RESUMO
A cardinal feature of the auditory pathway is frequency selectivity, represented in a tonotopic map from the cochlea to the cortex. The molecular determinants of the auditory frequency map are unknown. Here, we discovered that the transcription factor ISL1 regulates the molecular and cellular features of auditory neurons, including the formation of the spiral ganglion and peripheral and central processes that shape the tonotopic representation of the auditory map. We selectively knocked out Isl1 in auditory neurons using Neurod1Cre strategies. In the absence of Isl1, spiral ganglion neurons migrate into the central cochlea and beyond, and the cochlear wiring is profoundly reduced and disrupted. The central axons of Isl1 mutants lose their topographic projections and segregation at the cochlear nucleus. Transcriptome analysis of spiral ganglion neurons shows that Isl1 regulates neurogenesis, axonogenesis, migration, neurotransmission-related machinery, and synaptic communication patterns. We show that peripheral disorganization in the cochlea affects the physiological properties of hearing in the midbrain and auditory behavior. Surprisingly, auditory processing features are preserved despite the significant hearing impairment, revealing central auditory pathway resilience and plasticity in Isl1 mutant mice. Mutant mice have a reduced acoustic startle reflex, altered prepulse inhibition, and characteristics of compensatory neural hyperactivity centrally. Our findings show that ISL1 is one of the obligatory factors required to sculpt auditory structural and functional tonotopic maps. Still, upon Isl1 deletion, the ensuing central plasticity of the auditory pathway does not suffice to overcome developmentally induced peripheral dysfunction of the cochlea.
Assuntos
Vias Auditivas , Núcleo Coclear , Células Ciliadas Auditivas , Proteínas com Homeodomínio LIM , Neurogênese , Gânglio Espiral da Cóclea , Fatores de Transcrição , Animais , Vias Auditivas/embriologia , Cóclea/embriologia , Cóclea/inervação , Núcleo Coclear/embriologia , Células Ciliadas Auditivas/fisiologia , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/fisiologia , Camundongos , Neurogênese/genética , Gânglio Espiral da Cóclea/enzimologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologiaRESUMO
During neocortical development, neurons are produced by a diverse pool of neural progenitors. A subset of progenitors express the Cux2 gene and are fate restricted to produce certain neuronal subtypes; however, the upstream pathways that specify these progenitor fates remain unknown. To uncover the transcriptional networks that regulate Cux2 expression in the forebrain, we characterized a conserved Cux2 enhancer that recapitulates Cux2 expression specifically in the cortical hem. Using a bioinformatic approach, we identified putative transcription factor (TF)-binding sites for cortical hem-patterning TFs. We found that the homeobox TF Lmx1a can activate the Cux2 enhancer in vitro Furthermore, we showed that Lmx1a-binding sites were required for enhancer activity in the cortical hem in vivo Mis-expression of Lmx1a in hippocampal progenitors caused an increase in Cux2 enhancer activity outside the cortical hem. Finally, we compared several human enhancers with cortical hem-restricted activity and found that recurrent Lmx1a-binding sites are a top shared feature. Uncovering the network of TFs involved in regulating Cux2 expression will increase our understanding of the mechanisms pivotal in establishing Cux2 lineage fates in the developing forebrain.
Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Íntrons , Proteínas com Homeodomínio LIM/fisiologia , Fatores de Transcrição/fisiologia , Animais , Sítios de Ligação , Linhagem da Célula , Biologia Computacional , Feminino , Proteínas de Homeodomínio/genética , Proteínas com Homeodomínio LIM/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prosencéfalo/embriologia , Telencéfalo/embriologia , Fatores de Transcrição/genéticaRESUMO
The four and a half LIM domain protein 2 (FHL2) is a member of the four and a half LIM domain (FHL) gene family, and it is associated with cholesterol-enriched diet-promoted atherosclerosis. However, the effect of FHL2 protein on vascular remodelling in response to hemodynamic alterations remains unclear. Here, we investigated the role of FHL2 in a model of restricted blood flow-induced atherosclerosis. To promote neointimal hyperplasia in vivo, we subjected FHL2+/+ and FHL2-/- mice to partial ligation of the left carotid artery (LCA). The expression of p-ERK and p-AKT was decreased in FHL2-/- mice. FHL2 bound to AKT regulated AKT phosphorylation and led to Rac1-GTP inactivation. FHL2 silencing in human aortic smooth muscle cells down-regulated the PDGF-induced phosphorylation of ERK and AKT. Furthermore, FHL2 silencing reduced cytoskeleton conformational changes and caused cell cycle arrest. We concluded that FHL2 is essential for the regulation of arterial smooth muscle cell function. FHL2 modulates proliferation and migration via mitogen-activated protein kinase (MAPK) and PI3K-AKT signalling, leading to arterial wall thickening and thus neointimal hyperplasia.
Assuntos
Aterosclerose/prevenção & controle , Artérias Carótidas/patologia , Espessura Intima-Media Carotídea , Deleção de Genes , Proteínas com Homeodomínio LIM/fisiologia , Proteínas Musculares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Artérias Carótidas/cirurgia , Movimento Celular , Proliferação de Células , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Transdução de SinaisRESUMO
The 4-and-a-half LIM domain protein 2 (FHL2) is a multifunctional adaptor protein that can interact with cell surface receptors, cytosolic adaptor and structural proteins, kinases, and nuclear transcription factors. It is involved in numerous functional activities, including the epithelial-mesenchymal transition, cell proliferation, apoptosis, adhesion, migration, structural stability, and gene expression. Despite this, FHL2-knockout (KO) mice are viable and fertile with no obvious abnormalities, rather suggesting a high capacity for fine-tuning adjustment and functional redundancy of FHL2. Indeed, challenging FHL2-KO cells or mice provided numerous evidences for the great functional significance of FHL2. In recent years, several reviews have been published describing the high capacity of FHL2 to bind diverse proteins as well as the versatile functions of FHL2, emphasizing in particular its role in cardiovascular diseases and carcinogenesis. Here, we view the function of FHL2 from a different perspective. We summarize the published data demonstrating the impact of FHL2 on wound healing and inflammation. FHL2 seems to be involved in numerous steps of these extremely complex and multidirectional but tightly regulated tissue remodeling processes, supporting tissue repair and coordinating inflammation. Deficiency of FHL2 not only slows down ongoing wound healing but also often turns it into a chronic condition.-Wixler, V. The role of FHL2 in wound healing and inflammation.
Assuntos
Inflamação/fisiopatologia , Proteínas com Homeodomínio LIM/fisiologia , Proteínas Musculares/fisiologia , Fatores de Transcrição/fisiologia , Cicatrização/fisiologia , Animais , Quimiotaxia de Leucócito/fisiologia , Citocinas/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Inflamação/imunologia , Proteínas com Homeodomínio LIM/biossíntese , Proteínas com Homeodomínio LIM/deficiência , Proteínas com Homeodomínio LIM/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Musculares/biossíntese , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Miofibroblastos/fisiologia , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia , Regulação para CimaRESUMO
The delicate balance of excitation and inhibition is crucial for proper function of the cerebral cortex, relying on the accurate number and subtype composition of inhibitory gamma-aminobutyric (GABA)-expressing interneurons. Various intrinsic and extrinsic factors precisely orchestrate their multifaceted development including the long-range migration from the basal telencephalon to cortical targets as well as interneuron survival throughout the developmental period. Particularly expressed guidance receptors were described to channel the migration of cortical interneurons deriving from the medial ganglionic eminence (MGE) and the preoptic area (POA) along distinct routes. Hence, unveiling the regulatory genetic networks controlling subtype-specific gene expression profiles is key to understand interneuron-specific developmental programs and to reveal causes for associated disorders. In contrast to MGE-derived interneurons, little is known about the transcriptional networks in interneurons born in the POA. Here, we provide first evidence for the LIM-homeobox transcription factor LHX1 as a crucial key player in the post-mitotic development of POA-derived cortical interneurons. By transcriptional regulation of related genes, LHX1 modulates their survival as well as the subtype-specific expression of guidance receptors of the Eph/ephrin family, thereby affecting directional migration and layer distribution in the adult cortex.
Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Interneurônios/fisiologia , Proteínas com Homeodomínio LIM/fisiologia , Área Pré-Óptica/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Animais , Movimento Celular , Sobrevivência Celular , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Efrina-B3/genética , Efrina-B3/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Interneurônios/citologia , Interneurônios/metabolismo , Proteínas com Homeodomínio LIM/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Área Pré-Óptica/citologia , Área Pré-Óptica/metabolismo , Receptor EphA4/genética , Receptor EphA4/fisiologia , Fatores de Transcrição/genéticaRESUMO
Fibroblast growth factor (FGF) signaling is an essential regulator of lens epithelial cell proliferation and survival, as well as lens fiber cell differentiation. However, the identities of these FGF factors, their source tissue and the genes that regulate their synthesis are unknown. We have found that Chx10-Cre;Lhx2lox/lox mice, which selectively lack Lhx2 expression in neuroretina from E10.5, showed an early arrest in lens fiber development along with severe microphthalmia. These mutant animals showed reduced expression of multiple neuroretina-expressed FGFs and canonical FGF-regulated genes in neuroretina. When FGF expression was genetically restored in Lhx2-deficient neuroretina of Chx10-Cre;Lhx2lox/lox mice, we observed a partial but nonetheless substantial rescue of the defects in lens cell proliferation, survival and fiber differentiation. These data demonstrate that neuroretinal expression of Lhx2 and neuroretina-derived FGF factors are crucial for lens fiber development in vivo.
Assuntos
Fatores de Crescimento de Fibroblastos/genética , Proteínas com Homeodomínio LIM/fisiologia , Cristalino/embriologia , Organogênese/genética , Neurônios Retinianos/fisiologia , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular/genética , Embrião de Mamíferos , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM/genética , Cristalino/metabolismo , Camundongos , Camundongos Transgênicos , Microftalmia/embriologia , Microftalmia/genética , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Neurônios Retinianos/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genéticaRESUMO
The development of the vertebrate embryonic heart occurs by hyperplastic growth as well as the incorporation of cells from tissues outside of the initial heart field. Amongst these tissues is the epicardium, a cell structure that develops from the precursor proepicardial organ on the right side of the septum transversum caudal to the developing heart. During embryogenesis, cells of the proepicardial organ migrate, adhere and envelop the maturing heart, forming the epicardium. The cells of the epicardium then delaminate and incorporate into the heart giving rise to cardiac derivatives, including smooth muscle cells and cardiac fibroblasts. Here, we demonstrate that the LIM homeodomain protein Lhx9 is transiently expressed in Xenopus proepicardial cells and is essential for the position of the proepicardial organ on the septum transversum. Utilizing a small-molecule screen, we found that Lhx9 acts upstream of integrin-paxillin signaling and consistently demonstrate that either loss of Lhx9 or disruption of the integrin-paxillin pathway results in mis-positioning of the proepicardial organ and aberrant deposition of extracellular matrix proteins. This leads to a failure of proepicardial cell migration and adhesion to the heart, and eventual death of the embryo. Collectively, these studies establish a requirement for the Lhx9-integrin-paxillin pathway in proepicardial organ positioning and epicardial formation.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Integrina alfa4/metabolismo , Proteínas com Homeodomínio LIM/fisiologia , Pericárdio/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/fisiologia , Animais , Animais Geneticamente Modificados , Movimento Celular/fisiologia , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Integrinas/metabolismo , Mesoderma/metabolismo , Paxilina/metabolismo , Pericárdio/embriologia , Estrutura Terciária de Proteína , Xenopus laevis/embriologiaRESUMO
Regulation of the neuron-glia cell-fate switch is a critical step in the development of the CNS. Previously, we demonstrated that Lhx2 is a necessary and sufficient regulator of this process in the mouse hippocampal primordium, such that Lhx2 overexpression promotes neurogenesis and suppresses gliogenesis, whereas loss of Lhx2 has the opposite effect. We tested a series of transcription factors for their ability to mimic Lhx2 overexpression and suppress baseline gliogenesis, and also to compensate for loss of Lhx2 and suppress the resulting enhanced level of gliogenesis in the hippocampus. Here, we demonstrate a novel function of Dmrt5/Dmrta2 as a neurogenic factor in the developing hippocampus. We show that Dmrt5, as well as known neurogenic factors Neurog2 and Pax6, can each not only mimic Lhx2 overexpression, but also can compensate for loss of Lhx2 to different extents. We further uncover a reciprocal regulatory relationship between Dmrt5 and Lhx2, such that each can compensate for loss of the other. Dmrt5 and Lhx2 also have opposing regulatory control on Pax6 and Neurog2, indicating a complex bidirectionally regulated network that controls the neuron-glia cell-fate switch.SIGNIFICANCE STATEMENT We identify Dmrt5 as a novel regulator of the neuron-glia cell-fate switch in the developing hippocampus. We demonstrate Dmrt5 to be neurogenic, and reciprocally regulated by Lhx2: loss of either factor promotes gliogenesis; overexpression of either factor suppresses gliogenesis and promotes neurogenesis; each can substitute for loss of the other. Furthermore, each factor has opposing effects on established neurogenic genes Neurog2 and Pax6 Dmrt5 is known to suppress their expression, and we show that Lhx2 is required to maintain it. Our study reveals a complex regulatory network with bidirectional control of a fundamental feature of CNS development, the control of the production of neurons versus astroglia in the developing hippocampus.Finally, we confirm that Lhx2 binds a highly conserved putative enhancer of Dmrt5, suggesting an evolutionarily conserved regulatory relationship between these factors. Our findings uncover a complex network that involves Lhx2, Dmrt5, Neurog2, and Pax6, and that ensures the appropriate amount and timing of neurogenesis and gliogenesis in the developing hippocampus.
Assuntos
Hipocampo/fisiologia , Proteínas com Homeodomínio LIM/fisiologia , Neurogênese/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Fatores de Transcrição/fisiologia , Animais , Sequência de Bases , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Hipocampo/citologia , Hipocampo/embriologia , Masculino , Camundongos , Camundongos Transgênicos , GravidezRESUMO
The dendritic processes of nociceptive neurons transduce external signals into neurochemical cues that alert the organism to potentially damaging stimuli. The receptive field for each sensory neuron is defined by its dendritic arbor, but the mechanisms that shape dendritic architecture are incompletely understood. Using the model nociceptor, the PVD neuron in C. elegans, we determined that two types of PVD lateral branches project along the dorsal/ventral axis to generate the PVD dendritic arbor: (1) Pioneer dendrites that adhere to the epidermis, and (2) Commissural dendrites that fasciculate with circumferential motor neuron processes. Previous reports have shown that the LIM homeodomain transcription factor MEC-3 is required for all higher order PVD branching and that one of its targets, the claudin-like membrane protein HPO-30, preferentially promotes outgrowth of pioneer branches. Here, we show that another MEC-3 target, the conserved TFIIA-like zinc finger transcription factor EGL-46, adopts the alternative role of specifying commissural dendrites. The known EGL-46 binding partner, the TEAD transcription factor EGL-44, is also required for PVD commissural branch outgrowth. Double mutants of hpo-30 and egl-44 show strong enhancement of the lateral branching defect with decreased numbers of both pioneer and commissural dendrites. Thus, HPO-30/Claudin and EGL-46/EGL-44 function downstream of MEC-3 and in parallel acting pathways to direct outgrowth of two distinct classes of PVD dendritic branches.
Assuntos
Dendritos/genética , Dendritos/metabolismo , Nociceptores/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/genética , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/fisiologia , Proteínas de Membrana/metabolismo , Nociceptores/fisiologia , Elementos Reguladores de Transcrição/genética , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Dedos de ZincoRESUMO
KEY POINTS: Classifying different subtypes of neurons in deep brain structures is a challenge and is crucial to better understand brain function. Understanding the diversity of neurons in the globus pallidus (GP), a brain region positioned to influence afferent and efferent information processing within basal ganglia, could help to explain a variety of brain functions. We present a classification of neurons from the GP using electrophysiological data from wild-type mice and confirmation using transgenic mice. This work will help researchers to identify specific neuronal subsets in the GP of wild-type mice when transgenic mice with labelled neurons are lacking. ABSTRACT: Classification of the extensive neuronal diversity in the brain is fundamental for neuroscience. The globus pallidus external segment (GPe), also referred to as the globus pallidus in rodents, is a large nucleus located in the core of the basal ganglia whose circuitry is implicated in action control, decision-making and reward. Although considerable progress has been made in characterizing different GPe neuronal subtypes, no work has directly attempted to characterize these neurons in non-transgenic mice. Here, we provide data showing the degree of overlap in expression of neuronal PAS domain protein (Npas1), LIM homeobox 6 (Lhx6), parvalbumin (PV) and transcription factor FoxP2 biomarkers in mouse GPe neurons. We used an unbiased statistical method to classify neurons based on electrophysiological properties from nearly 200 neurons from C57BL/6J mice. In addition, we examined the subregion distribution of the neuronal subtypes. Cluster analysis using firing rate and hyperpolarization-induced membrane potential sag variables revealed three distinct neuronal clusters: type 1, characterized by low firing rate and small sag potential; type 2, with low firing rate and larger sag potential; and type 3, with high firing rate and small sag potential. We used other electrophysiological variables and data from marker-expressing neurons to evaluate the clusters. We propose that the GPe GABAergic neurons should be classified into three subgroups: arkypallidal, low-firing prototypical and high-firing prototypical neurons. This work will help researchers identify GPe neuron subtypes when transgenic mice with labelled neurons cannot be used.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Biomarcadores/metabolismo , Fatores de Transcrição Forkhead/fisiologia , Neurônios GABAérgicos/classificação , Neurônios GABAérgicos/metabolismo , Globo Pálido/metabolismo , Proteínas com Homeodomínio LIM/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologia , Potenciais de Ação , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Parvalbuminas/metabolismoRESUMO
The expression of specific transcription factors determines the differentiated features of postmitotic neurons. However, the mechanism by which specific molecules determine neuronal cell fate and the extent to which the functions of transcription factors are conserved in evolution are not fully understood. In C. elegans, the cholinergic and peptidergic SMB sensory/inter/motor neurons innervate muscle quadrants in the head and control the amplitude of sinusoidal movement. Here we show that the LIM homeobox protein LIM-4 determines neuronal characteristics of the SMB neurons. In lim-4 mutant animals, expression of terminal differentiation genes, such as the cholinergic gene battery and the flp-12 neuropeptide gene, is completely abolished and thus the function of the SMB neurons is compromised. LIM-4 activity promotes SMB identity by directly regulating the expression of the SMB marker genes via a distinct cis-regulatory motif. Two human LIM-4 orthologs, LHX6 and LHX8, functionally substitute for LIM-4 in C. elegans. Furthermore, C. elegans LIM-4 or human LHX6 can induce cholinergic and peptidergic characteristics in the human neuronal cell lines. Our results indicate that the evolutionarily conserved LIM-4/LHX6 homeodomain proteins function in generation of precise neuronal subtypes.
Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Interneurônios/fisiologia , Proteínas com Homeodomínio LIM/fisiologia , Neurônios Motores/fisiologia , Células Receptoras Sensoriais/fisiologia , Fatores de Transcrição/fisiologia , Animais , Sequência de Bases , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Neurônios Colinérgicos/metabolismo , Sequência Consenso , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas do Tecido Nervoso/fisiologia , Estresse Fisiológico , TranscriptomaRESUMO
Current knowledge suggests that cortical sensory area identity is controlled by transcription factors (TFs) that specify area features in progenitor cells and subsequently their progeny in a one-step process. However, how neurons acquire and maintain these features is unclear. We have used conditional inactivation restricted to postmitotic cortical neurons in mice to investigate the role of the TF LIM homeobox 2 (Lhx2) in this process and report that in conditional mutant cortices area patterning is normal in progenitors but strongly affected in cortical plate (CP) neurons. We show that Lhx2 controls neocortical area patterning by regulating downstream genetic and epigenetic regulators that drive the acquisition of molecular properties in CP neurons. Our results question a strict hierarchy in which progenitors dominate area identity, suggesting a novel and more comprehensive two-step model of area patterning: In progenitors, patterning TFs prespecify sensory area blueprints. Sequentially, sustained function of alignment TFs, including Lhx2, is essential to maintain and to translate the blueprints into functional sensory area properties in cortical neurons postmitotically. Our results reemphasize critical roles for Lhx2 that acts as one of the terminal selector genes in controlling principal properties of neurons.
Assuntos
Proteínas com Homeodomínio LIM/fisiologia , Modelos Neurológicos , Neocórtex/crescimento & desenvolvimento , Neocórtex/fisiologia , Fatores de Transcrição/fisiologia , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Epigênese Genética , Proteínas com Homeodomínio LIM/deficiência , Proteínas com Homeodomínio LIM/genética , Camundongos , Camundongos Knockout , Mitose , Neocórtex/citologia , Vias Neurais/citologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genéticaRESUMO
Angioblasts of the developing vascular system require many signaling inputs to initiate their migration, proliferation and differentiation into endothelial cells. What is less studied is which intrinsic cell factors interpret these extrinsic signals. Here, we show the Lim homeodomain transcription factor islet2a (isl2a) is expressed in the lateral posterior mesoderm prior to angioblast migration. isl2a deficient angioblasts show disorganized migration to the midline to form axial vessels and fail to spread around the tailbud of the embryo. Isl2a morphants have fewer vein cells and decreased vein marker expression. We demonstrate that isl2a is required cell autonomously in angioblasts to promote their incorporation into the vein, and is permissive for vein identity. Knockout of isl2a results in decreased migration and proliferation of angioblasts during intersegmental artery growth. Since Notch signaling controls both artery-vein identity and tip-stalk cell formation, we explored the interaction of isl2a and Notch. We find that isl2a expression is negatively regulated by Notch activity, and that isl2a positively regulates flt4, a VEGF-C receptor repressed by Notch during angiogenesis. Thus Isl2a may act as an intermediate between Notch signaling and genetic programs controlling angioblast number and migration, placing it as a novel transcriptional regulator of early angiogenesis.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM/fisiologia , Neovascularização Fisiológica/fisiologia , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Artérias/embriologia , Movimento Celular , Técnicas de Inativação de Genes , Proteínas com Homeodomínio LIM/deficiência , Proteínas com Homeodomínio LIM/genética , Mesoderma , Morfolinos/genética , Morfolinos/toxicidade , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , RNA Mensageiro/genética , Receptores Notch/fisiologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transcrição Gênica , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Veias/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genéticaRESUMO
A central problem in development is how fates of closely related cells are segregated. Lineally related motoneurons (MNs) and interneurons (INs) express many genes in common yet acquire distinct fates. For example, in mouse and chick Lhx3 plays a pivotal role in the development of both cell classes. Here, we utilize the ability to recognize individual zebrafish neurons to examine the roles of Lhx3 and its paralog Lhx4 in the development of MNs and ventral INs. We show that Lhx3 and Lhx4 are expressed by post-mitotic axial MNs derived from the MN progenitor (pMN) domain, p2 domain progenitors and by several types of INs derived from pMN and p2 domains. In the absence of Lhx3 and Lhx4, early-developing primary MNs (PMNs) adopt a hybrid fate, with morphological and molecular features of both PMNs and pMN-derived Kolmer-Agduhr' (KA') INs. In addition, we show that Lhx3 and Lhx4 distinguish the fates of two pMN-derived INs. Finally, we demonstrate that Lhx3 and Lhx4 are necessary for the formation of late-developing V2a and V2b INs. In conjunction with our previous work, these data reveal that distinct transcription factor families are deployed in post-mitotic MNs to unequivocally assign MN fate and suppress the development of alternative pMN-derived IN fates.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Interneurônios/fisiologia , Proteínas com Homeodomínio LIM/fisiologia , Neurônios Motores/fisiologia , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Axônios/fisiologia , Linhagem da Célula , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/química , Neurônios/metabolismo , Oligonucleotídeos/química , Fenótipo , Estrutura Terciária de Proteína , Transdução de Sinais , Medula Espinal/embriologia , Peixe-Zebra/embriologiaRESUMO
RATIONALE: Treatment of sinus node disease with regenerative or cell-based therapies will require a detailed understanding of gene regulatory networks in cardiac pacemaker cells (PCs). OBJECTIVE: To characterize the transcriptome of PCs using RNA sequencing and to identify transcriptional networks responsible for PC gene expression. METHODS AND RESULTS: We used laser capture microdissection on a sinus node reporter mouse line to isolate RNA from PCs for RNA sequencing. Differential expression and network analysis identified novel sinoatrial node-enriched genes and predicted that the transcription factor Islet-1 is active in developing PCs. RNA sequencing on sinoatrial node tissue lacking Islet-1 established that Islet-1 is an important transcriptional regulator within the developing sinoatrial node. CONCLUSIONS: (1) The PC transcriptome diverges sharply from other cardiomyocytes; (2) Islet-1 is a positive transcriptional regulator of the PC gene expression program.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM/fisiologia , Miócitos Cardíacos/metabolismo , RNA Mensageiro/biossíntese , Nó Sinoatrial/citologia , Fatores de Transcrição/fisiologia , Animais , Feminino , Coração Fetal/citologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Genes Reporter , Átrios do Coração/citologia , Átrios do Coração/embriologia , Átrios do Coração/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas com Homeodomínio LIM/deficiência , Proteínas com Homeodomínio LIM/genética , Microdissecção e Captura a Laser , Masculino , Camundongos , Dados de Sequência Molecular , Contração Miocárdica , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , Nó Sinoatrial/embriologia , Nó Sinoatrial/metabolismo , Técnica de Subtração , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transcrição Gênica , TranscriptomaRESUMO
Hindbrain dorsal interneurons (HDIs) are implicated in receiving, processing, integrating, and transmitting sensory inputs from the periphery and spinal cord, including the vestibular, auditory, and proprioceptive systems. During development, multiple molecularly defined HDI types are set in columns along the dorsoventral axis, before migrating along well-defined trajectories to generate various brainstem nuclei. Major brainstem functions rely on the precise assembly of different interneuron groups and higher brain domains into common circuitries. Yet, knowledge regarding interneuron axonal patterns, synaptic targets, and the transcriptional control that govern their connectivity is sparse. The dB1 class of HDIs is formed in a district dorsomedial position along the hindbrain and gives rise to the inferior olive nuclei, dorsal cochlear nuclei, and vestibular nuclei. dB1 interneurons express various transcription factors (TFs): the pancreatic transcription factor 1a (Ptf1a), the homeobox TF-Lbx1 and the Lim-homeodomain (Lim-HD), and TF Lhx1 and Lhx5. To decipher the axonal and synaptic connectivity of dB1 cells, we have used advanced enhancer tools combined with conditional expression systems and the PiggyBac-mediated DNA transposition system in avian embryos. Multiple ipsilateral and contralateral axonal projections were identified ascending toward higher brain centers, where they formed synapses in the Purkinje cerebellar layer as well as at discrete midbrain auditory and vestibular centers. Decoding the mechanisms that instruct dB1 circuit formation revealed a fundamental role for Lim-HD proteins in regulating their axonal patterns, synaptic targets, and neurotransmitter choice. Together, this study provides new insights into the assembly and heterogeneity of HDIs connectivity and its establishment through the central action of Lim-HD governed programs.
Assuntos
Axônios/fisiologia , Proteínas com Homeodomínio LIM/fisiologia , Neurotransmissores/fisiologia , Rombencéfalo/citologia , Rombencéfalo/crescimento & desenvolvimento , Animais , Contagem de Células , Embrião de Galinha , Interneurônios/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Vias Neurais/citologia , Neurônios/fisiologia , Sinapses/fisiologia , Fatores de Transcrição/fisiologiaRESUMO
Spinal cord neurons respond to peripheral noxious stimuli and relay this information to higher brain centers, but the molecules controlling the assembly of such pathways are poorly known. In this study, we use the intersection of Lmx1b and Hoxb8::Cre expression in the spinal cord to genetically define nociceptive circuits. Specifically, we show that Lmx1b, previously shown to be expressed in glutamatergic dorsal horn neurons and critical for dorsal horn development, is expressed in nociceptive dorsal horn neurons and that its deletion results in the specific loss of excitatory dorsal horn neurons by apoptosis, without any effect on inhibitory neuron numbers. To assess the behavioral consequences of Lmx1b deletion in the spinal cord, we used the brain-sparing driver Hoxb8::Cre. We show that such a deletion of Lmxb1 leads to a robust reduction in sensitivity to mechanical and thermal noxious stimulation. Furthermore, such conditional mutant mice show a loss of a subpopulation of glutamatergic dorsal horn neurons, abnormal sensory afferent innervations, and reduced spinofugal innervation of the parabrachial nucleus and the periaqueductal gray, important nociceptive structures. Together, our results demonstrate an important role for the intersection of Lmx1b and Hoxb8::cre expression in the development of nociceptive dorsal horn circuits critical for mechanical and thermal pain processing.
Assuntos
Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/fisiologia , Nociceptividade/fisiologia , Células do Corno Posterior/fisiologia , Corno Dorsal da Medula Espinal/citologia , Corno Dorsal da Medula Espinal/metabolismo , Fatores de Transcrição/fisiologia , Animais , Apoptose , Deleção de Genes , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Proteínas com Homeodomínio LIM/biossíntese , Proteínas com Homeodomínio LIM/deficiência , Proteínas com Homeodomínio LIM/genética , Camundongos , Vias Neurais , Neurônios Aferentes , Núcleos Parabraquiais/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Células do Corno Posterior/citologia , Células do Corno Posterior/patologia , Corno Dorsal da Medula Espinal/crescimento & desenvolvimento , Corno Dorsal da Medula Espinal/patologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/deficiência , Fatores de Transcrição/genéticaRESUMO
OBJECTIVE: To elucidate the role of insulin gene enhancer protein ISL-1 (Islet-1) in angiogenesis and regulation of vascular endothelial growth factor (VEGF) expression in vitro and in vivo. METHODS: siRNA targeting Islet-1 was transfected to human umbilical vein endothelial cell lines (HUVECs). The expression of Islet-1 and VEGF in the cultured cells was measured using real-time PCR and immunoblotting. 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide; thiazolyl blue (MTT) assay was used to analyze the proliferation of HUVECs affected by Islet-1. Wound healing and Transwell assays were conducted to assess the motility of HUVECs. The formation of capillary-like structures was examined using growth factor-reduced Matrigel. siRNA targeting Islet-1 was intravitreally injected into the murine model of oxygen-induced retinopathy (OIR). Retinal neovascularization was evaluated with angiography using fluorescein-labeled dextran and then quantified histologically. Real-time PCR and immunoblotting were used to determine whether local Islet-1 silencing affected the expression of Islet-1 and VEGF in murine retinas. RESULTS: The expression of Islet-1 and VEGF in HUVECs was knocked down by siRNA. Reduced endogenous Islet-1 levels in cultured cells greatly inhibited the proliferation, migration, and tube formation in HUVECs in vitro. Retinal neovascularization following injection of Islet-1 siRNA was significantly reduced compared with that of the contralateral control eye. Histological analysis indicated that the neovascular nuclei protruding into the vitreous cavity were decreased. Furthermore, the Islet-1 and VEGF expression levels were downregulated in murine retinas treated with siRNA against Islet-1. CONCLUSIONS: Reducing the expression of endogenous Islet-1 inhibits proliferation, migration, and tube formation in vascular endothelial cells in vitro and suppresses retinal angiogenesis in vivo. Endogenous Islet-1 regulates angiogenesis via VEGF.
Assuntos
Modelos Animais de Doenças , Proteínas com Homeodomínio LIM/fisiologia , Neovascularização Retiniana/metabolismo , Fatores de Transcrição/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Movimento Celular , Proliferação de Células , Células Cultivadas , Colágeno , Combinação de Medicamentos , Angiofluoresceinografia , Células Endoteliais da Veia Umbilical Humana , Humanos , Immunoblotting , Laminina , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Proteoglicanas , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Neovascularização Retiniana/diagnóstico , TransfecçãoRESUMO
Hypothalamic tanycytes, a radial glial-like ependymal cell population that expresses numerous genes selectively enriched in embryonic hypothalamic progenitors and adult neural stem cells, have recently been observed to serve as a source of adult-born neurons in the mammalian brain. The genetic mechanisms that regulate the specification and maintenance of tanycyte identity are unknown, but are critical for understanding how these cells can act as adult neural progenitor cells. We observe that LIM (Lin-11, Isl-1, Mec-3)-homeodomain gene Lhx2 is selectively expressed in hypothalamic progenitor cells and tanycytes. To test the function of Lhx2 in tanycyte development, we used an intersectional genetic strategy to conditionally delete Lhx2 in posteroventral hypothalamic neuroepithelium, both embryonically and postnatally. We observed that tanycyte development was severely disrupted when Lhx2 function was ablated during embryonic development. Lhx2-deficient tanycytes lost expression of tanycyte-specific genes, such as Rax, while also displaying ectopic expression of genes specific to cuboid ependymal cells, such as Rarres2. Ultrastructural analysis revealed that mutant tanycytes exhibited a hybrid identity, retaining radial morphology while becoming multiciliated. In contrast, postnatal loss of function of Lhx2 resulted only in loss of expression of tanycyte-specific genes. Using chromatin immunoprecipitation, we further showed that Lhx2 directly regulated expression of Rax, an essential homeodomain factor for tanycyte development. This study identifies Lhx2 as a key intrinsic regulator of tanycyte differentiation, sustaining Rax-dependent activation of tanycyte-specific genes while also inhibiting expression of ependymal cell-specific genes. These findings provide key insights into the transcriptional regulatory network specifying this still poorly characterized cell type.
Assuntos
Diferenciação Celular/fisiologia , Células Ependimogliais/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Proteínas com Homeodomínio LIM/fisiologia , Neurogênese/fisiologia , Fatores de Transcrição/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos TransgênicosRESUMO
The precise formation of three-dimensional motor circuits is essential for movement control. Within these circuits, motoneurons (MNs) are specified from spinal progenitors by dorsoventral signals and distinct transcriptional programs. Different MN subpopulations have stereotypic cell body positions and show specific spatial axon trajectories. Our knowledge of MN axon outgrowth remains incomplete. Here, we report a zebrafish gene-trap mutant, short lightning (slg), in which prdm14 expression is disrupted. slg mutant embryos show shortened axons in caudal primary (CaP) MNs resulting in defective embryonic movement. Both the CaP neuronal defects and behavior abnormality of the mutants can be phenocopied by injection of a prdm14 morpholino into wild-type embryos. By removing a copy of the inserted transposon from homozygous mutants, prdm14 expression and normal embryonic movement were restored, confirming that loss of prdm14 expression accounts for the observed defects. Mechanistically, Prdm14 protein binds to the promoter region of islet2, a known transcription factor required for CaP development. Notably, disruption of islet2 function caused similar CaP axon outgrowth defects as observed in slg mutant embryos. Furthermore, overexpression of islet2 in slg mutant embryos rescued the shortened CaP axon phenotypes. Together, these data reveal that prdm14 regulates CaP axon outgrowth through activation of islet2 expression.