Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 635
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(35): e2204735119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994638

RESUMO

Considerable electric fields are present within living cells, and the role of bioelectricity has been well established at the organismal level. Yet much remains to be learned about electric-field effects on protein function. Here, we use phototriggered charge injection from a site-specifically attached ruthenium photosensitizer to directly demonstrate the effect of dynamic charge redistribution within a protein. We find that binding of an antibody to phosphoglycerate kinase (PGK) is increased twofold under illumination. Remarkably, illumination is found to suppress the enzymatic activity of PGK by a factor as large as three. These responses are sensitive to the photosensitizer position on the protein. Surprisingly, left (but not right) circularly polarized light elicits these responses, indicating that the electrons involved in the observed dynamics are spin polarized, due to spin filtration by protein chiral structures. Our results directly establish the contribution of electrical polarization as an allosteric signal within proteins. Future experiments with phototriggered charge injection will allow delineation of charge rearrangement pathways within proteins and will further depict their effects on protein function.


Assuntos
Campos Eletromagnéticos , Proteínas , Regulação Alostérica , Elétrons , Iluminação , Fármacos Fotossensibilizantes/farmacologia , Ligação Proteica , Proteínas/efeitos dos fármacos , Proteínas/metabolismo , Proteínas/efeitos da radiação , Rutênio/farmacologia
2.
Nat Chem Biol ; 17(3): 351-359, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33349707

RESUMO

Living organisms have evolved sophisticated cell-mediated biomineralization mechanisms to build structurally ordered, environmentally adaptive composite materials. Despite advances in biomimetic mineralization research, it remains difficult to produce mineralized composites that integrate the structural features and 'living' attributes of their natural counterparts. Here, inspired by natural graded materials, we developed living patterned and gradient composites by coupling light-inducible bacterial biofilm formation with biomimetic hydroxyapatite (HA) mineralization. We showed that both the location and the degree of mineralization could be regulated by tailoring functional biofilm growth with spatial and biomass density control. The cells in the composites remained viable and could sense and respond to environmental signals. Additionally, the composites exhibited a maximum 15-fold increase in Young's modulus after mineralization and could be applied to repair damage in a spatially controlled manner. Beyond insights into the mechanism of formation of natural graded composites, our study provides a viable means of fabricating living composites with dynamic responsiveness and environmental adaptability.


Assuntos
Adesinas Bacterianas/genética , Biofilmes/efeitos da radiação , Durapatita/química , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos da radiação , Proteínas/genética , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/efeitos da radiação , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/efeitos da radiação , Biofilmes/crescimento & desenvolvimento , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Materiais Biomiméticos/efeitos da radiação , Biomineralização/efeitos da radiação , Engenharia Celular/métodos , Relação Dose-Resposta à Radiação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/efeitos da radiação , Expressão Gênica , Luz , Mytilus , Proteínas/metabolismo , Proteínas/efeitos da radiação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/efeitos da radiação
3.
Nucleic Acids Res ; 49(5): e29, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33330940

RESUMO

Optogenetic control of CRISPR-Cas9 systems has significantly improved our ability to perform genome perturbations in living cells with high precision in time and space. As new Cas orthologues with advantageous properties are rapidly being discovered and engineered, the need for straightforward strategies to control their activity via exogenous stimuli persists. The Cas9 from Neisseria meningitidis (Nme) is a particularly small and target-specific Cas9 orthologue, and thus of high interest for in vivo genome editing applications. Here, we report the first optogenetic tool to control NmeCas9 activity in mammalian cells via an engineered, light-dependent anti-CRISPR (Acr) protein. Building on our previous Acr engineering work, we created hybrids between the NmeCas9 inhibitor AcrIIC3 and the LOV2 blue light sensory domain from Avena sativa. Two AcrIIC3-LOV2 hybrids from our collection potently blocked NmeCas9 activity in the dark, while permitting robust genome editing at various endogenous loci upon blue light irradiation. Structural analysis revealed that, within these hybrids, the LOV2 domain is located in striking proximity to the Cas9 binding surface. Together, our work demonstrates optogenetic regulation of a type II-C CRISPR effector and might suggest a new route for the design of optogenetic Acrs.


Assuntos
Proteína 9 Associada à CRISPR/antagonistas & inibidores , Proteína 9 Associada à CRISPR/química , Sistemas CRISPR-Cas , Edição de Genes/métodos , Neisseria meningitidis/enzimologia , Optogenética/métodos , Linhagem Celular , Células HEK293 , Humanos , Luz , Modelos Moleculares , Engenharia de Proteínas , Proteínas/química , Proteínas/efeitos da radiação
4.
Trends Biochem Sci ; 43(8): 567-575, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29934030

RESUMO

In biomedical sciences, the function of a protein of interest is investigated by altering its net activity and assessing the consequences for the cell or organism. To change the activity of a protein, a wide variety of chemical and genetic tools have been developed. The drawback of most of these tools is that they do not allow for reversible, spatial and temporal control. Here, we describe selected developments in photopharmacology that aim at establishing such control over protein activity through bioactive molecules with photo-controlled potency. We also discuss why such control is desired and what challenges still need to be overcome for photopharmacology to reach its maturity as a chemical biology research tool.


Assuntos
Luz , Processos Fotoquímicos , Proteínas/efeitos da radiação , Proteínas/metabolismo , Fatores de Tempo
5.
Annu Rev Phys Chem ; 72: 445-465, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33878897

RESUMO

Ionizing rays cause damage to genomes, proteins, and signaling pathways that normally regulate cell activity, with harmful consequences such as accelerated aging, tumors, and cancers but also with beneficial effects in the context of radiotherapies. While the great pace of research in the twentieth century led to the identification of the molecular mechanisms for chemical lesions on the building blocks of biomacromolecules, the last two decades have brought renewed questions, for example, regarding the formation of clustered damage or the rich chemistry involving the secondary electrons produced by radiolysis. Radiation chemistry is now meeting attosecond science, providing extraordinary opportunities to unravel the very first stages of biological matter radiolysis. This review provides an overview of the recent progress made in this direction, focusing mainly on the atto- to femto- to picosecond timescales. We review promising applications of time-dependent density functional theory in this context.


Assuntos
DNA/efeitos da radiação , Lipídeos/efeitos da radiação , Proteínas/efeitos da radiação , Radiação Ionizante , Radioquímica/métodos , Simulação por Computador , Humanos , Modelos Teóricos , Radiólise de Impulso
6.
Chem Rev ; 120(7): 3328-3380, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-31851501

RESUMO

The development of new ion-activation/dissociation methods continues to be one of the most active areas of mass spectrometry owing to the broad applications of tandem mass spectrometry in the identification and structural characterization of molecules. This Review will showcase the impact of ultraviolet photodissociation (UVPD) as a frontier strategy for generating informative fragmentation patterns of ions, especially for biological molecules whose complicated structures, subtle modifications, and large sizes often impede molecular characterization. UVPD energizes ions via absorption of high-energy photons, which allows access to new dissociation pathways relative to more conventional ion-activation methods. Applications of UVPD for the analysis of peptides, proteins, lipids, and other classes of biologically relevant molecules are emphasized in this Review.


Assuntos
Lipídeos/análise , Ácidos Nucleicos/análise , Oligossacarídeos/análise , Peptídeos/análise , Proteínas/análise , Sequência de Aminoácidos , Animais , Sequência de Carboidratos , Humanos , Lipídeos/efeitos da radiação , Espectrometria de Massas/métodos , Ácidos Nucleicos/efeitos da radiação , Oligossacarídeos/efeitos da radiação , Peptídeos/metabolismo , Peptídeos/efeitos da radiação , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Proteínas/efeitos da radiação , Proteômica , Raios Ultravioleta
7.
J Synchrotron Radiat ; 28(Pt 5): 1333-1342, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475282

RESUMO

In the method of X-ray footprinting mass spectrometry (XFMS), proteins at micromolar concentration in solution are irradiated with a broadband X-ray source, and the resulting hydroxyl radical modifications are characterized using liquid chromatography mass spectrometry to determine sites of solvent accessibility. These data are used to infer structural changes in proteins upon interaction with other proteins, folding, or ligand binding. XFMS is typically performed under aerobic conditions; dissolved molecular oxygen in solution is necessary in many, if not all, the hydroxyl radical modifications that are generally reported. In this study we investigated the result of X-ray induced modifications to three different proteins under aerobic versus low oxygen conditions, and correlated the extent of damage with dose calculations. We observed a concentration-dependent protecting effect at higher protein concentration for a given X-ray dose. For the typical doses used in XFMS experiments there was minimal X-ray induced aggregation and fragmentation, but for higher doses we observed formation of covalent higher molecular weight oligomers, as well as fragmentation, which was affected by the amount of dissolved oxygen in solution. The higher molecular weight products in the form of dimers, trimers, and tetramers were present in all sample preparations, and, upon X-ray irradiation, these oligomers became non-reducible as seen in SDS-PAGE. The results provide an important contribution to the large body of X-ray radiation damage literature in structural biology research, and will specifically help inform the future planning of XFMS, and well as X-ray crystallography and small-angle X-ray scattering experiments.


Assuntos
Radical Hidroxila/química , Espectrometria de Massas/métodos , Pegadas de Proteínas/métodos , Proteínas/química , Proteínas/efeitos da radiação , Oxigênio , Conformação Proteica , Soluções/química , Síncrotrons , Raios X
8.
J Synchrotron Radiat ; 28(Pt 5): 1321-1332, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475281

RESUMO

Synchrotron X-ray footprinting (XF) is a growing structural biology technique that leverages radiation-induced chemical modifications via X-ray radiolysis of water to produce hydroxyl radicals that probe changes in macromolecular structure and dynamics in solution states of interest. The X-ray Footprinting of Biological Materials (XFP) beamline at the National Synchrotron Light Source II provides the structural biology community with access to instrumentation and expert support in the XF method, and is also a platform for development of new technological capabilities in this field. The design and implementation of a new high-throughput endstation device based around use of a 96-well PCR plate form factor and supporting diagnostic instrumentation for synchrotron XF is described. This development enables a pipeline for rapid comprehensive screening of the influence of sample chemistry on hydroxyl radical dose using a convenient fluorescent assay, illustrated here with a study of 26 organic compounds. The new high-throughput endstation device and sample evaluation pipeline now available at the XFP beamline provide the worldwide structural biology community with a robust resource for carrying out well optimized synchrotron XF studies of challenging biological systems with complex sample compositions.


Assuntos
Pegadas de Proteínas/métodos , Proteínas/química , Proteínas/efeitos da radiação , Síncrotrons/instrumentação , Desenho de Equipamento , Radical Hidroxila/química , Radical Hidroxila/efeitos da radiação , Conformação Proteica , Água/química , Raios X
10.
Adv Exp Med Biol ; 1293: 265-279, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33398819

RESUMO

There are several paths when excited molecules return to the ground state. In the case of fluorescent molecules, the dominant path is fluorescence emission that is greatly contributing to bioimaging. Meanwhile, photosensitizers transfer electron or energy from chromophore to the surrounding molecules, including molecular oxygen. Generated reactive oxygen species has potency to attack other molecules by oxidation. In this chapter, we introduce the chromophore-assisted light inactivation (CALI) method using a photosensitizer to inactivate proteins in a spatiotemporal manner and development of CALI tools, which is useful for investigation of protein functions and dynamics, by inactivation of the target molecules. Moreover, photosensitizers with high efficiency make it possible optogenetic control of cell ablation in living organisms and photodynamic therapy. Further development of photosensitizers with different excitation wavelengths will contribute to the investigation of multiple proteins or cell functions through inactivation in the different positions and timings.


Assuntos
Fenômenos Fisiológicos Celulares/efeitos da radiação , Inativação Luminosa Assistida por Cromóforo/métodos , Fármacos Fotossensibilizantes , Proteínas/metabolismo , Proteínas/efeitos da radiação , Optogenética , Fotoquimioterapia
11.
Molecules ; 26(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073894

RESUMO

Radiation and photodynamic therapies are used for cancer treatment by targeting DNA. However, efficiency is limited due to physico-chemical processes and the insensitivity of native nucleobases to damage. Thus, incorporation of radio- and photosensitizers into these therapies should increase both efficacy and the yield of DNA damage. To date, studies of sensitization processes have been performed on simple model systems, e.g., buffered solutions of dsDNA or sensitizers alone. To fully understand the sensitization processes and to be able to develop new efficient sensitizers in the future, well established model systems are necessary. In the cell environment, DNA tightly interacts with proteins and incorporating this interaction is necessary to fully understand the DNA sensitization process. In this work, we used dsDNA/protein complexes labeled with photo- and radiosensitizers and investigated degradation pathways using LC-MS and HPLC after X-ray or UV radiation.


Assuntos
DNA/efeitos da radiação , Proteínas/efeitos da radiação , Raios Ultravioleta , Raios X , DNA/química , Radiossensibilizantes/química
12.
Acc Chem Res ; 52(3): 566-575, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30821435

RESUMO

Chemical modification of natural proteins must navigate difficult selectivity questions in a complex polyfunctional aqueous environment, within a narrow window of acceptable conditions. Limits on solvent mixtures, pH, and temperature create challenges for most synthetic methods. While a protein's complex polyfunctional environment undoubtedly creates challenges for traditional reactions, we wondered if it also might create opportunities for pursuing new bioconjugation reactivity directly on protein substrates. This Account describes our efforts to date to discover and develop new and useful reactivity for protein modification by starting from an open-ended screen of potential transition-metal catalysts for boronic acid reactivity with a model protein substrate. By starting from a broad screen, we were hoping to take advantage of the very many potential reactive sites on even a small model protein. And perhaps more importantly, whole proteins as reaction screening substrates might exhibit uniquely reactive local environments, the results of a dense combination of functional groups that would be nearly impossible to mimic in a small-molecule context. This effort has resulted in the discovery of four new protein modification reactions with boronic acid reagents, including a remarkable modification of specific backbone N-H bonds. This histidine-directed Chan-Lam coupling, based on specific proximity of an imidazole and two amide groups, is one important example of powerful reactivity that depends on a combination of functional groups that proteins make possible. Other bioconjugation reactions uncovered include a three-component tyrosine metalation with rhodium(III), a nickel-catalyzed cysteine arylation, and an unusual ascorbate-mediated oxidative process for N-terminal modification. The remarkably broad scope of reactivity types encountered in this work is a testament to the breadth of boronic acid reactivity. It is also a demonstration of the diverse reactivities that are possible by the combined alteration of boronic acid structure and metal promoter. The discovery of specific backbone modification chemistry has been a broadly empowering reactivity. Pyroglutamate, a naturally occurring posttranslational modification, exhibits remarkably high reactivity in histidine-directed backbone modification, which allows us to treat pyroglutamate as a reactive bioorthogonal handle that is readily incorporated into proteins of interest by natural machinery. In another research direction, the development of a vinylogous photocleavage system has allowed us to view backbone modification as a photocaging modification which is released by exposure to light.


Assuntos
Ácidos Borônicos/química , Proteínas/química , Ácidos Borônicos/efeitos da radiação , Luz , Metais Pesados/química , Oxirredução , Proteínas/efeitos da radiação , Elementos de Transição/química
13.
Chemistry ; 26(63): 14351-14358, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32533610

RESUMO

A 2-naphthol derivative 2 corresponding to the aromatic ring moiety of neocarzinostatin chromophore was found to degrade proteins under photo-irradiation with long-wavelength UV light without any additives under neutral conditions. Structure-activity relationship studies of the derivative revealed that methylation of the hydroxyl group at the C2 position of 2 significantly suppressed its photodegradation ability. Furthermore, a purpose-designed synthetic tumor-related biomarker, a H2 O2 -activatable photosensitizer 8 possessing a H2 O2 -responsive arylboronic ester moiety conjugated to the hydroxyl group at the C2 position of 2, showed significantly lower photodegradation ability compared to 2. However, release of the 2 from 8 by reaction with H2 O2 regenerated the photodegradation ability. Compound 8 exhibited selective photo-cytotoxicity against high H2 O2 -expressing cancer cells upon irradiation with long-wavelength UV light.


Assuntos
Naftóis , Proteínas , Zinostatina/análogos & derivados , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Peróxido de Hidrogênio/química , Camundongos , Naftóis/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/toxicidade , Proteínas/efeitos dos fármacos , Proteínas/efeitos da radiação , Zinostatina/química , Zinostatina/toxicidade
14.
Cell Biochem Funct ; 38(3): 283-289, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31943290

RESUMO

Based on central dogma of genetics, protein is the embodiment and executor of genetic function, post-translational modifications (PTMs) of protein are particularly important and involved in almost all aspects of cell biology and pathogenesis. Studies have shown that ionizing radiation (IR) alters gene expression much more profoundly and a broad variety of cell-process pathways, lots of proteins are modified and activated. Our understanding of the protein in response to ionizing radiation is steadily increasing. Among the various biological processes known to induce radioresistance, PTMs have attracted marked attention in recent years. The present review summarizes the latest knowledge about how PTMs response to ionizing radiation and pathway analysis were conducted. The data provided insights into biological effects of IR and contributing to the development of novel IR-based strategies.


Assuntos
Processamento de Proteína Pós-Traducional/efeitos da radiação , Proteínas/efeitos da radiação , Radiação Ionizante , Motivos de Aminoácidos , Dano ao DNA/efeitos da radiação , Genoma Humano/efeitos da radiação , Glicosilação/efeitos da radiação , Humanos , Metilação/efeitos da radiação , Neoplasias/radioterapia , Fosforilação/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Ubiquitinação/efeitos da radiação
15.
J Proteome Res ; 18(1): 557-564, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30484663

RESUMO

The identification of molecular ions produced by MALDI or ESI strongly relies on their fragmentation to structurally informative fragments. The widely diffused fragmentation techniques for ESI multiply charged ions are either incompatible (ECD and ETD) or show lower efficiency (CID, HCD), with the predominantly singly charged peptide and protein ions formed by MALDI. In-source decay has been successfully adopted to sequence MALDI-generated ions, but it further increases spectral complexity, and it is not compatible with mass-spectrometry imaging. Excellent UVPD performances, in terms of number of fragment ions and sequence coverage, has been demonstrated for electrospray ionization for multiple proteomics applications. UVPD showed a much lower charge-state dependence, and so protein ions produced by MALDI may exhibit equal propensity to fragment. Here we report UVPD implementation on an Orbitrap Q-Exactive Plus mass spectrometer equipped with an ESI/EP-MALDI. UVPD of MALDI-generated ions was benchmarked against MALDI-ISD, MALDI-HCD, and ESI-UVPD. MALDI-UVPD outperformed MALDI-HCD and ISD, efficiently sequencing small proteins ions. Moreover, the singly charged nature of MALDI-UVPD avoids the bioinformatics challenges associated with highly congested ESI-UVPD mass spectra. Our results demonstrate the ability of UVPD to further improve tandem mass spectrometry capabilities for MALDI-generated protein ions. Data are available via ProteomeXchange with identifier PXD011526.


Assuntos
Proteínas/análise , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/instrumentação , Raios Ultravioleta , Benchmarking , Íons , Fragmentos de Peptídeos/química , Proteínas/efeitos da radiação , Proteômica/normas
16.
J Synchrotron Radiat ; 26(Pt 4): 945-957, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274416

RESUMO

Acquisition of X-ray crystallographic data is always accompanied by structural degradation owing to the absorption of energy. The application of high-fluency X-ray sources to large biomolecules has increased the importance of finding ways to curtail the onset of X-ray-induced damage. A significant effort has been under way with the aim of identifying strategies for protecting protein structure. A comprehensive model is presented that has the potential to explain, both qualitatively and quantitatively, the structural changes induced in crystalline protein at ∼100 K. The first step is to consider the qualitative question: what are the radiation-induced intermediates and expected end products? The aim of this paper is to assist in optimizing these strategies through a fundamental understanding of radiation physics and chemistry, with additional insight provided by theoretical calculations performed on the many schemes presented.


Assuntos
Cristalografia por Raios X/métodos , Modelos Moleculares , Proteínas/efeitos da radiação , Raios X , Aminoácidos/química , Teoria da Densidade Funcional , Proteínas/química
17.
J Proteome Res ; 16(5): 2091-2100, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28351153

RESUMO

Ionizing radiation (IR) directly damages cells and tissues or indirectly damages them through reactive free radicals that may lead to longer term adverse sequelae such as cancers, persistent inflammation, or possible death. Potential exposures include nuclear reactor accidents, improper disposal of equipment containing radioactive materials or medical errors, and terrorist attacks. Metabolomics (comprehensive analysis of compounds <1 kDa) by mass spectrometry (MS) has been proposed as a tool for high-throughput biodosimetry and rapid assessment of exposed dose and triage needed. While multiple studies have been dedicated to radiation biomarker discovery, many have utilized liquid chromatography (LC) MS platforms that may not detect particular compounds (e.g., small carboxylic acids or isomers) that complementary analytical tools, such as gas chromatography (GC) time-of-flight (TOF) MS, are ideal for. The current study uses global GC-TOF-MS metabolomics to complement previous LC-MS analyses on nonhuman primate biofluids (urine and serum) 7 days after exposure to 2, 4, 6, 7, and 10 Gy IR. Multivariate data analysis was used to visualize differences between control and IR exposed groups. Univariate analysis was used to determine a combined 26 biomarkers in urine and serum that significantly changed after exposure to IR. We found several metabolites involved in tricarboxylic acid cycle function, amino acid metabolism, and host microbiota that were not previously detected by global and targeted LC-MS studies.


Assuntos
Metabolômica/métodos , Radiação Ionizante , Soro/química , Urina/química , Aminoácidos/metabolismo , Aminoácidos/efeitos da radiação , Animais , Biomarcadores/metabolismo , Ciclo do Ácido Cítrico/efeitos da radiação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microbiota/efeitos da radiação , Primatas , Proteínas/metabolismo , Proteínas/efeitos da radiação
18.
J Synchrotron Radiat ; 24(Pt 1): 83-94, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009549

RESUMO

The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals (Helliwell, 1984). Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to the diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. A possible mechanism to account for these observations is proposed.


Assuntos
Cristalografia por Raios X , Proteínas/efeitos da radiação , Síncrotrons , Animais , Galinhas , Feminino , Proteínas/química
19.
J Synchrotron Radiat ; 24(Pt 1): 73-82, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009548

RESUMO

Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature have not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins (T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 107 Gy at 100 K and 105 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. This analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation damage, and not as a result thereof.


Assuntos
Cristalografia por Raios X , Proteínas/efeitos da radiação , Temperatura , Animais , Galinhas , Cristalização , Feminino , Humanos , Proteínas/química
20.
Dig Dis Sci ; 62(8): 1995-2003, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28434073

RESUMO

BACKGROUND: Esophageal squamous carcinoma (ESC) is one of the most fatal malignancies worldwide with increasing occurrences yet poor outcome. MicroRNAs were reported to play roles in ESC. AIMS: We aimed to understand how miRNAs affect the radiotherapy resistance of ESC. METHODS: MicroRNA assays, real-time PCR, and Western blot were performed for expression analysis of miR-93 and BTG3. Luciferase activity assay was conducted with mutated B-cell translocation gene 3 (BTG3) 3'-UTR sequence in the 3' end of luciferase sequence with miR-93 inhibitor. ESC cells were treated with irradiation (IR) and clonogenic assay was utilized to detect the cell viability. Human ESC xenograft mouse model was established and subjected to target IR treatment followed by tumor size analysis. RESULTS: MiR-93 was decreased and BTG3 was increased in ESC cells, with negative correlation of their expression in ESC tissues. MiR-93 directly targeted BTG3 3'-UTR by luciferase activity assay. Either miR-93 inhibition or BTG3 overexpression decreased radiation resistance. Furthermore, miR-93 inhibition suppressed radiation resistance through BTG3. CONCLUSIONS: Direct downregulation of BTG3 by miR-93 is able to render ESC resistant to radiotherapy, and both BTG3 and miR-93 may potentially serve as clinical markers for ESC and contribute to the treatment of ESC.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , MicroRNAs/metabolismo , Proteínas/metabolismo , Tolerância a Radiação/genética , Regiões 3' não Traduzidas , Adulto , Idoso , Animais , Western Blotting , Carcinoma de Células Escamosas/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Regulação para Baixo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Feminino , Xenoenxertos , Humanos , Luciferases/metabolismo , Masculino , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/efeitos da radiação , Pessoa de Meia-Idade , Proteínas/efeitos da radiação , Reação em Cadeia da Polimerase em Tempo Real , Carga Tumoral/genética , Carga Tumoral/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA