic acid and acetic acid reduced the carbon flow to PA and led to a decrease in pH. On this basis, we propose a metabolic engineering strategy to regulate the synthesis of lactic acid and acetic acid that will reduce by-products significantly and increase the PA yield by 12.2% to 10.31 ± 0.84 g/g DCW. Results of this study provide valuable guidance to understand the response of bacteria to acid stress and to construct microbial cell factories to produce organic acids by combining systems biology technologies with synthetic biology tools.


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica/métodos , Engenharia Metabólica/métodos , Propionatos/metabolismo , Propionibacterium , Ácidos , Adaptação Biológica/genética , Propionibacterium/genética , Propionibacterium/metabolismo , Propionibacterium/fisiologia
13.
Int J Syst Evol Microbiol ; 68(10): 3175-3183, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30156530

RESUMO

A Gram-stain-positive, catalase-positive and pleomorphic rod organism was isolated from malted barley in Finland, classified initially by partial 16S rRNA gene sequencing and originally deposited in the VTT Culture Collection as a strain of Propionibacterium acidipropionici (currently Acidipropionibacterium acidipropionici). The subsequent comparison of the whole 16S rRNA gene with other representatives of the genus Acidipropionibacterium revealed that the strain belongs to a novel species, most closely related to Acidipropionibacterium microaerophilum and Acidipropionibacterium acidipropionici, with similarity values of 98.46 and 98.31 %, respectively. The whole genome sequencing using PacBio RS II platform allowed further comparison of the genome with all of the other DNA sequences available for the type strains of the Acidipropionibacterium species. Those comparisons revealed the highest similarity of strain JS278T to A. acidipropionici, which was confirmed by the average nucleotide identity analysis. The genome of strain JS278T is intermediate in size compared to the A. acidipropionici and Acidipropionibacterium jensenii at 3 432 872 bp, the G+C content is 68.4 mol%. The strain fermented a wide range of carbon sources, and produced propionic acid as the major fermentation product. Besides its poor ability to grow at 37 °C and positive catalase reaction, the observed phenotype was almost indistinguishable from those of A. acidipropionici and A. jensenii. Based on our findings, we conclude that the organism represents a novel member of the genus Acidipropionibacterium, for which we propose the name Acidipropionibacteriumvirtanenii sp. nov. The type strain is JS278T (=VTT E-113202T=DSM 106790T).


Assuntos
Hordeum/microbiologia , Filogenia , Propionibacterium/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Fermentação , Finlândia , Propionibacterium/genética , Propionibacterium/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
BMC Infect Dis ; 18(1): 441, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30165830

RESUMO

BACKGROUND: Chronic rhinosinusitis is an inflammatory disorder in which the role of bacteria remains uncertain. While sinus outflow obstruction is often an initiating event, mucosal inflammation and dysbiosis may persist or develop in sinuses with widely patent surgical openings. Understanding of the relationship between dysbiosis and chronic sinus inflammation is obfuscated by inter-individual microbiota variability and likely intra-individual temporal variation that has yet to be defined. In this study, long-term microbiota stability is investigated within surgically-opened maxillary sinuses of individuals with and without sinus inflammatory disease. METHODS: Maxillary sinus swabs were performed in 35 subjects with longstanding maxillary antrostomies. Subjects with and without active chronic maxillary sinusitis were included. Repeat swabs were obtained from the same sinuses after a prolonged interval (mean 719 ± 383 days). Patients were categorized based on the inflammatory status of the sinus mucosa at times of sample collection, as assessed by nasal endoscopy. Total DNA from swab eluents was extracted, and the microbiota characterized using 16S rRNA gene sequencing followed by taxonomic classification. Prevalence and abundance of genera were determined by analysis of 16S rRNA gene sequences. Taxa were identified that were stably present between two time points in individual subjects. RESULTS: The overall proportion of stable taxa across time points was 24.5 ± 10.6%. This stability index was consistent across patient groups and not correlated with clinical parameters. Highly prevalent taxa, including Staphylococcus, Corynebacterium, Propionibacterium, and Pseudomonas, were often stably present, but varied in relative abundance. Janthinobacterium, Enterobacter, Lactobacillus, and Acinetobacter were prevalent and moderately abundant taxa in healthy sinuses, but not in inflamed sinuses. Moraxella and Haemophilus were present at low prevalence and proportional abundance in chronically or intermittently inflamed sinuses, but not in healthy sinuses. CONCLUSIONS: A relatively small component of the post-antrostomy maxillary sinus microbiota exhibits long-term stability in individual subjects. Stable bacteria include a limited number of highly prevalent and a larger number of lower prevalence taxa, which vary widely in proportional abundance. The concept of individual-specific core sinus microbiota, durable over time and medical therapy, but fluctuating in proportional abundance, has implications for understanding the role of bacteria in CRS pathogenesis.


Assuntos
Seio Maxilar/microbiologia , Microbiota , Sinusite/diagnóstico , Adulto , Idoso , Bactérias/genética , Bactérias/isolamento & purificação , Corynebacterium/genética , Corynebacterium/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Endoscopia , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Propionibacterium/genética , Propionibacterium/isolamento & purificação , Estudos Prospectivos , Pseudomonas/genética , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Sinusite/microbiologia , Staphylococcus/genética , Staphylococcus/isolamento & purificação
15.
Microb Cell Fact ; 16(1): 121, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28716098

RESUMO

BACKGROUND: Propionic acid is used primarily as a food preservative with smaller applications as a chemical building block for the production of many products including fabrics, cosmetics, drugs, and plastics. Biological production using propionibacteria would be competitive against chemical production through hydrocarboxylation of ethylene if native producers could be engineered to reach near-theoretical yield and good productivity. Unfortunately, engineering propionibacteria has proven very challenging. It has been suggested that activation of the sleeping beauty operon in Escherichia coli is sufficient to achieve propionic acid production. Optimising E. coli production should be much easier than engineering propionibacteria if tolerance issues can be addressed. RESULTS: Propionic acid is produced in E. coli via the sleeping beauty mutase operon under anaerobic conditions in rich medium via amino acid degradation. We observed that the sbm operon enhances amino acids degradation to propionic acid and allows E. coli to degrade isoleucine. However, we show here that the operon lacks an epimerase reaction that enables propionic acid production in minimal medium containing glucose as the sole carbon source. Production from glucose can be restored by engineering the system with a methylmalonyl-CoA epimerase from Propionibacterium acidipropionici (0.23 ± 0.02 mM). 1-Propanol production was also detected from the promiscuous activity of the native alcohol dehydrogenase (AdhE). We also show that aerobic conditions are favourable for propionic acid production. Finally, we increase titre 65 times using a combination of promoter engineering and process optimisation. CONCLUSIONS: The native sbm operon encodes an incomplete pathway. Production of propionic acid from glucose as sole carbon source is possible when the pathway is complemented with a methylmalonyl-CoA epimerase. Although propionic acid via the restored succinate dissimilation pathway is considered a fermentative process, the engineered pathway was shown to be functional under anaerobic and aerobic conditions.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Engenharia Genética/métodos , Óperon , Propionatos/metabolismo , Racemases e Epimerases/metabolismo , 1-Propanol/metabolismo , Aerobiose , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Aminoácidos/metabolismo , Anaerobiose , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fermentação , Glucose/metabolismo , Engenharia Metabólica , Propionibacterium/genética , Racemases e Epimerases/genética
16.
Eur J Clin Microbiol Infect Dis ; 36(5): 869-878, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28013413

RESUMO

The objective of the present study was to test the hypothesis that nutrient deprivation by effective isolation should inactivate causative saccharolytic bacteria occupying carious lesions. Vital maxillary third molar teeth were prepared by removing only the superficial necrotic material, leaving behind infected dentinal matrix, before the cavity was sealed with glass ionomer cement (GIC). Before sealing, lesions were biopsied to provide reference bacterial DNA for microbial analysis. After an interval of 10-12 months, the teeth were extracted and, after careful removal of GIC restoration, the underlying dentine was biopsied again for post-treatment microbial analysis. Microbial diversity for nine taxa in 45 carious lesions, before and after minimal intervention therapy, was quantified by real-time polymerase chain reaction (PCR). Except for Propionibacterium sp. FMA5, Fusobacterium nucleatum and Pseudoramibacter alactolyticus, representation of all other taxa showed reduction in the post-restoration biopsy samples. However, Propionibacterium sp. FMA5 was the only species predominantly detected in 80% of the pre-intervention, 82% of the post-restoration and 73% of the paired pre- and post-restoration biopsy samples. The median bacterial load for Propionibacterium sp. FMA5, lactobacilli and bacteria from the family Coriobacteriaceae was higher than the median bacterial load for the remaining six taxa. Significant reduction in the median bacterial load for lactobacilli was evident in post-restoration biopsy samples, implying effective control by GIC after minimal intervention. However, the median bacterial load for Propionibacterium sp. FMA5 increased in post-restoration biopsy samples. Incorporation of antimicrobial agents effective against Propionibacterium species FMA5 could add to more effective conservative management of advanced carious lesions.


Assuntos
Cárie Dentária/microbiologia , Cárie Dentária/terapia , Placa Dentária/microbiologia , Restauração Dentária Permanente/métodos , Propionibacterium/isolamento & purificação , Adulto , Dentina/microbiologia , Feminino , Cimentos de Ionômeros de Vidro , Humanos , Masculino , Pessoa de Meia-Idade , Propionibacterium/genética , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
17.
Biosci Biotechnol Biochem ; 81(8): 1636-1641, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28532245

RESUMO

Ribosome engineering has been widely utilized for strain improvement, especially for the activation of bacterial secondary metabolism. This study assessed ribosome engineering technology to modulate primary metabolism, taking vitamin B12 production as a representative example. The introduction into Propionibacterium shermanii of mutations conferring resistance to rifampicin, gentamicin, and erythromycin, respectively, increased per cell production (µg/L/OD600) of vitamin B12 5.2-fold, although net production (µg/L) was unchanged, as the cell mass of the mutants was reduced. Real-time qPCR analysis demonstrated that the genes involved in vitamin B12 fermentation by P. shermanii were activated at the transcriptional level in the drug-resistant mutants, providing a mechanism for the higher yields of vitamin B12 by the mutants. These results demonstrate the efficacy of ribosome engineering for the production of not only secondary metabolites but of industrially important primary metabolites.


Assuntos
Alquil e Aril Transferases/genética , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Propionibacterium/genética , Ribossomos/genética , Vitamina B 12/biossíntese , Alquil e Aril Transferases/metabolismo , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Farmacorresistência Bacteriana/genética , Eritromicina/farmacologia , Fermentação , Expressão Gênica , Engenharia Genética , Gentamicinas/farmacologia , Mutação , Propionibacterium/efeitos dos fármacos , Propionibacterium/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Rifampina/farmacologia , Análise de Sequência de DNA , Vitamina B 12/genética
18.
J Biol Chem ; 290(39): 23960-70, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26269598

RESUMO

Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply.


Assuntos
Proteínas de Bactérias/genética , Entamoeba histolytica/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Propionibacterium/genética , Proteínas de Protozoários/genética , Proteínas de Bactérias/metabolismo , Entamoeba histolytica/enzimologia , Humanos , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Propionibacterium/enzimologia , Proteínas de Protozoários/metabolismo
19.
Int J Syst Evol Microbiol ; 66(9): 3393-3399, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27259292

RESUMO

A polyphasic taxonomic study was performed on two Gram-positive-staining, anaerobic, pleomorphic, rod-shaped strains isolated from human bone and tissue samples. Sequencing of the 16S rRNA genes revealed that the strains belong to a novel species within the genus Propionibacterium, most closely related to Propionibacterium acnes subsp. acnes and Propionibacterium acnes subsp. elongatum with similarity values of 98.4 % and 98.1 %, respectively. In addition, protein-coding genes for rpoB, recA and gyrB clearly separated the novel organism from all species and subspecies of the genus Propionibacterium. However, a DNA-DNA hybridization analysis between the novel organism and the type strain P. acnes ATCC 6919T revealed a value of only 61.1 %. Furthermore, whole genome analysis using the program OrthoANI gave a value of 88.5 %, which is significantly below the cut-off value of 95 % for species delineation. The major fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C17 : 0. The DNA G+C content of the type strain was 59.7 mol%. When taken collectively, phenotypic, molecular genetic, chemotaxonomic and phylogenetic information demonstrate that the organism represents a distinct, albeit close relative of P. acnes On the basis of the results presented, the organism represents a novel member of the genus Propionibacterium for which the name Propionibacterium namnetense sp. nov. is proposed. The type strain is NTS 31307302T (=DSM 29427T=CCUG 66358T).


Assuntos
Doenças Ósseas Infecciosas/microbiologia , Filogenia , Propionibacterium/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , França , Humanos , Masculino , Hibridização de Ácido Nucleico , Propionibacterium/genética , Propionibacterium/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Adulto Jovem
20.
Int J Syst Evol Microbiol ; 66(11): 4422-4432, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27488827

RESUMO

The genus Propionibacterium in the family Propionibacteriaceaeconsists of species of various habitats, including mature cheese, cattle rumen and human skin. Traditionally, these species have been grouped as either classical or cutaneous propionibacteria based on characteristic phenotypes and source of isolation. To re-evaluate the taxonomy of the family and to elucidate the interspecies relatedness we compared 162 public whole-genome sequences of strains representing species of the family Propionibacteriaceae. We found substantial discrepancies between the phylogenetic signals of 16S rRNA gene sequence analysis and our high-resolution core-genome analysis. To accommodate these discrepancies, and to address the long-standing issue of the taxonomically problematic Propionibacterium propionicum, we propose three novel genera, Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov., and an amended description of the genus Propionibacterium. Furthermore, our genome-based analyses support the amounting evidence that the subdivision of Propionibacterium freudenreichii into subspecies is not warranted. Our proposals are supported by phylogenetic analyses, DNA G+C content, peptidoglycan composition and patterns of the gene losses and acquisitions in the cutaneous propionibacteria during their adaptation to the human host.


Assuntos
Filogenia , Propionibacteriaceae/classificação , Propionibacterium/classificação , Pele/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Humanos , Peptidoglicano/química , Propionibacteriaceae/genética , Propionibacterium/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA