Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 499
Filtrar
1.
Nature ; 587(7834): 466-471, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33116313

RESUMO

Severe respiratory infections can result in acute respiratory distress syndrome (ARDS)1. There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS1,2. Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes-in particular the ECM protease ADAMTS4-and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections.


Assuntos
Proteína ADAMTS4/metabolismo , Fibroblastos/enzimologia , Fibroblastos/patologia , Vírus da Influenza A/patogenicidade , Pulmão/patologia , Pulmão/fisiopatologia , Proteína ADAMTS4/antagonistas & inibidores , Animais , Aves/virologia , Matriz Extracelular/enzimologia , Perfilação da Expressão Gênica , Humanos , Influenza Aviária/virologia , Influenza Humana/patologia , Influenza Humana/terapia , Influenza Humana/virologia , Interferons/imunologia , Interferons/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Pulmão/enzimologia , Pulmão/virologia , Camundongos , Síndrome do Desconforto Respiratório/enzimologia , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/virologia , Estações do Ano , Análise de Célula Única , Células Estromais/metabolismo
2.
J Biol Chem ; 299(4): 103048, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813235

RESUMO

A disintegrin-like and metalloproteinase with thrombospondin type 1 motifs (ADAMTS1) is a protease involved in fertilization, cancer, cardiovascular development, and thoracic aneurysms. Proteoglycans such as versican and aggrecan have been identified as ADAMTS1 substrates, and Adamts1 ablation in mice typically results in versican accumulation; however, previous qualitative studies have suggested that ADAMTS1 proteoglycanase activity is weaker than that of other family members such as ADAMTS4 and ADAMTS5. Here, we investigated the functional determinants of ADAMTS1 proteoglycanase activity. We found that ADAMTS1 versicanase activity is approximately 1000-fold lower than ADAMTS5 and 50-fold lower than ADAMTS4 with a kinetic constant (kcat/Km) of 3.6 × 103 M-1 s-1 against full-length versican. Studies on domain-deletion variants identified the spacer and cysteine-rich domains as major determinants of ADAMTS1 versicanase activity. Additionally, we confirmed that these C-terminal domains are involved in the proteolysis of aggrecan as well as biglycan, a small leucine-rich proteoglycan. Glutamine scanning mutagenesis of exposed positively charged residues on the spacer domain loops and loop substitution with ADAMTS4 identified clusters of substrate-binding residues (exosites) in ß3-ß4 (R756Q/R759Q/R762Q), ß9-ß10 (residues 828-835), and ß6-ß7 (K795Q) loops. This study provides a mechanistic foundation for understanding the interactions between ADAMTS1 and its proteoglycan substrates and paves the way for development of selective exosite modulators of ADAMTS1 proteoglycanase activity.


Assuntos
Proteína ADAMTS1 , Animais , Camundongos , Proteína ADAMTS1/química , Proteína ADAMTS1/metabolismo , Proteína ADAMTS4/metabolismo , Proteína ADAMTS5/metabolismo , Agrecanas/metabolismo , Versicanas/metabolismo
3.
Neuropathol Appl Neurobiol ; 50(3): e12991, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867123

RESUMO

AIMS: The aggregation and deposition of amyloid-ß (Aß) peptides in the brain is thought to be the initial driver in the pathogenesis of Alzheimer's disease (AD). Aside from full-length Aß peptides starting with an aspartate residue in position 1, both N-terminally truncated and elongated Aß peptides are produced by various proteases from the amyloid precursor protein (APP) and have been detected in brain tissues and body fluids. Recently, we demonstrated that the particularly abundant N-terminally truncated Aß4-x peptides are generated by ADAMTS4, a secreted metalloprotease that is exclusively expressed in the oligodendrocyte cell population. In this study, we investigated whether ADAMTS4 might also be involved in the generation of N-terminally elongated Aß peptides. METHODS: We used cell-free and cell-based assays in combination with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF) and electrochemiluminescence sandwich immunoassays to identify and quantify N-terminally elongated Aß peptide variants. Antibodies against these Aß variants were characterised by peptide microarrays and employed for the immunohistochemical analyses of human brain samples. RESULTS: In this study, we discovered additional ADAMTS4 cleavage sites in APP. These were located N-terminal to Asp-(1) in the Aß peptide sequence between residues Glu-(-7) and Ile-(-6) as well as Glu-(-4) and Val-(-3), resulting in the release of N-terminally elongated Aß-6-x and Aß-3-x peptides, of which the latter serve as a component in a promising Aß-based plasma biomarker. Aß-6/-3-40 peptides were detected in supernatants of various cell lines and in the cerebrospinal fluid (CSF), and ADAMTS4 enzyme activity promoted the release of Aß-6/-3-x peptides. Furthermore, by immunohistochemistry, a subset of AD cases displayed evidence of extracellular and vascular localization of N-terminally elongated Aß-6/-3-x peptides. DISCUSSION: The current findings implicate ADAMTS4 in both the pathological process of Aß peptide aggregation and in the early detection of amyloid pathology in AD.


Assuntos
Proteína ADAMTS4 , Doença de Alzheimer , Peptídeos beta-Amiloides , Encéfalo , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteína ADAMTS4/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Idoso , Masculino , Feminino , Idoso de 80 Anos ou mais
4.
Mol Psychiatry ; 28(4): 1802-1812, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36721026

RESUMO

Amyloid-ß (Aß) deposition in the brain parenchyma is one of the pathological hallmarks of Alzheimer disease (AD). We have previously identified amyloid precursor protein (APP)669-711 (a.k.a. Aß(-3)-40) in human plasma using immunoprecipitation combined with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (IP-MALDI-MS). Furthermore, we found that the level of a composite biomarker, i.e., a combination of APP669-711/Aß1-42 ratio and Aß1-40/Aß1-42 ratio in human plasma, correlates with the amyloid PET status of AD patients. However, the production mechanism of APP669-711 has remained unclear. Using in vitro and in vivo assays, we identified A Disintegrin and Metalloproteinase with a Thrombospondin type 1 motif, type 4 (ADAMTS4) as a responsible enzyme for APP669-711 production. ADAMTS4 cleaves APP directly to generate the C-terminal stub c102, which is subsequently proteolyzed by γ-secretase to release APP669-711. Genetic knockout of ADAMTS4 reduced the production of endogenous APP669-711 by 30% to 40% in cultured cells as well as mouse plasma, irrespectively of Aß levels. Finally, we found that the endogenous murine APP669-711/Aß1-42 ratio was increased in aged AD model mice, which shows Aß deposition as observed in human patients. These data suggest that ADAMTS4 is involved in the production of APP669-711, and a plasma biomarker determined by IP-MALDI-MS can be used to estimate the level of Aß deposition in the brain of mouse models.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Idoso , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Secretases da Proteína Precursora do Amiloide/metabolismo , Biomarcadores , Proteína ADAMTS4
5.
Prostaglandins Other Lipid Mediat ; 174: 106862, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38936541

RESUMO

Atherosclerosis is a chronic inflammatory disease forming plaques in medium and large-sized arteries. ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs-4) is an extracellular-matrix remodelling enzyme involved in the degradation of versican in the arterial wall. Recent reports indicated that increased expression of ADAMTS-4 is associated with plaque progression and vulnerability. Bioactive components of dietary oil, like sesame oil, are reported to have anti-inflammatory and antioxidant properties. Here, we studied the effect of sesame oil on regulating ADAMTS-4 in high-fat diet-induced atherosclerosis rat model. Our results indicated that sesame oil supplementation improved the anti-inflammatory and anti-oxidative status of the body. It also reduced atherosclerotic plaque formation in high-fat diet-fed rats. Our results showed that the sesame oil supplementation significantly down-regulated the expression of ADAMTS-4 in serum and aortic samples. The versican, the large proteoglycan substrate of ADAMTS-4 in the aorta, was downregulated to normal control level on sesame oil supplementation. This study, for the first time, reveals that sesame oil could down-regulate the expression of ADAMTS-4 in high-fat diet-induced atherosclerosis, imparting a new therapeutic potential for sesame oil in the management of atherosclerosis.


Assuntos
Proteína ADAMTS4 , Aterosclerose , Dieta Hiperlipídica , Regulação para Baixo , Óleo de Gergelim , Animais , Óleo de Gergelim/farmacologia , Proteína ADAMTS4/metabolismo , Proteína ADAMTS4/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo/efeitos dos fármacos , Ratos , Masculino , Versicanas/metabolismo , Versicanas/genética , Ratos Sprague-Dawley , Proteínas ADAM/metabolismo , Proteínas ADAM/genética , Aorta/metabolismo , Aorta/efeitos dos fármacos , Aorta/patologia
6.
Arch Virol ; 169(8): 164, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990242

RESUMO

Upregulation of ADAMTS-4 has been reported to have an important role in lung injury, and ADAMTS-4 expression is regulated by miR-126a-5p in abdominal aortic aneurysms. The aim of this study was to investigate whether miR-126a-5p/ADAMTS-4 plays a role in influenza-virus-induced lung injury. Lung fibroblasts were infected with H1N1 influenza virus to detect changes in miR-126a-5p and ADAMTS-4 expression, and cell viability was measured by CCK-8 assay. Inflammatory factors and matrix protease levels were examined using ELISA kits, and cell apoptosis was assessed by measuring the levels of apoptosis-related proteins. A dual luciferase assay was used to verify the regulatory relationship between miR-126a-5p and ADAMTS-4. H1N1 influenza virus reduced fibroblast viability, inhibited miR-126a-5p expression, and promoted ADAMTS-4 expression. Overexpression of miR-126a-5p attenuated the cellular inflammatory response, apoptosis, matrix protease secretion, and virus replication. Luciferase reporter assays revealed that miR-126a-5p inhibited ADAMTS-4 expression by targeting ADAMTS-4 mRNA. Further experiments showed that overexpression of ADAMTS-4 significantly reversed the inhibitory effects of miR-126a-5p on fibroblast inflammation, apoptosis, matrix protease secretion, and virus replication. Upregulation of miR-126a-5p inhibits H1N1-induced apoptosis, inflammatory factors, and matrix protease secretion, as well as virus replication in lung fibroblasts.


Assuntos
Proteína ADAMTS4 , Apoptose , Fibroblastos , Inflamação , Vírus da Influenza A Subtipo H1N1 , Pulmão , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos/virologia , Fibroblastos/metabolismo , Humanos , Pulmão/virologia , Pulmão/patologia , Proteína ADAMTS4/genética , Proteína ADAMTS4/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Inflamação/genética , Sobrevivência Celular , Replicação Viral , Influenza Humana/virologia , Influenza Humana/genética , Influenza Humana/metabolismo , Linhagem Celular
7.
Mol Biol Rep ; 51(1): 968, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39249599

RESUMO

BACKGROUND: Chrysin, a polyphenolic compound, possesses antioxidant and anti-inflammatory properties. In this study, we investigated the effect of chrysin on the expression of A disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), a protease enzyme involved in degrading extracellular matrix associated with atherosclerosis. METHODS AND RESULTS: We have studied the cell viability by MTT assay and foam cell formation by oil red O staining. The mRNA and protein expression of ADAMTS-4 was studied using quantitative polymerase chain reaction (qPCR) and Western blotting, respectively. Our study showed that chrysin significantly downregulates the expression of ADAMTS-4 in foam cells. CONCLUSION: Chrysin's ability to downregulate the expression of ADAMTS-4, a protease involved in degrading the extracellular matrix, bestows upon it a new therapeutic potential for managing atherosclerosis.


Assuntos
Proteína ADAMTS4 , Regulação para Baixo , Flavonoides , Células Espumosas , Flavonoides/farmacologia , Proteína ADAMTS4/metabolismo , Proteína ADAMTS4/genética , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Sobrevivência Celular/efeitos dos fármacos , Aterosclerose/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética
8.
Mol Cell Biochem ; 478(5): 1151-1160, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36241950

RESUMO

ADAMTS-2 and ADAMTS-3, known as procollagen amino proteases (PNP), are primarily responsible for processing the amino ends of the fibrillar collagen precursors. ADAMTS-2 is a highly expressed gene in type I collagen-rich tissues, such as skin, bones, tendons, and aorta. ADAMTS-3 is mainly expressed in cartilage, where it colocalizes with type II procollagen and in the nervous system. Studies about ADAMTS-2 and ADAMTS-3 enzymes primarily focused on their collagen processing activity. Knowledge about the transcriptional regulations of these genes is rather limited. Here we analyzed the transcriptional regulations of ADAMTS-2 and ADAMTS-3 genes under chemically induced hypoxic conditions in endothelial cell model, HUVECs. We elucidated that hypoxia is the potent positive regulator of ADAMTS-2 and ADAMTS-3 genes. qRT-PCR and western blotting studies revealed that ADAMTS-2 and ADAMTS-3 expressions were increased at mRNA and protein levels under chemically induced hypoxic conditions in HUVECs. In addition, Transient transfection experiments of ADAMTS-2 and ADAMTS-3 promoter-reporter constructs indicated that low oxygen conditions increased ADAMTS-2 and ADAMTS-3 promoter activities. Furthermore, the DNA-protein interaction assay provided evidence of the functional binding of HIF-1α on bioinformatically determined HRE regions on the ADAMTS-2 and ADAMTS-3 promoters.


Assuntos
Desintegrinas , Pró-Colágeno , Humanos , Proteínas ADAM/genética , Proteína ADAMTS4 , Células Endoteliais/metabolismo , Hipóxia , Metaloproteinases da Matriz , Pró-Colágeno N-Endopeptidase/genética , Pró-Colágeno N-Endopeptidase/metabolismo , Trombospondinas , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
9.
Lab Invest ; 102(1): 102-111, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718343

RESUMO

The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family includes nine members with aggrecan-degrading activity, i.e., ADAMTS1, 4, 5, 8, 9, 15, 16, 18, and 20. However, their systematic expression profile in knee osteoarthritis (OA) synovium and effects of cytokines and growth factors on the expression in OA synovial fibroblasts remain elusive. In this study, expression of all nine aggrecanolytic ADAMTS species was assessed by quantitative real-time PCR in OA and control normal synovial tissues. OA synovial fibroblasts were treated with interleukin-1α (IL-1α), IL-1ß, tumor necrosis factor-α (TNF-α), transforming growth factor-ß (TGF-ß), vascular endothelial growth factor165, and heparin-binding epidermal growth factor, and analyzed for the expression of the ADAMTS species. The signaling pathways and inhibition of ADAMTS4 expression by high-molecular-weight hyaluronan, adalimumab, tocilizumab, and signaling molecule inhibitors were studied. ADAMTS1, 4, 5, 9, and 16 were expressed in OA synovium, but only ADAMTS4 expression was significantly higher in OA as compared to normal synovium. IL-1α, TNF-α, and TGF-ß markedly increased ADAMTS4 expression, while their effects were minimal for the other ADAMTS species. ADAMTS4 was synergistically upregulated by treatment with IL-1α and TNF-α, IL-1α and TGF-ß, or IL-1α, TNF-α and TGF-ß. The signaling molecules' inhibitors demonstrated that IL-1α-induced ADAMTS4 expression is predominantly through TGF-ß-associated kinase 1 (TAK1), and the TNF-α-stimulated expression is via TAK1 and nuclear factor-κB (NF-κB). The TGF-ß-promoted expression was through the activin receptor-like kinase 5 (ALK5)/Smad2/3, TAK1, and non-TAK1 pathways. Adalimumab blocked TNF-α-stimulated expression. ADAMTS4 expression co-stimulated with IL-1α, TNF-α and TGF-ß was abolished by treatment with adalimumab, TAK1 inhibitor, and ALK5/Smad2/3 inhibitor. These data demonstrate marked and synergistic upregulation of ADAMTS4 by IL-1α, TNF-α and TGF-ß in OA synovial fibroblasts, and suggest that concurrent therapy with an anti-TNF-α drug and inhibitor(s) may be useful for prevention against aggrecan degradation in OA.


Assuntos
Proteína ADAMTS4/genética , Citocinas/farmacologia , Fibroblastos/efeitos dos fármacos , Osteoartrite do Joelho/metabolismo , Membrana Sinovial/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteína ADAMTS4/metabolismo , Células Cultivadas , Sinergismo Farmacológico , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1/farmacologia , Isoenzimas/genética , Isoenzimas/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/citologia , Fator de Crescimento Transformador beta/farmacologia , Inibidores do Fator de Necrose Tumoral/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
10.
J Vasc Res ; 59(2): 69-77, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35051931

RESUMO

Extracellular matrix proteins are regulated by metzincin proteases, like the disintegrin metalloproteinases with thrombospondin motifs (ADAMTS) family members. This review focuses on the emerging role which ADAMTS-4 might play in vascular pathology, which has implications for atherosclerosis and vessel wall abnormalities, as well as for the resulting diseases, such as cardiovascular and cerebrovascular disease, aortic aneurysms, and dissections. Major substrates of ADAMTS-4 are proteoglycans expressed physiologically in smooth muscle cells of blood vessels. Good examples are versican and aggrecan, principal vessel wall proteoglycans that are targeted by ADAMTS-4, driving blood vessel atrophy, which is why this metzincin protease was implicated in the pathophysiology of vascular diseases with an atherosclerotic background. Despite emerging evidence, it is important not to exaggerate the role of ADAMTS-4 as it is likely only a small piece of the complex atherosclerosis puzzle and one that could be functionally redundant due to its high structural similarity to other ADAMTS family members. The therapeutic potential of inhibiting ADAMTS-4 to halt the progression of vascular disease after initialization of treatment is unlikely. However, it is not excluded that it might find a purpose as a biomarker of vascular disease, possibly as an indicator in a larger cytokine panel.


Assuntos
Aterosclerose , Sistema Cardiovascular , Proteína ADAMTS4 , Aterosclerose/patologia , Sistema Cardiovascular/metabolismo , Citocinas/metabolismo , Humanos , Miócitos de Músculo Liso/metabolismo , Proteoglicanas
11.
Small ; 17(6): e2006699, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33470544

RESUMO

Reciprocal interactions between the cell nucleus and the extracellular matrix lead to macroscale tissue phenotype changes. However, little is known about how the extracellular matrix environment affects gene expression and cellular phenotype in the native tissue environment. Here, it is hypothesized that enzymatic disruption of the tissue matrix results in a softer tissue, affecting the stiffness of embedded cell and nuclear structures. The aim is to directly measure nuclear mechanics without perturbing the native tissue structure to better understand nuclear interplay with the cell and tissue microenvironments. To accomplish this, an atomic force microscopy needle-tip probe technique that probes nuclear stiffness in cultured cells to measure the nuclear envelope and cell membrane stiffness within native tissue is expanded. This technique is validated by imaging needle penetration and subsequent repair of the plasma and nuclear membranes of HeLa cells stably expressing the membrane repair protein CHMP4B-GFP. In the native tissue environment ex vivo, it is found that while enzymatic degradation of viable cartilage tissues with collagenase 3 (MMP-13) and aggrecanase-1 (ADAMTS-4) decreased tissue matrix stiffness, cell and nuclear membrane stiffness is also decreased. Finally, the capability for cell and nucleus elastography using the AFM needle-tip technique is demonstrated. These results demonstrate disruption of the native tissue environment that propagates to the plasma membrane and interior nuclear envelope structures of viable cells.


Assuntos
Núcleo Celular , Matriz Extracelular , Proteína ADAMTS4 , Membrana Celular , Complexos Endossomais de Distribuição Requeridos para Transporte , Células HeLa , Humanos , Metaloproteinase 13 da Matriz , Microscopia de Força Atômica
12.
Mediators Inflamm ; 2021: 9954909, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366712

RESUMO

Intervertebral disc degenerative disease (IDD) is the most common degenerative spine disease, which leads to chronic low back pain and symptoms in the lower extremities. In this study, we found that RORα, a member of the retinoid-related orphan receptor family, is significantly elevated in nucleus pulposus tissue in IDD patients. The elevation of RORα is associated with increased apoptosis of nucleus pulposus (NP) cells. Therefore, we applicated a well-established inverse agonist of RORα, SR3335, to investigate its role in regulating NP cell metabolism and apoptosis. To further investigate the mechanism that SR3335 regulates the pathogenesis of IDD in vitro, tumor necrosis factor alpha (TNF-α) stimulation was used in human NP cells to mimic the hostile environment that leads to degeneration. We found that SR3335 treatment reversed the trend of increased apoptosis in NP cells induced by TNF-α treatment. Next, TNF-α treatment upregulated the expression of type II collagen and aggrecan and downregulated MMP13 (matrix-degrading enzyme matrix metalloproteinase 13) and ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4). However, these effects were reversed after SR3335 treatment. Furthermore, we find that SR3335 mediated the effect in NP cells by regulating the YAP signaling pathway, especially by affecting the phosphorylation state of YAP. In conclusion, the reduction of matrix degradation enzymes and apoptosis upon SR3335 treatment suggests that SR3335 is a promising drug in reversing the deleterious microenvironment in IDD patients.


Assuntos
Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Núcleo Pulposo/metabolismo , Proteínas de Sinalização YAP/biossíntese , Proteína ADAMTS4/metabolismo , Idoso , Animais , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Colágeno Tipo II/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Metaloproteinase 13 da Matriz/metabolismo , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Fosforilação , Ratos , Ratos Sprague-Dawley , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
13.
BMC Musculoskelet Disord ; 22(1): 238, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648469

RESUMO

BACKGROUND: Mechanical overload applied on the articular cartilage may play an important role in the pathogenesis of osteoarthritis. However, the mechanism of chondrocyte mechanotransduction is not fully understood. The purpose of this study was to assess the effects of compressive mechanical stress on interleukin-1 receptor (IL-1R) and matrix-degrading enzyme expression by three-dimensional (3D) cultured ATDC5 cells. In addition, the implications of transient receptor potential vanilloid 4 (TRPV4) channel regulation in promoting effects of compressive mechanical loading were elucidated. METHODS: ATDC5 cells were cultured in alginate beads with the growth medium containing insulin-transferrin-selenium and BMP-2 for 6 days. The cultured cell pellet was seeded in collagen scaffolds to produce 3D-cultured constructs. Cyclic compressive loading was applied on the 3D-cultured constructs at 0.5 Hz for 3 h. The mRNA expressions of a disintegrin and metalloproteinases with thrombospondin motifs 4 (ADAMTS4) and IL-1R were determined with or without compressive loading, and effects of TRPV4 agonist/antagonist on mRNA expressions were examined. Immunoreactivities of reactive oxygen species (ROS), TRPV4 and IL-1R were assessed in 3D-cultured ATDC5 cells. RESULTS: In 3D-cultured ATDC5 cells, ROS was induced by cyclic compressive loading stress. The mRNA expression levels of ADAMTS4 and IL-1R were increased by cyclic compressive loading, which was mostly prevented by pyrollidine dithiocarbamate. Small amounts of IL-1ß upregulated ADAMTS4 and IL-1R mRNA expressions only when combined with compressive loading. TRPV4 agonist suppressed ADAMTS4 and IL-1R mRNA levels induced by the compressive loading, whereas TRPV4 antagonist enhanced these levels. Immunoreactivities to TRPV4 and IL-1R significantly increased in constructs with cyclic compressive loading. CONCLUSION: Cyclic compressive loading induced mRNA expressions of ADAMTS4 and IL-1R through reactive oxygen species. TRPV4 regulated these mRNA expressions, but excessive compressive loading may impair TRPV4 regulation. These findings suggested that TRPV4 regulates the expression level of IL-1R and subsequent IL-1 signaling induced by cyclic compressive loading and participates in cartilage homeostasis.


Assuntos
Mecanotransdução Celular , Receptores de Interleucina-1 , Estresse Mecânico , Proteína ADAMTS4 , Animais , Linhagem Celular Tumoral , Células Cultivadas , Condrócitos , Camundongos , Canais de Cátion TRPV
14.
Lasers Med Sci ; 36(3): 529-540, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32519204

RESUMO

The presence of intra-articular crystals is detected in different articular pathologies of acute or chronic nature. The aim of this work was to analyze the action of the indium gallium aluminum and phosphorus (InGaAlP) (λ = 670 nm) laser on the synovial membrane present in the knee joint in experimentally induced microcrystalline arthritis in male adult Wistar rats. The animals were divided into three experimental groups (n = 24): control (A), experimentally induced arthritis (B), experimentally induced arthritis+InGaAlP laser therapy (C). The laser treatment was made daily in the patellar region of the right knee after 48 h of the experimental induction. After 7, 14, and 21 days of therapy, the rats were euthanized and the right knees were removed and processed for histomorphometric, immunohistochemical, ultrastructural, and biochemical investigation of the synovium. The number of granulocytes on the 14th and 21st days was higher in B and lower in C and, lastly, in A. The number of fibroblasts on the 14th and 21st days was similar between A and C and below B. The number of blood vessels on the 21st day was higher in B than in the other groups. The positive number of cells for the TUNEL test was higher on the 14th and 21st days in B compared to the others. The percentage of tissue area occupied by birefringent collagen fibers was higher in B on the 21st day than in the others. The ultrastructure of cells showed fibroblast-like morphology in all groups and periods evaluated. The quantification of glycosaminoglycans did not present significant differences between the groups in all the experimental periods. The amount of hydroxyproline was higher in B compared to the other groups on the 14th and 21st days. The content of non-collagen proteins was higher in B on the 21st day in relation to the other groups. Quantification of TNF-α on the 21st day was higher in A and B than in C. For TGF-ß on the 21st day, groups B and C presented similar and higher values than A. For MMP-13, groups A and B presented data similar to and above C. In relation to ADAMT-S4, on the 21st day, groups B and C presented data similar to and lower than A. InGaAlP-670 nm therapy reduced the inflammatory process and tissue injuries of the synovial membrane in comparison to the untreated group, indicating its potential utilization in clinical studies aiming in the recovery of acute arthritis in patients.


Assuntos
Artrite Experimental/cirurgia , Terapia a Laser , Membrana Sinovial/patologia , Membrana Sinovial/efeitos da radiação , Proteína ADAMTS4/metabolismo , Animais , Apoptose/efeitos da radiação , Vasos Sanguíneos/patologia , Vasos Sanguíneos/efeitos da radiação , Cristalização , Articulação do Joelho/patologia , Masculino , Metaloproteinase 13 da Matriz/metabolismo , Ratos Wistar , Membrana Sinovial/ultraestrutura , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
J Cell Mol Med ; 24(14): 7896-7906, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32469162

RESUMO

Abdominal aortic aneurysm (AAA) is a serious vascular disease featured by inflammatory infiltration in aortic wall, aortic dilatation and extracellular matrix (ECM) degradation. Dysregulation of microRNAs (miRNAs) is implicated in AAA progress. By profiling miRNA expression in mouse AAA tissues and control aortas, we noted that miR-126a-5p was down-regulated by 18-fold in AAA samples, which was further validated with real-time qPCR. This study was performed to investigate miR-126a-5p's role in AAA formation. In vivo, a 28-d infusion of 1 µg/kg/min Angiotensin (Ang) II was used to induce AAA formation in Apoe-/- mice. MiR-126a-5p (20 mg/kg; MIMAT0000137) or negative control (NC) agomirs were intravenously injected to mice on days 0, 7, 14 and 21 post-Ang II infusion. Our data showed that miR-126a-5p overexpression significantly improved the survival and reduced aortic dilatation in Ang II-infused mice. Elastic fragment and ECM degradation induced by Ang II were also ameliorated by miR-126a-5p. A strong up-regulation of ADAM metallopeptidase with thrombospondin type 1 motif 4 (ADAMTS-4), a secreted proteinase that regulates matrix degradation, was observed in smooth muscle cells (SMCs) of aortic tunica media, which was inhibited by miR-126a-5p. Dual-luciferase results demonstrated ADAMTS-4 as a new and valid target for miR-126a-5p. In vitro, human aortic SMCs (hASMCs) were stimulated by Ang II. Gain- and loss-of-function experiments further confirmed that miR-126-5p prevented Ang II-induced ECM degradation, and reduced ADAMTS-4 expression in hASMCs. In summary, our work demonstrates that miR-126a-5p limits experimental AAA formation and reduces ADAMTS-4 expression in abdominal aortas.


Assuntos
Proteína ADAMTS4/genética , Aneurisma da Aorta Abdominal/etiologia , Regulação da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , Angiotensina II/administração & dosagem , Animais , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Biópsia , Células Cultivadas , Modelos Animais de Doenças , Suscetibilidade a Doenças , Matriz Extracelular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
16.
Osteoarthritis Cartilage ; 28(3): 344-355, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31326553

RESUMO

OBJECTIVE: Abnormal remodeling of subchondral bone (SB) induced by estrogen deficiency has been shown to be involved in osteoarthritis (OA). Raloxifene (RAL) is commonly used to treat postmenopausal osteoporosis (OP). However, little is known about its effects on OA combined with estrogen deficiency. This study was performed to evaluate the efficacy of RAL on patella baja-induced patellofemoral joint OA (PFJOA) in an ovariectomized rat model. DESIGN: Patellar ligament shortening (PLS) and ovariectomy (OVX) were performed simultaneously in 3-month-old female Sprague-Dawley rats, which were treated with RAL (10 mg/kg/day) or vehicle at 72 h postoperatively for 10 weeks. PFJOA was assessed by immunohistochemistry (IHC), real-time polymerase chain reaction (PCR), tartrate-resistant acid phosphatase (TRAP) staining, enzyme-linked immunosorbent assay (ELISA), micro-computed tomography (µCT), histomorphology and behavioral analyses. RESULTS: X-ray examinations showed that patella baja was successfully established by PLS. Histomorphological analysis revealed that PFJOA was significantly exacerbated by OVX and markedly alleviated by RAL. Moreover, RAL improved cartilage metabolism by decreasing MMP-13, ADAMTS-4, and caspase-3 and increasing Col-II and aggrecan at both the protein and mRNA levels. Furthermore, RAL markedly improved bone mass and SB microarchitecture and reduced osteoclast numbers and the serum osteocalcin and CTX-I levels. Although RAL showed a trend toward reducing pain sensitivity based on mechanical allodynia testing, this result was not statistically significant. CONCLUSION: These findings demonstrate that RAL treatment retards PFJOA progression in an ovariectomized rat model, suggesting that it may be a potential candidate for amelioration of the progression of PFJOA accompanied by postmenopausal OP.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Osteoartrite do Joelho/diagnóstico por imagem , Articulação Patelofemoral/efeitos dos fármacos , Cloridrato de Raloxifeno/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Proteína ADAMTS4/efeitos dos fármacos , Proteína ADAMTS4/genética , Proteína ADAMTS4/metabolismo , Agrecanas/efeitos dos fármacos , Agrecanas/genética , Agrecanas/metabolismo , Animais , Remodelação Óssea , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Caspase 3/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Contagem de Células , Colágeno Tipo I/sangue , Colágeno Tipo I/efeitos dos fármacos , Colágeno Tipo II/efeitos dos fármacos , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Fêmur/patologia , Humanos , Imuno-Histoquímica , Metaloproteinase 13 da Matriz/efeitos dos fármacos , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Osteocalcina/sangue , Osteocalcina/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/metabolismo , Ovariectomia , Patela/diagnóstico por imagem , Patela/efeitos dos fármacos , Patela/metabolismo , Patela/patologia , Ligamento Patelar/cirurgia , Articulação Patelofemoral/diagnóstico por imagem , Articulação Patelofemoral/metabolismo , Articulação Patelofemoral/patologia
17.
FASEB J ; 33(1): 619-630, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30016600

RESUMO

Osteoarthritis is a common disease in joint cartilages. Because the molecular pathogenesis of osteoarthritis remains elusive, early diagnostic markers and effective therapeutic agents have not been developed. To understand the molecular mechanisms, we attempted to identify transcription factors involved in the onset of osteoarthritis. Microarray analysis of mouse articular cartilage cells indicated that retinoic acid, a destructive stimulus in articular cartilage, up-regulated expression of sex-determining region Y-box (Sox)4, a SoxC family transcription factor, together with increases in Adamts4 and Adamts5, both of which are aggrecanases of articular cartilages. Overexpression of Sox4 induced a disintegrin-like and metallopeptidase with thrombospondin type 4 and 5 motif (ADAMTS4 and ADAMTS5, respectively) expression in chondrogenic cell lines C3H10T1/2 and SW1353. In addition, luciferase reporter and chromatin immunoprecipitation assays showed that Sox4 up-regulated ADAMTS4 and Adamts5 gene promoter activities by binding to their gene promoters. Another SoxC family member, Sox11, evoked similar effects. To evaluate the roles of Sox4 and Sox11 in articular cartilage destruction, we performed organ culture experiments using mouse femoral head cartilages. Sox4 and Sox11 adenovirus infections caused destruction of articular cartilage associated with increased Adamts5 expression. Finally, SOX4 and SOX11 mRNA expression was increased in cartilage of patients with osteoarthritis compared with nonosteoarthritic subjects. Thus, Sox4, and presumably Sox11, are involved in osteoarthritis onset by up-regulating ADAMTS4 and ADAMTS5.-Takahata, Y., Nakamura, E., Hata, K., Wakabayashi, M., Murakami, T., Wakamori, K., Yoshikawa, H., Matsuda, A., Fukui, N., Nishimura, R. Sox4 is involved in osteoarthritic cartilage deterioration through induction of ADAMTS4 and ADAMTS5.


Assuntos
Proteína ADAMTS4/metabolismo , Proteína ADAMTS5/metabolismo , Cartilagem Articular/patologia , Condrócitos/patologia , Regulação da Expressão Gênica , Osteoartrite/patologia , Fatores de Transcrição SOXC/metabolismo , Proteína ADAMTS4/genética , Proteína ADAMTS5/genética , Animais , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Condrogênese , Humanos , Camundongos , Osteoartrite/genética , Osteoartrite/metabolismo , Fatores de Transcrição SOXC/genética
18.
J Biomed Sci ; 27(1): 13, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900160

RESUMO

BACKGROUND: Detection of cholangiocarcinoma (CCA) remains a diagnostic challenge. We established diagnostic peptide biomarkers in bile and urine based on capillary electrophoresis coupled to mass spectrometry (CE-MS) to detect both local and systemic changes during CCA progression. In a prospective cohort study we recently demonstrated that combined bile and urine proteome analysis could further improve diagnostic accuracy of CCA diagnosis in patients with unknown biliary strictures. As a continuation of these investigations, the aim of the present study was to investigate the pathophysiological mechanisms behind the molecular determinants reflected by bile and urine peptide biomarkers. METHODS: Protease mapping and gene ontology cluster analysis were performed for the previously defined CE-MS based biomarkers in bile and urine. For that purpose, bile and urine peptide profiles (from samples both collected at the date of endoscopy) were investigated from a representative cohort of patients with benign (n = 76) or CCA-associated (n = 52) biliary strictures (verified during clinical follow-up). This was supplemented with a literature search for the association of the individual biomarkers included in the proteomic patterns with CCA or cancer progression. RESULTS: For most of the peptide markers, association to CCA has been described in literature. Protease mapping revealed ADAMTS4 activity in cleavage of both bile and urine CCA peptide biomarkers. Furthermore, increased chymase activity in bile points to mast cell activation at the tumor site. Gene ontology cluster analysis indicates cellular response to chemical stimuli and stress response as local and extracellular matrix reorganization by tissue destruction and repair as systemic events. The analysis further supports that the mapped proteases are drivers of local and systemic events. CONCLUSIONS: The study supports connection of the CCA-associated peptide biomarkers to the molecular pathophysiology and indicates an involvement in epithelial-to-mesenchymal transition, generation of cancer-associated fibroblasts and activation of residual immune cells. Proteases, extracellular matrix components, inflammatory cytokines, proangiogenic, growth and vasoactive factors released from the tumor microenvironment are drivers of systemic early events during CCA progression.


Assuntos
Bile/metabolismo , Biomarcadores Tumorais/genética , Colangiocarcinoma/genética , Neoplasias/genética , Proteína ADAMTS4/genética , Adulto , Idoso , Biomarcadores Tumorais/urina , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Colangiocarcinoma/urina , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/urina , Peptídeos/genética , Peptídeos/urina , Proteômica/métodos , Microambiente Tumoral/genética
19.
Exp Cell Res ; 383(2): 111556, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31415758

RESUMO

The synovial fluids of patients with osteoarthritis (OA) contain elevated levels of inflammatory cytokines, which induce the expression of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) and of the matrix metalloproteinase (MMP) in chondrocytes. Mechanical strain has varying effects on organisms depending on the strength, cycle, and duration of the stressor; however, it is unclear under inflammatory stimulation how mechanical strain act on. Here, we show that mechanical strain attenuates inflammatory cytokine-induced expression of matrix-degrading enzymes. Cyclic tensile strain (CTS), as a mechanical stressor, attenuated interleukin (IL)-1ß and tumor necrosis factor (TNF)-α-induced mRNA expression of ADAMTS4, ADAMTS9, and MMP-13 in normal chondrocytes (NHAC-kn) and in a chondrocytic cell line (OUMS-27). This effect was abolished by treating cells with mechano-gated channel inhibitors, such as gadolinium, transient receptor potential (TRP) family inhibitor, ruthenium red, and with pharmacological and small interfering RNA-mediated TRPV1 inhibition. Furthermore, nuclear factor κB (NF-κB) translocation from the cytoplasm to the nucleus resulting from cytokine stimulation was also abolished by CTS. These findings suggest that mechanosensors such as the TRPV protein are potential therapeutic targets in treating OA.


Assuntos
Proteína ADAMTS9/genética , Citocinas/farmacologia , Mediadores da Inflamação/farmacologia , Estresse Mecânico , Canais de Cátion TRPV/fisiologia , Proteína ADAMTS4/genética , Proteína ADAMTS4/metabolismo , Proteína ADAMTS9/metabolismo , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/farmacologia , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , NF-kappa B/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Líquido Sinovial/metabolismo , Resistência à Tração/fisiologia , Fator de Necrose Tumoral alfa/farmacologia
20.
Med Sci Monit ; 26: e924587, 2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32949455

RESUMO

BACKGROUND Intervertebral disc degeneration (IDD) is a common spinal disease affected by environmental and lifestyle factors that has a significant pathological cascade toward inflammation and partial disability. There is currently no therapy that can completely restore the cellular derangement in IDD. Hence, in this study, the therapeutic effects of apigenin on IDD were evaluated using a rat model. MATERIAL AND METHODS Animals were separated into 4 groups: Grp 1, sham-operated control; Grp 2, IDD-induced; Grp 3, IDD-induced+apigenin treatment; Grp 4, apigenin control. The animals were assessed for inflammatory cytokines, chemokines, and prostaglandin signaling. RESULTS There were significant increases in the inflammatory cytokines IL-1ß, IL-2, IL-6, IL-8 and IL-17 in the IDD-induced group compared to that of control. Moreover, with increased levels of MMP-3, MMP-9, ADAMTS-4, and syndecan-4, the levels of TNF-alpha, IFN-γ, prostaglandin E2, and cyclooxygenase 2 were directly increased in the IDD-induced group. In contrast, apigenin protectively restored levels of prostaglandin signaling and reduced cytokine levels. In addition, nucleus pulposus cells cultured separately with either TNF-alpha inhibitor or apigenin significantly attenuated the levels of extracellular matrix proteins. CONCLUSIONS The reduction of cytokine levels under apigenin treatment suggests it may be a promising target drug therapy for the treatment of deleterious IDD conditions.


Assuntos
Apigenina/farmacologia , Degeneração do Disco Intervertebral , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteína ADAMTS4/metabolismo , Animais , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Masculino , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA