Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.300
Filtrar
1.
Cell ; 173(1): 104-116.e12, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29502971

RESUMO

Human diseases are often caused by loss of somatic cells that are incapable of re-entering the cell cycle for regenerative repair. Here, we report a combination of cell-cycle regulators that induce stable cytokinesis in adult post-mitotic cells. We screened cell-cycle regulators expressed in proliferating fetal cardiomyocytes and found that overexpression of cyclin-dependent kinase 1 (CDK1), CDK4, cyclin B1, and cyclin D1 efficiently induced cell division in post-mitotic mouse, rat, and human cardiomyocytes. Overexpression of the cell-cycle regulators was self-limiting through proteasome-mediated degradation of the protein products. In vivo lineage tracing revealed that 15%-20% of adult cardiomyocytes expressing the four factors underwent stable cell division, with significant improvement in cardiac function after acute or subacute myocardial infarction. Chemical inhibition of Tgf-ß and Wee1 made CDK1 and cyclin B dispensable. These findings reveal a discrete combination of genes that can efficiently unlock the proliferative potential in cells that have terminally exited the cell cycle.


Assuntos
Coração/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Ciclina B1/genética , Ciclina B1/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Citocinese , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/veterinária , Miócitos Cardíacos/citologia , Cadeias Pesadas de Miosina/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Ratos , Regeneração , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo
2.
Mol Cell ; 82(3): 696-708.e4, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090599

RESUMO

We have used a combination of chemical genetics, chromatin proteomics, and imaging to map the earliest chromatin transactions during vertebrate cell entry into mitosis. Chicken DT40 CDK1as cells undergo synchronous mitotic entry within 15 min following release from a 1NM-PP1-induced arrest in late G2. In addition to changes in chromatin association with nuclear pores and the nuclear envelope, earliest prophase is dominated by changes in the association of ribonucleoproteins with chromatin, particularly in the nucleolus, where pre-rRNA processing factors leave chromatin significantly before RNA polymerase I. Nuclear envelope barrier function is lost early in prophase, and cytoplasmic proteins begin to accumulate on the chromatin. As a result, outer kinetochore assembly appears complete by nuclear envelope breakdown (NEBD). Most interphase chromatin proteins remain associated with chromatin until NEBD, after which their levels drop sharply. An interactive proteomic map of chromatin transactions during mitotic entry is available as a resource at https://mitoChEP.bio.ed.ac.uk.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Cromossomos , DNA/metabolismo , Linfoma de Células B/metabolismo , Proteínas Nucleares/metabolismo , Prófase , Proteoma , Proteômica , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Galinhas , Cromatina/genética , DNA/genética , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/patologia , Proteínas Nucleares/genética , Ligação Proteica , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Fatores de Tempo
3.
Mol Cell ; 81(1): 67-87.e9, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33248027

RESUMO

Reflecting its pleiotropic functions, Polo-like kinase 1 (PLK1) localizes to various sub-cellular structures during mitosis. At kinetochores, PLK1 contributes to microtubule attachments and mitotic checkpoint signaling. Previous studies identified a wealth of potential PLK1 receptors at kinetochores, as well as requirements for various mitotic kinases, including BUB1, Aurora B, and PLK1 itself. Here, we combine ectopic localization, in vitro reconstitution, and kinetochore localization studies to demonstrate that most and likely all of the PLK1 is recruited through BUB1 in the outer kinetochore and centromeric protein U (CENP-U) in the inner kinetochore. BUB1 and CENP-U share a constellation of sequence motifs consisting of a putative PP2A-docking motif and two neighboring PLK1-docking sites, which, contingent on priming phosphorylation by cyclin-dependent kinase 1 and PLK1 itself, bind PLK1 and promote its dimerization. Our results rationalize previous observations and describe a unifying mechanism for recruitment of PLK1 to human kinetochores.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Células HeLa , Histonas/genética , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
4.
EMBO J ; 43(6): 993-1014, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38378890

RESUMO

Entry into mitosis has been classically attributed to the activation of a cyclin B/Cdk1 amplification loop via a partial pool of this kinase becoming active at the end of G2 phase. However, how this initial pool is activated is still unknown. Here we discovered a new role of the recently identified PP2A-B55 inhibitor FAM122A in triggering mitotic entry. Accordingly, depletion of the orthologue of FAM122A in C. elegans prevents entry into mitosis in germline stem cells. Moreover, data from Xenopus egg extracts strongly suggest that FAM122A-dependent inhibition of PP2A-B55 could be the initial event promoting mitotic entry. Inhibition of this phosphatase allows subsequent phosphorylation of early mitotic substrates by cyclin A/Cdk, resulting in full cyclin B/Cdk1 and Greatwall (Gwl) kinase activation. Subsequent to Greatwall activation, Arpp19/ENSA become phosphorylated and now compete with FAM122A, promoting its dissociation from PP2A-B55 and taking over its phosphatase inhibition role until the end of mitosis.


Assuntos
Caenorhabditis elegans , Proteínas Serina-Treonina Quinases , Animais , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Mitose , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Ciclina B/metabolismo
5.
EMBO J ; 43(17): 3710-3732, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39014228

RESUMO

Topoisomerase 1 (Top1) controls DNA topology, relieves DNA supercoiling during replication and transcription, and is critical for mitotic progression to the G1 phase. Tyrosyl-DNA phosphodiesterase 1 (TDP1) mediates the removal of trapped Top1-DNA covalent complexes (Top1cc). Here, we identify CDK1-dependent phosphorylation of TDP1 at residue S61 during mitosis. A TDP1 variant defective for S61 phosphorylation (TDP1-S61A) is trapped on the mitotic chromosomes, triggering DNA damage and mitotic defects. Moreover, we show that Top1cc repair in mitosis occurs via a MUS81-dependent DNA repair mechanism. Replication stress induced by camptothecin or aphidicolin leads to TDP1-S61A enrichment at common fragile sites, which over-stimulates MUS81-dependent chromatid breaks, anaphase bridges, and micronuclei, ultimately culminating in the formation of 53BP1 nuclear bodies during G1 phase. Our findings provide new insights into the cell cycle-dependent regulation of TDP1 dynamics for the repair of trapped Top1-DNA covalent complexes during mitosis that prevents genomic instability following replication stress.


Assuntos
Proteína Quinase CDC2 , Reparo do DNA , DNA Topoisomerases Tipo I , Proteínas de Ligação a DNA , Endonucleases , Mitose , Diester Fosfórico Hidrolases , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/genética , Fosforilação , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo I/genética , Endonucleases/metabolismo , Endonucleases/genética , DNA/metabolismo , Células HeLa , Dano ao DNA
6.
Mol Cell ; 78(3): 459-476.e13, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32240602

RESUMO

The cyclin-dependent kinase 1 (Cdk1) drives cell division. To uncover additional functions of Cdk1, we generated knockin mice expressing an analog-sensitive version of Cdk1 in place of wild-type Cdk1. In our study, we focused on embryonic stem cells (ESCs), because this cell type displays particularly high Cdk1 activity. We found that in ESCs, a large fraction of Cdk1 substrates is localized on chromatin. Cdk1 phosphorylates many proteins involved in epigenetic regulation, including writers and erasers of all major histone marks. Consistent with these findings, inhibition of Cdk1 altered histone-modification status of ESCs. High levels of Cdk1 in ESCs phosphorylate and partially inactivate Dot1l, the H3K79 methyltransferase responsible for placing activating marks on gene bodies. Decrease of Cdk1 activity during ESC differentiation de-represses Dot1l, thereby allowing coordinated expression of differentiation genes. These analyses indicate that Cdk1 functions to maintain the epigenetic identity of ESCs.


Assuntos
Proteína Quinase CDC2/metabolismo , Células-Tronco Embrionárias/fisiologia , Epigênese Genética , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Proteína Quinase CDC2/genética , Diferenciação Celular , Células Cultivadas , Imunoprecipitação da Cromatina/métodos , Feminino , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38546617

RESUMO

Abscission is the final step of cytokinesis that allows the physical separation of sister cells through the scission of the cellular membrane. This deformation is driven by ESCRT-III proteins, which can bind membranes and form dynamic helices. A crucial step in abscission is the recruitment of ESCRT-III proteins at the right time and place. Alix is one of the best characterized proteins that recruits ESCRT-III proteins from yeast to mammals. However, recent studies in vivo have revealed that pathways acting independently or redundantly with Alix are also required at abscission sites in different cellular contexts. Here, we show that Lgd acts redundantly with Alix to properly localize ESCRT-III to the abscission site in germline stem cells (GSCs) during Drosophila oogenesis. We further demonstrate that Lgd is phosphorylated at multiple sites by the CycB/Cdk1 kinase. We found that these phosphorylation events potentiate the activity of Shrub, a Drosophila ESCRT-III, during abscission of GSCs. Our study reveals that redundancy between Lgd and Alix, and coordination with the cell cycle kinase Cdk1, confers robust and timely abscission of Drosophila germline stem cells.


Assuntos
Proteínas de Drosophila , Complexos Endossomais de Distribuição Requeridos para Transporte , Células Germinativas , Células-Tronco , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Ciclina B , Citocinese/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células Germinativas/metabolismo , Mamíferos/metabolismo , Células-Tronco/metabolismo
8.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38785133

RESUMO

The RNA-binding protein cytoplasmic polyadenylation element binding 1 (CPEB1) plays a fundamental role in regulating mRNA translation in oocytes. However, the specifics of how and which protein kinase cascades modulate CPEB1 activity are still controversial. Using genetic and pharmacological tools, and detailed time courses, we have re-evaluated the relationship between CPEB1 phosphorylation and translation activation during mouse oocyte maturation. We show that both the CDK1/MAPK and AURKA/PLK1 pathways converge on CPEB1 phosphorylation during prometaphase of meiosis I. Only inactivation of the CDK1/MAPK pathway disrupts translation, whereas inactivation of either pathway alone leads to CPEB1 stabilization. However, CPEB1 stabilization induced by inactivation of the AURKA/PLK1 pathway does not affect translation, indicating that destabilization and/or degradation is not linked to translational activation. The accumulation of endogenous CCNB1 protein closely recapitulates the translation data that use an exogenous template. These findings support the overarching hypothesis that the activation of translation during prometaphase in mouse oocytes relies on a CDK1/MAPK-dependent CPEB1 phosphorylation, and that translational activation precedes CPEB1 destabilization.


Assuntos
Meiose , Oócitos , Biossíntese de Proteínas , Fatores de Transcrição , Fatores de Poliadenilação e Clivagem de mRNA , Animais , Feminino , Camundongos , Aurora Quinase A/metabolismo , Aurora Quinase A/genética , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ciclina B1/metabolismo , Ciclina B1/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Oócitos/metabolismo , Oócitos/citologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
9.
Proc Natl Acad Sci U S A ; 121(37): e2413089121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39231204

RESUMO

The ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C) and its regulatory protein Cdc20 play important roles in the control of different stages of mitosis. APC/C associated with Cdc20 is active and promotes metaphase-anaphase transition by targeting for degradation inhibitors of anaphase initiation. Earlier in mitosis, premature action of APC/C is prevented by the mitotic checkpoint (or spindle assembly checkpoint) system, which ensures that anaphase is not initiated until all chromosomes are properly attached to the mitotic spindle. The active mitotic checkpoint system promotes the assembly of a Mitotic Checkpoint Complex (MCC), which binds to APC/C and inhibits its activity. The interaction of MCC with APC/C is strongly enhanced by Cdc20 bound to APC/C. While the association of Cdc20 with APC/C was known to be essential for both these stages of mitosis, it was not known how Cdc20 remains bound in spite of ongoing processes, phosphorylation and ubiquitylation, that stimulate its release from APC/C. We find that MCC strongly inhibits the release of Cdc20 from APC/C by the action of mitotic protein kinase Cdk1-cyclin B. This is not due to protection from phosphorylation of specific sites in Cdc20 that affect its interaction with APC/C. Rather, MCC stabilizes the binding to APC/C of partially phosphorylated forms of Cdc20. MCC also inhibits the autoubiquitylation of APC/C-bound Cdc20 and its ubiquitylation-promoted release from APC/C. We propose that these actions of MCC to maintain Cdc20 bound to APC/C in mitosis are essential for the control of mitosis during active mitotic checkpoint and in subsequent anaphase initiation.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase , Proteínas Cdc20 , Pontos de Checagem da Fase M do Ciclo Celular , Mitose , Proteínas Cdc20/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Humanos , Mitose/fisiologia , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Células HeLa , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ubiquitinação , Fosforilação , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/genética , Ligação Proteica , Fuso Acromático/metabolismo
10.
Mol Cell ; 71(1): 117-128.e3, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-30008317

RESUMO

To maintain genome stability, cells need to replicate their DNA before dividing. Upon completion of bulk DNA synthesis, the mitotic kinases CDK1 and PLK1 become active and drive entry into mitosis. Here, we have tested the hypothesis that DNA replication determines the timing of mitotic kinase activation. Using an optimized double-degron system, together with kinase inhibitors to enforce tight inhibition of key proteins, we find that human cells unable to initiate DNA replication prematurely enter mitosis. Preventing DNA replication licensing and/or firing causes prompt activation of CDK1 and PLK1 in S phase. In the presence of DNA replication, inhibition of CHK1 and p38 leads to premature activation of mitotic kinases, which induces severe replication stress. Our results demonstrate that, rather than merely a cell cycle output, DNA replication is an integral signaling component that restricts activation of mitotic kinases. DNA replication thus functions as a brake that determines cell cycle duration.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fase S , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Ativação Enzimática , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinase 1 Polo-Like
11.
J Biol Chem ; 300(9): 107695, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39159810

RESUMO

Cells regularly repair numerous mutations. However, the effect of CRISPR/Cas9-induced dsDNA breaks on the repair processes of naturally occurring genome-wide mutations is unclear. In this study, we used TSCE5 cells with the heterozygous thymidine kinase genotype (TK+/-) to examine these effects. We strategically inserted the target sites for guide RNA (gRNA)/Cas9 and I-SceI into the functional allele and designed the experiment such that deletions of > 81 bp or base substitutions within exon five disrupted the TK gene, resulting in a TK-/- genotype. TSCE5 cells in the resting state exhibited 16 genome-wide mutations that affected cellular functions. After gRNA/Cas9 editing, these cells produced 859 mutations, including 67 high-impact variants that severely affected cellular functions under standard culture conditions. Mutation profile analysis indicated a significant accumulation of C to A substitutions, underscoring the widespread induction of characteristic mutations by gRNA/Cas9. In contrast, gRNA/Cas9-edited cells under conditions of S∼G2/M arrest and cyclin-dependent kinase 1 inhibition showed only five mutations. Transcriptomic analysis revealed the downregulation of DNA replication genes and upregulation of alternative DNA repair genes, such as zinc finger protein 384 (ZNF384) and dual specificity phosphatase, under S∼G2/M conditions. Additionally, activation of nucleotide and base excision repair gene, including O-6-methylguanine-DNA methyltransferase and xeroderma pigmentosum complementation group C, was observed. This study highlights the profound impact of CRISPR/Cas9 editing on genome-wide mutation processes and underscores the emergence of novel DNA repair pathways. Finally, our findings provide significant insights into the maintenance of genome integrity during genome editing.


Assuntos
Proteína Quinase CDC2 , Sistemas CRISPR-Cas , Pontos de Checagem do Ciclo Celular , Reparo do DNA , Edição de Genes , Mutação , Humanos , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/antagonistas & inibidores , Pontos de Checagem do Ciclo Celular/genética , Edição de Genes/métodos , Timidina Quinase/genética , Timidina Quinase/metabolismo
12.
EMBO J ; 40(11): e108486, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33969907

RESUMO

USP7 inhibitors are gaining momentum as a therapeutic strategy to stabilize p53 through their ability to induce MDM2 degradation. However, these inhibitors come with an unexpected p53-independent toxicity, via an unknown mechanism. In this issue of The EMBO Journal, Galarreta et al report how inhibition of USP7 leads to re-distribution of PP2A from cytoplasm to nucleus and an increase of deleterious CDK1-dependent phosphorylation throughout the cell cycle, revealing a new regulatory mechanism for the progression of S-phase cells toward mitosis to maintain genomic integrity.


Assuntos
Ciclina B , Proteína Fosfatase 2 , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Ciclina B/genética , Mitose , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo
13.
J Cell Sci ; 136(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36594787

RESUMO

Cdc28, the homolog of mammalian Cdk1, is a conserved key regulatory kinase for all major cell cycle transitions in yeast. We have found that defects in mitochondrial respiration (including deletion of ATP2, an ATP synthase subunit) inhibit growth of cells carrying a degron allele of Cdc28 (cdc28td) or Cdc28 temperature-sensitive mutations (cdc28-1 and cdc28-1N) at semi-permissive temperatures. Loss of cell proliferation in the atp2Δcdc28td double mutant is associated with aggravated cell cycle arrest and mitochondrial dysfunction, including mitochondrial hyperpolarization and fragmentation. Unexpectedly, in mutants defective in mitochondrial respiration, steady-state protein levels of mutant cdc28 are strongly reduced, accounting for the aggravated growth defects. Stability of Cdc28 is promoted by the Hsp90-Cdc37 chaperone complex. Our results show that atp2Δcdc28td double-mutant cells, but not single mutants, are sensitive to chemical inhibition of the Hsp90-Cdc37 complex, and exhibit reduced levels of additional Hsp90-Cdc37 client kinases, suggesting an inhibition of this complex. In agreement, overexpression of CDC37 improved atp2Δcdc28td cell growth and Cdc28 levels. Overall, our study shows that simultaneous disturbance of mitochondrial respiration and Cdc28 activity reduces the capacity of Cdc37 to chaperone client kinases, leading to growth arrest.


Assuntos
Proteínas de Ciclo Celular , Chaperonas Moleculares , Humanos , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaperonas Moleculares/metabolismo , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Saccharomyces cerevisiae/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Ligação Proteica , Mamíferos/metabolismo , Chaperoninas/metabolismo , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo
14.
J Biol Chem ; 299(2): 102831, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36574843

RESUMO

Many cell cycle regulatory proteins catalyze cell cycle progression in a concentration-dependent manner. In the fission yeast Schizosaccharomyces pombe, the protein kinase Cdr2 promotes mitotic entry by organizing cortical oligomeric nodes that lead to inhibition of Wee1, which itself inhibits the cyclin-dependent kinase Cdk1. cdr2Δ cells lack nodes and divide at increased size due to overactive Wee1, but it has not been known how increased Cdr2 levels might impact Wee1 and cell size. It also has not been clear if and how Cdr2 might regulate Wee1 in the absence of the related kinase Cdr1/Nim1. Using a tetracycline-inducible expression system, we found that a 6× increase in Cdr2 expression caused hyperphosphorylation of Wee1 and reduction in cell size even in the absence of Cdr1/Nim1. This overexpressed Cdr2 formed clusters that sequestered Wee1 adjacent to the nuclear envelope. Cdr2 mutants that disrupt either kinase activity or clustering ability failed to sequester Wee1 and to reduce cell size. We propose that Cdr2 acts as a dosage-dependent regulator of cell size by sequestering its substrate Wee1 in cytoplasmic clusters, away from Cdk1 in the nucleus. This mechanism has implications for other clustered kinases, which may act similarly by sequestering substrates.


Assuntos
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Tamanho Celular , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
15.
Apoptosis ; 29(9-10): 1546-1563, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38615082

RESUMO

Our previous study showed that pyridoxine 5'-phosphate oxidase (PNPO) is a tissue biomarker of ovarian cancer (OC) and has a prognostic implication but detailed mechanisms remain unclear. The current study focused on PNPO-regulated lysosome/autophagy-mediated cellular processes and the potential role of PNPO in chemoresistance. We found that PNPO was overexpressed in OC cells and was a prognostic factor in OC patients. PNPO significantly promoted cell proliferation via the regulation of cyclin B1 and phosphorylated CDK1 and shortened the G2M phase in a cell cycle. Overexpressed PNPO enhanced the biogenesis and perinuclear distribution of lysosomes, promoting the degradation of autophagosomes and boosting the autophagic flux. Further, an autolysosome marker LAMP2 was upregulated in OC cells. Silencing LAMP2 suppressed cell growth and induced cell apoptosis. LAMP2-siRNA blocked PNPO action in OC cells, indicating that the function of PNPO on cellular processes was mediated by LAMP2. These data suggest the existence of the PNPO-LAMP2 axis. Moreover, silencing PNPO suppressed xenographic tumor formation. Chloroquine counteracted the promotion effect of PNPO on autophagic flux and inhibited OC cell survival, facilitating the inhibitory effect of PNPO-shRNA on tumor growth in vivo. Finally, PNPO was overexpressed in paclitaxel-resistant OC cells. PNPO-siRNA enhanced paclitaxel sensitivity in vitro and in vivo. In conclusion, PNPO has a regulatory effect on lysosomal biogenesis that in turn promotes autophagic flux, leading to OC cell proliferation, and tumor formation, and is a paclitaxel-resistant factor. These data imply a potential application by targeting PNPO to suppress tumor growth and reverse PTX resistance in OC.


Assuntos
Autofagia , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Paclitaxel , Feminino , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Autofagia/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Camundongos , Apoptose/efeitos dos fármacos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Cloroquina/farmacologia , Camundongos Endogâmicos BALB C , Ciclina B1/metabolismo , Ciclina B1/genética , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
16.
EMBO J ; 39(11): e104419, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32350921

RESUMO

Two mitotic cyclin types, cyclin A and B, exist in higher eukaryotes, but their specialised functions in mitosis are incompletely understood. Using degron tags for rapid inducible protein removal, we analyse how acute depletion of these proteins affects mitosis. Loss of cyclin A in G2-phase prevents mitotic entry. Cells lacking cyclin B can enter mitosis and phosphorylate most mitotic proteins, because of parallel PP2A:B55 phosphatase inactivation by Greatwall kinase. The final barrier to mitotic establishment corresponds to nuclear envelope breakdown, which requires a decisive shift in the balance of cyclin-dependent kinase Cdk1 and PP2A:B55 activity. Beyond this point, cyclin B/Cdk1 is essential for phosphorylation of a distinct subset of mitotic Cdk1 substrates that are essential to complete cell division. Our results identify how cyclin A, cyclin B and Greatwall kinase coordinate mitotic progression by increasing levels of Cdk1-dependent substrate phosphorylation.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclina A/metabolismo , Ciclina B/metabolismo , Mitose , Proteína Fosfatase 2/metabolismo , Proteína Quinase CDC2/genética , Linhagem Celular , Ciclina A/genética , Ciclina B/genética , Humanos , Proteína Fosfatase 2/genética
17.
EMBO J ; 39(12): e103180, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32202322

RESUMO

Cyclin B:CDK1 is the master kinase regulator of mitosis. We show here that, in addition to its kinase functions, mammalian Cyclin B also scaffolds a localised signalling pathway to help preserve genome stability. Cyclin B1 localises to an expanded region of the outer kinetochore, known as the corona, where it scaffolds the spindle assembly checkpoint (SAC) machinery by binding directly to MAD1. In vitro reconstitutions map the key binding interface to a few acidic residues in the N-terminal region of MAD1, and point mutations in this sequence abolish MAD1 corona localisation and weaken the SAC. Therefore, Cyclin B1 is the long-sought-after scaffold that links MAD1 to the corona, and this specific pool of MAD1 is needed to generate a robust SAC response. Robustness arises because Cyclin B1:MAD1 localisation loses dependence on MPS1 kinase after the corona has been established, ensuring that corona-localised MAD1 can still be phosphorylated when MPS1 activity is low. Therefore, this study explains how corona-MAD1 generates a robust SAC signal, and it reveals a scaffolding role for the key mitotic kinase, Cyclin B1:CDK1, which ultimately helps to inhibit its own degradation.


Assuntos
Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Ciclina B1/metabolismo , Cinetocoros/metabolismo , Mitose , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Ciclina B1/genética , Células HeLa , Humanos , Mutação Puntual , Domínios Proteicos
18.
Development ; 148(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33766930

RESUMO

Stem cells self-renew or give rise to transit-amplifying cells (TACs) that differentiate into specific functional cell types. The fate determination of stem cells to TACs and their transition to fully differentiated progeny is precisely regulated to maintain tissue homeostasis. Arid1a, a core component of the switch/sucrose nonfermentable complex, performs epigenetic regulation of stage- and tissue-specific genes that is indispensable for stem cell homeostasis and differentiation. However, the functional mechanism of Arid1a in the fate commitment of mesenchymal stem cells (MSCs) and their progeny is not clear. Using the continuously growing adult mouse incisor model, we show that Arid1a maintains tissue homeostasis through limiting proliferation, promoting cell cycle exit and differentiation of TACs by inhibiting the Aurka-Cdk1 axis. Loss of Arid1a overactivates the Aurka-Cdk1 axis, leading to expansion of the mitotic TAC population but compromising their differentiation ability. Furthermore, the defective homeostasis after loss of Arid1a ultimately leads to reduction of the MSC population. These findings reveal the functional significance of Arid1a in regulating the fate of TACs and their interaction with MSCs to maintain tissue homeostasis.


Assuntos
Aurora Quinase A/metabolismo , Proteína Quinase CDC2/metabolismo , Proteínas de Ligação a DNA/metabolismo , Incisivo/embriologia , Células-Tronco Mesenquimais/metabolismo , Mitose , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Aurora Quinase A/genética , Proteína Quinase CDC2/genética , Proteínas de Ligação a DNA/genética , Camundongos , Camundongos Transgênicos , Fatores de Transcrição/genética
19.
Cytogenet Genome Res ; 164(2): 69-77, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39068909

RESUMO

BACKGROUND: Aurora kinase B (Aurora-B), a member of the chromosomal passenger complex, is involved in correcting kinetochore-microtubule (KT-MT) attachment errors and regulating sister chromatid condensation and cytoplasmic division during mitosis. SUMMARY: However, few reviews have discussed its mechanism in oocyte meiosis and the differences between its role in mitosis and meiosis. Therefore, in this review, we summarize the localization, recruitment, activation, and functions of Aurora-B in mitosis and oocyte meiosis. The accurate regulation of Aurora-B is essential for ensuring accurate chromosomal segregation and correct KT-MT attachments. Aurora-B regulates the stability of KT-MT attachments by competing with cyclin-dependent kinase 1 to control the phosphorylation of the SILK and RVSF motifs on kinetochore scaffold 1 and by competing with protein phosphatase 1 to influence the phosphorylation of NDC80 which is the substrate of Aurora-B. In addition, Aurora-B regulates the spindle assembly checkpoint by promoting the recruitment and activation of mitotic arrest deficient 2. KEY MESSAGES: This review provides a theoretical foundation for elucidating the mechanism of cell division and understanding oocyte chromosomal aneuploidy.


Assuntos
Aurora Quinase B , Cinetocoros , Meiose , Microtúbulos , Mitose , Oócitos , Aurora Quinase B/metabolismo , Aurora Quinase B/genética , Cinetocoros/metabolismo , Oócitos/metabolismo , Oócitos/citologia , Humanos , Animais , Microtúbulos/metabolismo , Fosforilação , Segregação de Cromossomos , Feminino , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas do Citoesqueleto
20.
Exp Eye Res ; 247: 110040, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39134132

RESUMO

Retinoblastoma (RB) is the most common intraocular malignancy among children and presents a certain mortality risk, especially in low- and middle-income countries. Clarifying the molecular mechanisms underlying the onset and progression of retinoblastoma is vital for devising effective cancer treatment approaches. PRMT1, a major type I PRMT, plays significant roles in cancer development. However, its expression and role in retinoblastoma are still unclear. Our research revealed a marked increase in PRMT1 levels in both retinoblastoma tissues and Y79 cells. The overexpression of PRMT1 in Y79 cells promoted their growth and cell cycle progression. Conversely, the suppression of PRMT1 hindered the growth of Y79 cells and impeded cell cycle progression. Mechanistically, PRMT1 mediated the growth of Y79 retinoblastoma cells by targeting the p53/p21/CDC2/Cyclin B pathway. Additionally, the ability of PRMT1 knockdown to suppress cell proliferation was also observed in vivo. Overall, PRMT1 could function as a potential target for therapeutic treatment in individuals with retinoblastoma.


Assuntos
Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21 , Proteína-Arginina N-Metiltransferases , Proteínas Repressoras , Neoplasias da Retina , Retinoblastoma , Proteína Supressora de Tumor p53 , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Retinoblastoma/patologia , Retinoblastoma/metabolismo , Retinoblastoma/genética , Humanos , Proliferação de Células/fisiologia , Neoplasias da Retina/patologia , Neoplasias da Retina/metabolismo , Neoplasias da Retina/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/genética , Regulação Neoplásica da Expressão Gênica , Animais , Camundongos , Western Blotting , Ciclo Celular/fisiologia , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas , Linhagem Celular Tumoral , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA