Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Cell ; 180(1): 165-175.e16, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31862189

RESUMO

The γ-tubulin ring complex (γ-TuRC) is an essential regulator of centrosomal and acentrosomal microtubule formation, yet its structure is not known. Here, we present a cryo-EM reconstruction of the native human γ-TuRC at ∼3.8 Å resolution, revealing an asymmetric, cone-shaped structure. Pseudo-atomic models indicate that GCP4, GCP5, and GCP6 form distinct Y-shaped assemblies that structurally mimic GCP2/GCP3 subcomplexes distal to the γ-TuRC "seam." We also identify an unanticipated structural bridge that includes an actin-like protein and spans the γ-TuRC lumen. Despite its asymmetric architecture, the γ-TuRC arranges γ-tubulins into a helical geometry poised to nucleate microtubules. Diversity in the γ-TuRC subunits introduces large (>100,000 Å2) surfaces in the complex that allow for interactions with different regulatory factors. The observed compositional complexity of the γ-TuRC could self-regulate its assembly into a cone-shaped structure to control microtubule formation across diverse contexts, e.g., within biological condensates or alongside existing filaments.


Assuntos
Centro Organizador dos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/ultraestrutura , Tubulina (Proteína)/ultraestrutura , Actinas/metabolismo , Microscopia Crioeletrônica/métodos , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
2.
Cell ; 162(4): 849-59, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26234155

RESUMO

Microtubule (MT) dynamic instability is driven by GTP hydrolysis and regulated by microtubule-associated proteins, including the plus-end tracking end-binding protein (EB) family. We report six cryo-electron microscopy (cryo-EM) structures of MTs, at 3.5 Å or better resolution, bound to GMPCPP, GTPγS, or GDP, either decorated with kinesin motor domain after polymerization or copolymerized with EB3. Subtle changes around the E-site nucleotide during hydrolysis trigger conformational changes in α-tubulin around an "anchor point," leading to global lattice rearrangements and strain generation. Unlike the extended lattice of the GMPCPP-MT, the EB3-bound GTPγS-MT has a compacted lattice that differs in lattice twist from that of the also compacted GDP-MT. These results and the observation that EB3 promotes rapid hydrolysis of GMPCPP suggest that EB proteins modulate structural transitions at growing MT ends by recognizing and promoting an intermediate state generated during GTP hydrolysis. Our findings explain both EBs end-tracking behavior and their effect on microtubule dynamics.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Microtúbulos/química , Sus scrofa/metabolismo , Sequência de Aminoácidos , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
3.
Nature ; 578(7795): 467-471, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31856152

RESUMO

Microtubules are dynamic polymers of α- and ß-tubulin and have crucial roles in cell signalling, cell migration, intracellular transport and chromosome segregation1. They assemble de novo from αß-tubulin dimers in an essential process termed microtubule nucleation. Complexes that contain the protein γ-tubulin serve as structural templates for the microtubule nucleation reaction2. In vertebrates, microtubules are nucleated by the 2.2-megadalton γ-tubulin ring complex (γ-TuRC), which comprises γ-tubulin, five related γ-tubulin complex proteins (GCP2-GCP6) and additional factors3. GCP6 is unique among the GCP proteins because it carries an extended insertion domain of unknown function. Our understanding of microtubule formation in cells and tissues is limited by a lack of high-resolution structural information on the γ-TuRC. Here we present the cryo-electron microscopy structure of γ-TuRC from Xenopus laevis at 4.8 Å global resolution, and identify a 14-spoked arrangement of GCP proteins and γ-tubulins in a partially flexible open left-handed spiral with a uniform sequence of GCP variants. By forming specific interactions with other GCP proteins, the GCP6-specific insertion domain acts as a scaffold for the assembly of the γ-TuRC. Unexpectedly, we identify actin as a bona fide structural component of the γ-TuRC with functional relevance in microtubule nucleation. The spiral geometry of γ-TuRC is suboptimal for microtubule nucleation and a controlled conformational rearrangement of the γ-TuRC is required for its activation. Collectively, our cryo-electron microscopy reconstructions provide detailed insights into the molecular organization, assembly and activation mechanism of vertebrate γ-TuRC, and will serve as a framework for the mechanistic understanding of fundamental biological processes associated with microtubule nucleation, such as meiotic and mitotic spindle formation and centriole biogenesis4.


Assuntos
Microscopia Crioeletrônica , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Xenopus , Actinas/química , Actinas/metabolismo , Actinas/ultraestrutura , Animais , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Modelos Moleculares , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestrutura
4.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34996871

RESUMO

Microtubules (MTs) are polymers of αß-tubulin heterodimers that stochastically switch between growth and shrinkage phases. This dynamic instability is critically important for MT function. It is believed that GTP hydrolysis within the MT lattice is accompanied by destabilizing conformational changes and that MT stability depends on a transiently existing GTP cap at the growing MT end. Here, we use cryo-electron microscopy and total internal reflection fluorescence microscopy of GTP hydrolysis-deficient MTs assembled from mutant recombinant human tubulin to investigate the structure of a GTP-bound MT lattice. We find that the GTP-MT lattice of two mutants in which the catalytically active glutamate in α-tubulin was substituted by inactive amino acids (E254A and E254N) is remarkably plastic. Undecorated E254A and E254N MTs with 13 protofilaments both have an expanded lattice but display opposite protofilament twists, making these lattices distinct from the compacted lattice of wild-type GDP-MTs. End-binding proteins of the EB family have the ability to compact both mutant GTP lattices and to stabilize a negative twist, suggesting that they promote this transition also in the GTP cap of wild-type MTs, thereby contributing to the maturation of the MT structure. We also find that the MT seam appears to be stabilized in mutant GTP-MTs and destabilized in GDP-MTs, supporting the proposal that the seam plays an important role in MT stability. Together, these structures of catalytically inactive MTs add mechanistic insight into the GTP state of MTs, the stability of the GTP- and GDP-bound lattice, and our overall understanding of MT dynamic instability.


Assuntos
Microscopia Crioeletrônica , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Humanos , Hidrólise , Cinesinas , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/genética , Proteínas Recombinantes , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestrutura
5.
PLoS Pathog ; 17(5): e1009588, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34010336

RESUMO

Microtubules are inherently dynamic cytoskeletal polymers whose length and organization can be altered to perform essential functions in eukaryotic cells, such as providing tracks for intracellular trafficking and forming the mitotic spindle. Microtubules can be bundled to create more stable structures that collectively propagate force, such as in the flagellar axoneme, which provides motility. The subpellicular microtubule array of the protist parasite Trypanosoma brucei, the causative agent of African sleeping sickness, is a remarkable example of a highly specialized microtubule bundle. It is comprised of a single layer of microtubules that are crosslinked to each other and to the overlying plasma membrane. The array microtubules appear to be highly stable and remain intact throughout the cell cycle, but very little is known about the pathways that tune microtubule properties in trypanosomatids. Here, we show that the subpellicular microtubule array is organized into subdomains that consist of differentially localized array-associated proteins at the array posterior, middle, and anterior. The array-associated protein PAVE1 stabilizes array microtubules at the cell posterior and is essential for maintaining its tapered shape. PAVE1 and the newly identified protein PAVE2 form a complex that binds directly to the microtubule lattice, demonstrating that they are a true kinetoplastid-specific MAP. TbAIR9, which localizes to the entirety of the subpellicular array, is necessary for maintaining the localization of array-associated proteins within their respective subdomains of the array. The arrangement of proteins within the array likely tunes the local properties of array microtubules and creates the asymmetric shape of the cell, which is essential for parasite viability.


Assuntos
Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/ultraestrutura , Trypanosoma brucei brucei/ultraestrutura , Tripanossomíase Africana/parasitologia , Ciclo Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/ultraestrutura
6.
Nat Rev Mol Cell Biol ; 12(11): 709-21, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21993292

RESUMO

Microtubule nucleation is regulated by the γ-tubulin ring complex (γTuRC) and related γ-tubulin complexes, providing spatial and temporal control over the initiation of microtubule growth. Recent structural work has shed light on the mechanism of γTuRC-based microtubule nucleation, confirming the long-standing hypothesis that the γTuRC functions as a microtubule template. The first crystallographic analysis of a non-γ-tubulin γTuRC component (γ-tubulin complex protein 4 (GCP4)) has resulted in a new appreciation of the relationships among all γTuRC proteins, leading to a refined model of their organization and function. The structures have also suggested an unexpected mechanism for regulating γTuRC activity via conformational modulation of the complex component GCP3. New experiments on γTuRC localization extend these insights, suggesting a direct link between its attachment at specific cellular sites and its activation.


Assuntos
Microtúbulos/fisiologia , Tubulina (Proteína)/fisiologia , Animais , Centrossomo/química , Centrossomo/fisiologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/química , Microtúbulos/ultraestrutura , Modelos Biológicos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Estrutura Quaternária de Proteína , Tubulina (Proteína)/química , Tubulina (Proteína)/ultraestrutura
7.
Mol Cell ; 57(3): 456-66, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25601754

RESUMO

Shuttling of macromolecules between different cellular compartments helps regulate the timing and extent of different cellular activities. Here, we report that LC3, a key initiator of autophagy that cycles between the nucleus and cytoplasm, becomes selectively activated in the nucleus during starvation through deacetylation by the nuclear deacetylase Sirt1. Deacetylation of LC3 at K49 and K51 by Sirt1 allows LC3 to interact with the nuclear protein DOR and return to the cytoplasm with DOR, where it is able to bind Atg7 and other autophagy factors and undergo phosphatidylethanolamine conjugation to preautophagic membranes. The association of deacetylated LC3 with autophagic factors shifts LC3's distribution from the nucleus toward the cytoplasm. Thus, an acetylation-deacetylation cycle ensures that LC3 effectively redistributes in an activated form from nucleus to cytoplasm, where it plays a central role in autophagy to enable the cell to cope with the lack of external nutrients.


Assuntos
Autofagia , Núcleo Celular/metabolismo , Lisina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Sirtuína 1/metabolismo , Acetilação , Proteína 7 Relacionada à Autofagia , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/ultraestrutura , Enzimas Ativadoras de Ubiquitina/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(33): 16357-16366, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31358628

RESUMO

Misfolding of the microtubule-binding protein tau into filamentous aggregates is characteristic of many neurodegenerative diseases such as Alzheimer's disease and progressive supranuclear palsy. Determining the structures and dynamics of these tau fibrils is important for designing inhibitors against tau aggregation. Tau fibrils obtained from patient brains have been found by cryo-electron microscopy to adopt disease-specific molecular conformations. However, in vitro heparin-fibrillized 2N4R tau, which contains all four microtubule-binding repeats (4R), was recently found to adopt polymorphic structures. Here we use solid-state NMR spectroscopy to investigate the global fold and dynamics of heparin-fibrillized 0N4R tau. A single set of 13C and 15N chemical shifts was observed for residues in the four repeats, indicating a single ß-sheet conformation for the fibril core. This rigid core spans the R2 and R3 repeats and adopts a hairpin-like fold that has similarities to but also clear differences from any of the polymorphic 2N4R folds. Obtaining a homogeneous fibril sample required careful purification of the protein and removal of any proteolytic fragments. A variety of experiments and polarization transfer from water and mobile side chains indicate that 0N4R tau fibrils exhibit heterogeneous dynamics: Outside the rigid R2-R3 core, the R1 and R4 repeats are semirigid even though they exhibit ß-strand character and the proline-rich domains undergo large-amplitude anisotropic motions, whereas the two termini are nearly isotropically flexible. These results have significant implications for the structure and dynamics of 4R tau fibrils in vivo.


Assuntos
Doença de Alzheimer/genética , Citoesqueleto/ultraestrutura , Proteínas Associadas aos Microtúbulos/química , Proteínas tau/química , Doença de Alzheimer/patologia , Sequência de Aminoácidos/genética , Microscopia Crioeletrônica , Citoesqueleto/química , Citoesqueleto/patologia , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/química , Microtúbulos/genética , Ressonância Magnética Nuclear Biomolecular , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Ligação Proteica/genética , Conformação Proteica em Folha beta/genética , Domínios Proteicos/genética , Estrutura Secundária de Proteína , Proteínas tau/genética , Proteínas tau/ultraestrutura
9.
Am J Med Genet A ; 185(4): 1113-1119, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33506645

RESUMO

Cortical dysplasia, complex, with other brain malformations 3 (CDCBM3) is a rare autosomal dominant syndrome caused by Kinesin family Member 2A (KIF2A) gene mutation. Patients with CDCBM3 exhibit posterior dominant agyria/pachygyria with severe motor dysfunction. Here, we report an 8-year-old boy with CDCBM3 showing a typical, but relatively mild, clinical presentation of CDCBM3 features. Whole-exome sequencing identified a heterozygous mutation of NM_001098511.2:c.1298C>A [p.(Ser433Tyr)]. To our knowledge, the mutation has never been reported previously. The variant was located distal to the nucleotide binding domain (NBD), in which previously-reported variants in CDCBM3 patients have been located. The computational structural analysis showed the p.433 forms the pocket with NBD. Variants in KIF2A have been reported in the NBD for CDCBM3, in the kinesin motor 3 domain, but not in the NBD in epilepsy, and outside of the kinesin motor domain in autism spectrum syndrome, respectively. Our patient has a variant, that is not in the NBD but at the pocket with the NBD, resulting in a clinical features of CDCBM3 with mild symptoms. The clinical findings of patients with KIF2A variants appear restricted to the central nervous system and facial anomalies. We can call this spectrum "KIF2A syndrome" with variable severity.


Assuntos
Epilepsia/genética , Cinesinas/genética , Malformações do Desenvolvimento Cortical/genética , Proteínas Associadas aos Microtúbulos/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Epilepsia/diagnóstico , Epilepsia/diagnóstico por imagem , Epilepsia/patologia , Heterozigoto , Humanos , Cinesinas/ultraestrutura , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/patologia , Proteínas Associadas aos Microtúbulos/ultraestrutura , Mutação de Sentido Incorreto/genética , Conformação Proteica , Tubulina (Proteína)/genética , Sequenciamento do Exoma
10.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072837

RESUMO

The chromatin reader protein Spindlin1 plays an important role in epigenetic regulation, through which it has been linked to several types of malignant tumors. In the current work, we report on the development of novel analogs of the previously published lead inhibitor A366. In an effort to improve the activity and explore the structure-activity relationship (SAR), a series of 21 derivatives was synthesized, tested in vitro, and investigated by means of molecular modeling tools. Docking studies and molecular dynamics (MD) simulations were performed to analyze and rationalize the structural differences responsible for the Spindlin1 activity. The analysis of MD simulations shed light on the important interactions. Our study highlighted the main structural features that are required for Spindlin1 inhibitory activity, which include a positively charged pyrrolidine moiety embedded into the aromatic cage connected via a propyloxy linker to the 2-aminoindole core. Of the latter, the amidine group anchor the compounds into the pocket through salt bridge interactions with Asp184. Different protocols were tested to identify a fast in silico method that could help to discriminate between active and inactive compounds within the A366 series. Rescoring the docking poses with MM-GBSA calculations was successful in this regard. Because A366 is known to be a G9a inhibitor, the most active developed Spindlin1 inhibitors were also tested over G9a and GLP to verify the selectivity profile of the A366 analogs. This resulted in the discovery of diverse selective compounds, among which 1s and 1t showed Spindlin1 activity in the nanomolar range and selectivity over G9a and GLP. Finally, future design hypotheses were suggested based on our findings.


Assuntos
Fenômenos Biofísicos , Proteínas de Ciclo Celular/química , Epigênese Genética , Proteínas Associadas aos Microtúbulos/química , Fosfoproteínas/química , Conformação Proteica , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/ultraestrutura , Entropia , Humanos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/ultraestrutura , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosfoproteínas/ultraestrutura , Ligação Proteica , Relação Estrutura-Atividade
11.
J Biol Chem ; 294(38): 14033-14042, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31362979

RESUMO

Selective autophagy sequesters cytoplasmic cargo for lysosomal degradation via the binding of autophagy receptors to Atg8 (autophagy-related 8) family proteins on the autophagic membrane. The sole yeast Atg8 gene has six mAtg8 (mammalian Atg8) homologs, including the MAP1LC3 (microtubule-associated protein-1 light chain 3) family and the GABA receptor-associated proteins. Selective autophagy receptors interact with two conserved hydrophobic pockets (termed the W-site and L-site) of mATG8 proteins through a linear motif called the LC3-interacting region (LIR) with the general composition (W/F/Y)XX(I/L/V). To address a lack in our knowledge regarding LIR peptide specificity toward each mATG8 homolog, here we used competitive time-resolved FRET to sensitively and quantitatively characterize the interactions between LIRs and mAtg8. We report that 14 representative LIR-containing peptides display differential binding affinities toward the mAtg8 proteins and identified the LIR domain peptide of TP53INP1 as exhibiting high affinity for all six mATG8 proteins. Using peptide truncation studies, we found that both N- and C-terminal acidic residues, as well as the C-terminal Cys residue of the TP53INP1 LIR peptide, are required for its high-affinity binding to LC3A and LC3B, whereas binding to the GABARAP subfamily proteins was facilitated by residues either N-terminal or C-terminal to the core motif. Finally, we used NMR chemical shift perturbation analysis to gain molecular insights into these findings. Collectively, our results may aid in the development of molecules that selectively disrupt specific mATG8-LIR interactions to dissect the biological roles of the six mATG8 homologs for potential therapeutic applications.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/ultraestrutura , Proteínas Associadas aos Microtúbulos/metabolismo , Motivos de Aminoácidos , Animais , Autofagia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas de Transporte/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Proteínas Associadas aos Microtúbulos/ultraestrutura , Mitofagia , Peptídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/fisiologia
12.
Biochem Biophys Res Commun ; 496(4): 1337-1343, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29408528

RESUMO

LINC complexes span across the nuclear envelope and are assembled by SUN and KASH proteins. SUN1 and SUN2 are the two most abundant SUN proteins in mammals. In SUN2, the predicted coiled-coil domain preceding the SUN domain forms a three-helix bundle that constitutes an autoinhibitory domain (AID) to lock down the SUN domain. Here, we found that SUN1 also contains an AID preceding the SUN domain and solved the structure of the AID-SUN tandem of SUN1. SUN1 AID also adopts a three-helix bundle conformation that interacts with the SUN domain and keeps it in an autoinhibited state. Disruptions of the interaction interface in the AID-SUN tandem restored the SUN domain activity for binding to the KASH peptide. Structural comparison further demonstrated that the autoinhibited conformations of the AID-SUN tandems from SUN1 and SUN2 are similar and the intramolecular interdomain packing in SUN1 is slightly more compact than that in SUN2 due to minor variations of the residues in the interaction interface. Thus, AID is a conserved functional domain in SUN proteins and this work provides the structural evidence to support the conversation of the AID-mediated autoinhibition of SUN proteins.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/ultraestrutura , Modelos Químicos , Simulação de Acoplamento Molecular , Proteínas Nucleares/química , Proteínas Nucleares/ultraestrutura , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
13.
Alzheimers Dement ; 14(8): 1022-1037, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29630865

RESUMO

INTRODUCTION: One characteristic of Alzheimer's disease is the formation of amyloid-ß plaques, which are typically linked to neuroinflammation and surrounded by inflammatory cells such as microglia and infiltrating immune cells. METHODS: Here, we describe nonneurogenic doublecortin (DCX) positive cells, DCX being generally used as a marker for young immature neurons, at sites of amyloid-ß plaques in various transgenic amyloid mouse models and in human brains with plaque pathology. RESULTS: The plaque-associated DCX+ cells were not of neurogenic identity, instead most of them showed coexpression with markers for microglia (ionized calcium-binding adapter molecule 1) and for phagocytosis (CD68 and TREM2). Another subpopulation of plaque-associated DCX+ cells was negative for ionized calcium-binding adapter molecule 1 but was highly positive for the pan-leukocyte marker CD45. These hematopoietic cells were identified as CD3-and CD8-positive and CD4-negative T-cells. DISCUSSION: Peculiarly, the DCX+/ionized calcium-binding adapter molecule 1+ microglia and DCX+/CD8+ T-cells were closely attached, suggesting that these two cell types are tightly interacting and that this interaction might shape plaque pathology.


Assuntos
Doença de Alzheimer/patologia , Linfócitos T CD8-Positivos , Microglia/ultraestrutura , Proteínas Associadas aos Microtúbulos/ultraestrutura , Placa Amiloide/ultraestrutura , Doença de Alzheimer/genética , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Feminino , Humanos , Glicoproteínas de Membrana/genética , Camundongos Transgênicos , Microglia/patologia , Microscopia Eletrônica , Neuropeptídeos , Placa Amiloide/patologia , Receptores Imunológicos/genética
14.
J Biol Chem ; 291(1): 493-507, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26578513

RESUMO

Multiple isoforms of the mitochondrial fission GTPase dynamin-related protein 1 (Drp1) arise from the alternative splicing of its single gene-encoded pre-mRNA transcript. Among these, the longer Drp1 isoforms, expressed selectively in neurons, bear unique polypeptide sequences within their GTPase and variable domains, known as the A-insert and the B-insert, respectively. Their functions remain unresolved. A comparison of the various biochemical and biophysical properties of the neuronally expressed isoforms with that of the ubiquitously expressed, and shortest, Drp1 isoform (Drp1-short) has revealed the effect of these inserts on Drp1 function. Utilizing various biochemical, biophysical, and cellular approaches, we find that the A- and B-inserts distinctly alter the oligomerization propensity of Drp1 in solution as well as the preferred curvature of helical Drp1 self-assembly on membranes. Consequently, these sequences also suppress Drp1 cooperative GTPase activity. Mitochondrial fission factor (Mff), a tail-anchored membrane protein of the mitochondrial outer membrane that recruits Drp1 to sites of ensuing fission, differentially stimulates the disparate Drp1 isoforms and alleviates the autoinhibitory effect imposed by these sequences on Drp1 function. Moreover, the differential stimulatory effects of Mff on Drp1 isoforms are dependent on the mitochondrial lipid, cardiolipin (CL). Although Mff stimulation of the intrinsically cooperative Drp1-short isoform is relatively modest, CL-independent, and even counter-productive at high CL concentrations, Mff stimulation of the much less cooperative longest Drp1 isoform (Drp1-long) is robust and occurs synergistically with increasing CL content. Thus, membrane-anchored Mff differentially regulates various Drp1 isoforms by functioning as an allosteric effector of cooperative GTPase activity.


Assuntos
Dinaminas/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/metabolismo , Splicing de RNA/genética , Animais , Cardiolipinas/metabolismo , Membrana Celular/metabolismo , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/ultraestrutura , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Cinética , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/ultraestrutura , Proteínas Mitocondriais/química , Proteínas Mitocondriais/ultraestrutura , Multimerização Proteica , Estrutura Secundária de Proteína , Ratos
15.
EMBO Rep ; 15(5): 557-65, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24668264

RESUMO

Several autophagy proteins contain an LC3-interacting region (LIR) responsible for their interaction with Atg8 homolog proteins. Here, we show that ALFY binds selectively to LC3C and the GABARAPs through a LIR in its WD40 domain. Binding of ALFY to GABARAP is indispensable for its recruitment to LC3B-positive structures and, thus, for the clearance of certain p62 structures by autophagy. In addition, the crystal structure of the GABARAP-ALFY-LIR peptide complex identifies three conserved residues in the GABARAPs that are responsible for binding to ALFY. Interestingly, introduction of these residues in LC3B is sufficient to enable its interaction with ALFY, indicating that residues outside the LIR-binding hydrophobic pockets confer specificity to the interactions with Atg8 homolog proteins.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose , Família da Proteína 8 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Linhagem Celular Tumoral , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/ultraestrutura , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/ultraestrutura , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/ultraestrutura
16.
J Struct Biol ; 192(3): 449-456, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26458359

RESUMO

Cerebral cavernous malformations (CCM) are vascular dysplasias that usually occur in the brain and are associated with mutations in the KRIT1/CCM1, CCM2/MGC4607/OSM/Malcavernin, and PDCD10/CCM3/TFAR15 genes. Here we report the 2.9 Å crystal structure of the ankyrin repeat domain (ARD) and FERM domain of the protein product of KRIT1 (KRIT1; Krev interaction trapped 1). The crystal structure reveals that the KRIT1 ARD contains 4 ankyrin repeats. There is an unusual conformation in the ANK4 repeat that is stabilized by Trp-404, and the structure reveals a solvent exposed ankyrin groove. Domain orientations of the three copies within the asymmetric unit suggest a stable interaction between KRIT1 ARD and FERM domains, indicating a globular ARD-FERM module. This resembles the additional F0 domain found N-terminal to the FERM domain of talin. Structural analysis of KRIT1 ARD-FERM highlights surface regions of high evolutionary conservation, and suggests potential sites that could mediate interaction with binding partners. The structure therefore provides a better understanding of KRIT1 at the molecular level.


Assuntos
Repetição de Anquirina/fisiologia , Proteínas Associadas aos Microtúbulos/ultraestrutura , Proteínas Proto-Oncogênicas/ultraestrutura , Sequência de Aminoácidos , Encéfalo/patologia , Cristalografia por Raios X , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Humanos , Proteína KRIT1 , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Ligação Proteica/genética , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , Alinhamento de Sequência
17.
Clin Lab ; 60(5): 809-14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24839824

RESUMO

BACKGROUND: Hypoxia/reoxygenation (H/R) is an important in vitro model for exploring the molecular mechanisms and functions of autophagy during myocardial ischemia/reperfusion (I/R). Neonatal rat cardiomyocytes (NRCM) and H9c2 cells are widely used to study H/R. METHODS: The degree of autophagy in NRCM and H9c2 cells exposed to H/R was assessed by detecting the markers of autophagy, Beclin-1 and LC3II. Autophagosomes were confirmed in both NRCM and H9c2 cells exposed to H/R using MDC staining and TEM. RESULTS: The expression levels of Beclin-1 and LC3II were significantly increased in NRCM under H/R conditions (p < 0.05 vs. control). In contrast, the expression levels of Beclin-1 and LC3II were significantly reduced in H9c2 cells exposed to H/R (p < 0.05 vs. control). The fluorescence intensity and the number of MDC-labeled particles were greater in NRCM exposed to H/R, compared to H9c2 cells (p < 0.05 vs. control). The number of autophagosomes exposed to H/R by TEM was greater in NRCM, compared to H9c2 cells, which was similar to the levels of autophagy markers observed in NRCM and H9c2 cells (p < 0.05 vs. control). CONCLUSIONS: NRCM may be more suitable to study autophagy during H/R than H9c2 cells.


Assuntos
Autofagia , Hipóxia/patologia , Miócitos Cardíacos/patologia , Oxigênio/fisiologia , Animais , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/ultraestrutura , Proteína Beclina-1 , Linhagem Celular , Modelos Animais de Doenças , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/ultraestrutura , Miócitos Cardíacos/ultraestrutura , Ratos
18.
Ultrastruct Pathol ; 38(6): 377-81, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24971518

RESUMO

BACKGROUND: Eleven years ago we had described three patients with missing nexin links as a possible cause of primary ciliary dyskinesia (PCD). The assumption was substantiated last year by finding a mutation in these patients. MATERIALS AND METHODS: We counted the nexin links, inner (IDA) and outer (ODA) dynein arms and microtubuli in each of, if possible, 50 cilia in 41 patients with normal cilia, 4 patients with deficiency of nexin links only and 4 with deficiency of nexin links and IDA. RESULTS: In the control group the median number of nexin links was 4.5 per cilium, range 3.4-5.3. In the second group the mean numbers of nexin links per cilium were 1.1-1.4, in the third group 0.8-1.2, per patient. The median number of IDA was in the control group 4.2, range 3.3-5.2. In groups 2 and 3 the numbers were 3.0-3.5 and 0.2-1.0, respectively. Numbers of ODA were normal in all groups. CONCLUSIONS: It is possible to reliable count the number of nexin links in nasal human cilia and to distinguish cases with missing nexin links from normal controls.


Assuntos
Cílios/ultraestrutura , Síndrome de Kartagener/patologia , Proteínas Associadas aos Microtúbulos/ultraestrutura , Mucosa Nasal/ultraestrutura , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Dineínas/ultraestrutura , Feminino , Humanos , Lactente , Masculino , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/deficiência , Pessoa de Meia-Idade , Adulto Jovem
19.
J Struct Biol ; 184(2): 335-44, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24099757

RESUMO

Kar3Cik1 is a heterodimeric kinesin-14 from Saccharomyces cerevisiae involved in spindle formation during mitosis and karyogamy in mating cells. Kar3 represents a canonical kinesin motor domain that interacts with microtubules under the control of ATP-hydrolysis. In vivo, the localization and function of Kar3 is differentially regulated by its interacting stoichiometrically with either Cik1 or Vik1, two closely related motor homology domains that lack the nucleotide-binding site. Indeed, Vik1 structurally resembles the core of a kinesin head. Despite being closely related, Kar3Cik1 and Kar3Vik1 are each responsible for a distinct set of functions in vivo and also display different biochemical behavior in vitro. To determine a structural basis for their distinct functional abilities, we used cryo-electron microscopy and helical reconstruction to investigate the 3-D structure of Kar3Cik1 complexed to microtubules in various nucleotide states and compared our 3-D data of Kar3Cik1 with that of Kar3Vik1 and the homodimeric kinesin-14 Ncd from Drosophila melanogaster. Due to the lack of an X-ray crystal structure of the Cik1 motor homology domain, we predicted the structure of this Cik1 domain based on sequence similarity to its relatives Vik1, Kar3 and Ncd. By molecular docking into our 3-D maps, we produced a detailed near-atomic model of Kar3Cik1 complexed to microtubules in two distinct nucleotide states, a nucleotide-free state and an ATP-bound state. Our data show that despite their functional differences, heterodimeric Kar3Cik1 and Kar3Vik1 and homodimeric Ncd, all share striking structural similarities at distinct nucleotide states indicating a common mechanistic theme within the kinesin-14 family.


Assuntos
Proteínas dos Microtúbulos/ultraestrutura , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Adenilil Imidodifosfato/química , Microscopia Crioeletrônica , Proteínas dos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química
20.
Genet Mol Res ; 12(4): 6619-28, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24391008

RESUMO

Autophagy is defined as an intracellular system of lysosomal degradation in eukaryotic cells, and the genes involved in this process are conserved from yeast to humans. Among these genes, ATG8 encodes a ubiquitin-like protein that is conjugated to a phosphatidylethanolamine (PE) membrane by the ubiquitination system. The Atg8p-PE complex is important in initiating the formation of the autophagosome and thus plays a critical role in autophagy. In silico modeling of Atg8p of Moniliophthora perniciosa revealed its three-dimensional structure and enabled comparison with its Saccharomyces cerevisiae homologue ScAtg8p. Some common and distinct features were observed between these two proteins, including the conservation of residues required to allow the interaction of α-helix1 with the ubiquitin core. However, the electrostatic potential surfaces of these helices differ, implying particular roles in selecting specific binding partners. The proposed structure was validated by the programs PROCHECK 3.4, ANOLEA, and QMEAN, which demonstrated 100% of amino acids located in favorable regions with low total energy. Our results showed that MpAtg8p contains the same functional domains (3 α-helices and 4 ß-sheets) and is similar in structure as the ScAtg8p yeast. Both proteins have many conserved sequences in common, and therefore, their proposed three-dimensional models show similar configuration.


Assuntos
Agaricales/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Autofagia , Família da Proteína 8 Relacionada à Autofagia , Modelos Moleculares , Dados de Sequência Molecular , Fosfatidiletanolaminas/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência , Ubiquitinação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA