Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Nat Immunol ; 16(4): 426-33, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25729922

RESUMO

The sensing of microbe-associated molecular patterns (MAMPs) triggers innate immunity in animals and plants. Lipopolysaccharide (LPS) from Gram-negative bacteria is a potent MAMP for mammals, with the lipid A moiety activating proinflammatory responses via Toll-like receptor 4 (TLR4). Here we found that the plant Arabidopsis thaliana specifically sensed LPS of Pseudomonas and Xanthomonas. We isolated LPS-insensitive mutants defective in the bulb-type lectin S-domain-1 receptor-like kinase LORE (SD1-29), which were hypersusceptible to infection with Pseudomonas syringae. Targeted chemical degradation of LPS from Pseudomonas species suggested that LORE detected mainly the lipid A moiety of LPS. LORE conferred sensitivity to LPS onto tobacco after transient expression, which demonstrated a key function in LPS sensing and indicated the possibility of engineering resistance to bacteria in crop species.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas/imunologia , Imunidade Vegetal/genética , Proteínas Serina-Treonina Quinases/imunologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Lipopolissacarídeos/farmacologia , Proteínas Serina-Treonina Quinases/genética , Pseudomonas syringae/química , Pseudomonas syringae/imunologia , Transdução de Sinais , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Transgenes , Xanthomonas campestris/química , Xanthomonas campestris/imunologia
2.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649224

RESUMO

A number of plant-associated proteobacteria have LuxR family transcription factors that we refer to as PipR subfamily members. PipR proteins play roles in interactions between bacteria and their plant hosts, and some are important for bacterial virulence of plants. We identified an ethanolamine derivative, N-(2-hydroxyethyl)-2-(2-hydroxyethylamino) acetamide (HEHEAA), as a potent effector of PipR-mediated gene regulation in the plant endophyte Pseudomonas GM79. HEHEAA-dependent PipR activity requires an ATP-binding cassette-type active transport system, and the periplasmic substrate-binding protein (SBP) of that system binds HEHEAA. To begin to understand the molecular basis of PipR system responses to plant factors we crystallized a HEHEAA-responsive SBP in the free- and HEHEAA-bound forms. The SBP, which is similar to peptide-binding SBPs, was in a closed conformation. A narrow cavity at the interface of its two lobes is wide enough to bind HEHEAA, but it cannot accommodate peptides with side chains. The polar atoms of HEHEAA are recognized by hydrogen-bonding interactions, and additional SBP residues contribute to the binding site. This binding mode was confirmed by a structure-based mutational analysis. We also show that a closely related SBP from the plant pathogen Pseudomonas syringae pv tomato DC3000 does not recognize HEHEAA. However, a single amino acid substitution in the presumed effector-binding pocket of the P. syringae SBP converted it to a weak HEHEAA-binding protein. The P. syringae PipR depends on a plant effector for activity, and our findings imply that different PipR-associated SBPs bind different effectors.


Assuntos
Acetamidas/química , Proteínas de Bactérias/química , Pseudomonas syringae/química , Acetamidas/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Pseudomonas syringae/metabolismo
3.
BMC Plant Biol ; 21(1): 202, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906598

RESUMO

BACKGROUND: Lodging is one of the important factors causing maize yield. Plant height is an important factor in determining plant architecture in maize (Zea mays L.), which is closely related to lodging resistance under high planting density. Coronatine (COR), which is a phytotoxin and produced by the pathogen Pseudomonas syringae, is a functional and structural analogue of jasmonic acid (JA). RESULTS: In this study, we found COR, as a new plant growth regulator, could effectively reduce plant height and ear height of both hybrids (ZD958 and XY335) and inbred (B73) maize by inhibiting internode growth during elongation, thus improve maize lodging resistance. To study gene expression changes in internode after COR treatment, we collected spatio-temporal transcriptome of inbred B73 internode under normal condition and COR treatment, including the three different regions of internode (fixed, meristem and elongation regions) at three different developmental stages. The gene expression levels of the three regions at normal condition were described and then compared with that upon COR treatment. In total, 8605 COR-responsive genes (COR-RGs) were found, consist of 802 genes specifically expressed in internode. For these COR-RGs, 614, 870, 2123 of which showed expression changes in only fixed, meristem and elongation region, respectively. Both the number and function were significantly changed for COR-RGs identified in different regions, indicating genes with different functions were regulated at the three regions. Besides, we found more than 80% genes of gibberellin and jasmonic acid were changed under COR treatment. CONCLUSIONS: These data provide a gene expression profiling in different regions of internode development and molecular mechanism of COR affecting internode elongation. A putative schematic of the internode response to COR treatment is proposed which shows the basic process of COR affecting internode elongation. This research provides a useful resource for studying maize internode development and improves our understanding of the COR regulation mechanism based on plant height.


Assuntos
Aminoácidos/farmacologia , Giberelinas/farmacologia , Indenos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Pseudomonas syringae/química , Transcriptoma , Zea mays/genética , Ciclopentanos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Oxilipinas/farmacologia , Caules de Planta/efeitos dos fármacos , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
4.
Bioprocess Biosyst Eng ; 44(9): 1883-1890, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33974134

RESUMO

High temperatures, harsh pH conditions, and toxic chemicals involved in the conventional synthesis and coating of silica limit the fabrication of new-generation hybrid materials immobilizing live cells and biomolecules such as enzymes and drugs. This hinders the application of inorganic-organic biohybrid materials in various fields, including bioelectronics, energy generation, and biomedicine. Silicatein, an enzyme found in siliceous sponges, catalyzes the polymerization of silica under mild conditions, that is, at room temperature and neutral pH. Silicatein was fused with a chitin-binding domain (ChBD) to selectively bind the fusion silicatein on the chitin material and with a small soluble tag called InakC, a hydrophilic protein from Pseudomonas syringae, to control the unfavorable aggregation of silicatein. The fusion silicatein was soluble in aqueous media and was successfully found to be adsorbed on the chitin material. The immobilized fusion silicatein acted as an interfacial catalyst to fabricate silica on chitin under ambient conditions. This technique can be used to fabricate inorganic-organic hybrid materials to immobilize biomolecules and can be applied to develop novel biocatalytic systems, biosensors, and tissue culture scaffolds.


Assuntos
Proteínas de Bactérias/química , Quitina/química , Pseudomonas syringae/química , Proteínas Recombinantes de Fusão/química , Dióxido de Silício/química , Proteínas de Bactérias/genética , Catálise , Pseudomonas syringae/genética , Proteínas Recombinantes de Fusão/genética
5.
Microb Cell Fact ; 18(1): 29, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30732607

RESUMO

BACKGROUND: Cystoviruses have a phospholipid envelope around their nucleocapsid. Such a feature is unique among bacterial viruses (i.e., bacteriophages) and the mechanisms of virion envelopment within a bacterial host are largely unknown. The cystovirus Pseudomonas phage phi6 has an envelope that harbors five viral membrane proteins and phospholipids derived from the cytoplasmic membrane of its Gram-negative host. The phi6 major envelope protein P9 and the non-structural protein P12 are essential for the envelopment of its virions. Co-expression of P9 and P12 in a Pseudomonas host results in the formation of intracellular vesicles that are potential intermediates in the phi6 virion assembly pathway. This study evaluated the minimum requirements for the formation of phi6-specific vesicles and the possibility to localize P9-tagged heterologous proteins into such structures in Escherichia coli. RESULTS: Using transmission electron microscopy, we detected membranous structures in the cytoplasm of E. coli cells expressing P9. The density of the P9-specific membrane fraction was lower (approximately 1.13 g/cm3 in sucrose) than the densities of the bacterial cytoplasmic and outer membrane fractions. A P9-GFP fusion protein was used to study the targeting of heterologous proteins into P9 vesicles. Production of the GFP-tagged P9 vesicles required P12, which protected the fusion protein against proteolytic cleavage. Isolated vesicles contained predominantly P9-GFP, suggesting selective incorporation of P9-tagged fusion proteins into the vesicles. CONCLUSIONS: Our results demonstrate that the phi6 major envelope protein P9 can trigger formation of cytoplasmic membrane structures in E. coli in the absence of any other viral protein. Intracellular membrane structures are rare in bacteria, thus making them ideal chasses for cell-based vesicle production. The possibility to locate heterologous proteins into the P9-lipid vesicles facilitates the production of vesicular structures with novel properties. Such products have potential use in biotechnology and biomedicine.


Assuntos
Bacteriófago phi 6/química , Escherichia coli/genética , Proteínas da Matriz Viral/genética , Proteínas não Estruturais Virais/genética , Membrana Celular , Fosfolipídeos , Pseudomonas syringae/química , Pseudomonas syringae/genética , Pseudomonas syringae/virologia , Vírion
6.
J Am Chem Soc ; 140(14): 4905-4912, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29564892

RESUMO

Cold-adapted organisms produce antifreeze and ice-nucleating proteins to prevent and promote ice formation. The crystal structure of hyperactive bacterial antifreeze protein (AFP) MpAFP suggests that this protein binds ice through an anchored clathrate motif. It is not known whether other hyperactive AFPs and ice-nucleating proteins (INPs) use the same motif to recognize or nucleate ice. Here we use molecular simulations to elucidate the ice-binding motifs of hyperactive insect AFPs and a model INP of Pseudomonas syringae. We find that insect AFPs recognize ice through anchored clathrate motifs distinct from that of MpAFP. By performing simulations of ice nucleation by PsINP, we identify two distinct ice-binding sites on opposite sides of the ß-helix. The ice-nucleating sequences identified in the simulations agree with those previously proposed for the closely related INP of Pseudomonas borealis based on the structure of the protein. The simulations indicate that these sites have comparable ice-nucleating efficiency, but distinct binding motifs, controlled by the amino acid sequence: one is an anchored clathrate and the other ice-like. We conclude that anchored clathrate and ice-like motifs can be equally effective for binding proteins to ice and promoting ice nucleation.


Assuntos
Proteínas Anticongelantes/química , Proteínas da Membrana Bacteriana Externa/química , Gelo , Simulação de Dinâmica Molecular , Pseudomonas syringae/química
7.
BMC Microbiol ; 18(1): 199, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30486794

RESUMO

BACKGROUND: Pseudomonas syringae pv. actinidiae (PSA) is an emerging kiwifruit bacterial pathogen which since 2008 has caused considerable losses. No quorum sensing (QS) signaling molecule has yet been reported from PSA and the aim of this study was to identify possible intercellular signals produced by PSA. RESULTS: A secreted metabolome analysis resulted in the identification of 83 putative compounds, one of them was the nine carbon saturated dicarboxylic acid called azelaic acid. Azelaic acid, which is a nine-carbon (C9) saturated dicarboxylic acid, has been reported in plants as a mobile signal that primes systemic defenses. In addition, its structure,(which is associated with fatty acid biosynthesis) is similar to other known bacterial QS signals like the Diffusible Signal Facor (DSF). For these reason it could be acting as s signal molecule. Analytical and structural studies by NMR spectroscopy confirmed that in PSA spent supernatants azelaic acid was present. Quantification studies further revealed that 20 µg/L of were present and was also found in the spent supernatants of several other P. syringae pathovars. The RNAseq transcriptome study however did not determine whether azelaic acid could behave as a QS molecule. CONCLUSIONS: This study reports of the possible natural biosynthesis of azelaic acid by bacteria. The production of azelaic acid by P. syringae pathovars can be associated with plant-bacteria signaling.


Assuntos
Meios de Cultura/química , Ácidos Dicarboxílicos/análise , Pseudomonas syringae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meios de Cultura/metabolismo , Ácidos Dicarboxílicos/metabolismo , Espectroscopia de Ressonância Magnética , Pseudomonas syringae/química , Pseudomonas syringae/genética , Transcriptoma
8.
Microb Cell Fact ; 17(1): 31, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29482589

RESUMO

BACKGROUND: Syringolin, synthesized by a mixed non-ribosomal peptide synthetase/polyketide synthetase in Pseudomonas syringae pv. syringae (Pss) B728a, is a novel eukaryotic proteasome inhibitor. Meanwhile, directly modifying large fragments in the PKS/NRPS gene cluster through traditional DNA engineering techniques is very difficult. In this study, we directly cloned the syl gene cluster from Pss B301D-R via Red/ET recombineering to effectively express syringolin in heterologous hosts. RESULTS: A 22 kb genomic fragment containing the sylA-sylE gene cluster was cloned into the pASK vector, and the obtained recombinant plasmid was transferred into Streptomyces coelicolor and Streptomyces lividans for the heterologous expression of syringolin. Transcriptional levels of recombinant syl gene in S. coelicolor M145 and S. lividans TK24 were evaluated via RT-PCR and the production of syringolin compounds was detected via LC-MS analysis. The extracts of the engineered bacteria showed cytotoxic activity to B16, 4T1, Meth-A, and HeLa tumor cells. It is noteworthy that the syringolin displayed anticancer activity against C57BL/6 mice with B16 murine melanoma tumor cells. Together, our results herein demonstrate the potential of syrinolin as effective antitumor agent that can treat various cancers without apparent adverse effects. CONCLUSIONS: This present study is the first to report the heterologous expression of the entire syl gene cluster in Streptomyces strains and the successful expression of syringolin in both S. coelicolor M145 and S. lividans TK24. Syringolin derivatives demonstrated high cytotoxicity in vitro and in vivo. Hence, this paper provided an important foundation for the discovery and production of new antitumor compounds.


Assuntos
Antineoplásicos/farmacologia , Peptídeos Cíclicos/farmacologia , Pseudomonas syringae/química , Animais , Clonagem Molecular , Engenharia Genética , Células HeLa , Humanos , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Família Multigênica , Peptídeos Cíclicos/genética , Pseudomonas syringae/genética , Recombinação Genética , Streptomyces coelicolor/metabolismo , Streptomyces lividans/metabolismo
9.
J Am Chem Soc ; 139(34): 11980-11988, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28780854

RESUMO

The ethylene-forming enzyme (EFE) from Pseudomonas syringae pv. phaseolicola PK2 is a member of the mononuclear nonheme Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenase superfamily. EFE converts 2OG into ethylene plus three CO2 molecules while also catalyzing the C5 hydroxylation of l-arginine (l-Arg) driven by the oxidative decarboxylation of 2OG to form succinate and CO2. Here we report 11 X-ray crystal structures of EFE that provide insight into the mechanisms of these two reactions. Binding of 2OG in the absence of l-Arg resulted in predominantly monodentate metal coordination, distinct from the typical bidentate metal-binding species observed in other family members. Subsequent addition of l-Arg resulted in compression of the active site, a conformational change of the carboxylate side chain metal ligand to allow for hydrogen bonding with the substrate, and creation of a twisted peptide bond involving this carboxylate and the following tyrosine residue. A reconfiguration of 2OG achieves bidentate metal coordination. The dioxygen binding site is located on the metal face opposite to that facing l-Arg, thus requiring reorientation of the generated ferryl species to catalyze l-Arg hydroxylation. Notably, a phenylalanyl side chain pointing toward the metal may hinder such a ferryl flip and promote ethylene formation. Extensive site-directed mutagenesis studies supported the importance of this phenylalanine and confirmed the essential residues used for substrate binding and catalysis. The structural and functional characterization described here suggests that conversion of 2OG to ethylene, atypical among Fe(II)/2OG oxygenases, is facilitated by the binding of l-Arg which leads to an altered positioning of the carboxylate metal ligand, a resulting twisted peptide bond, and the off-line geometry for dioxygen coordination.


Assuntos
Compostos Ferrosos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Liases/metabolismo , Pseudomonas syringae/enzimologia , Arginina/metabolismo , Sítios de Ligação , Dióxido de Carbono/metabolismo , Domínio Catalítico , Hidroxilação , Liases/química , Modelos Moleculares , Conformação Proteica , Pseudomonas syringae/química , Pseudomonas syringae/metabolismo , Especificidade por Substrato
10.
Langmuir ; 32(36): 9229-36, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27495973

RESUMO

Ice nucleation is of fundamental significance in many areas, including atmospheric science, food technology, and cryobiology. In this study, we investigated the ice-nucleation characteristics of picoliter-sized drops consisting of different D2O and H2O mixtures with and without the ice-nucleating bacteria Pseudomonas syringae. We also studied the effects of commonly used cryoprotectants such as ethylene glycol, propylene glycol, and trehalose on the nucleation characteristics of D2O and H2O mixtures. The results show that the median freezing temperature of the suspension containing 1 mg/mL of a lyophilized preparation of P. syringae is as high as -4.6 °C for 100% D2O, compared to -8.9 °C for 100% H2O. As the D2O concentration increases every 25% (v/v), the profile of the ice-nucleation kinetics of D2O + H2O mixtures containing 1 mg/mL Snomax shifts by about 1 °C, suggesting an ideal mixing behavior of D2O and H2O. Furthermore, all of the cryoprotectants investigated in this study are found to depress the freezing phenomenon. Both the homogeneous and heterogeneous freezing temperatures of these aqueous solutions depend on the water activity and are independent of the nature of the solute. These findings enrich our fundamental knowledge of D2O-related ice nucleation and suggest that the combination of D2O and ice-nucleating agents could be a potential self-ice-nucleating formulation. The implications of self-nucleation include a higher, precisely controlled ice seeding temperature for slow freezing that would significantly improve the viability of many ice-assisted cryopreservation protocols.


Assuntos
Crioprotetores/química , Óxido de Deutério/química , Gelo , Óleos/química , Pseudomonas syringae/química , Emulsões
11.
Mikrobiol Z ; 78(5): 65-74, 2016.
Artigo em Russo | MEDLINE | ID: mdl-30141866

RESUMO

Aim: To investigate the effect of Pseudomonas syringae pv. atrofaciens strains lipopolysaccharides (LPS) on some physiological and biochemical processes in the Allium cepa cells. Methods: LPS was extracted with 0.85 % NaCl solution. To study the phytotoxicity, onion seeds were germinated in the LPS solution and determined their germination and root length. Mutagenic activity of LPS was determined in A. cepa-test. Enzyme activity and malondialdehyde content determined using classical methods. Results: It is established, that P. syringae pv. atrofaciens LPS inhibit the processes of plant cell division and induce destructive changes of chromosomes in the cells of Allium cepa root apical meristem. After treatment, the A. cepa seedlings LPS of virulent strain P. syringae pv. atrofacіens 9400 at concentrations ranging from 1.0 to 10.0 mg/ml peroxidase activity increases. LPS of avirulent strain P. syringae pv. atrofacіens 9417 signifcantly increases the peroxidase activity at concentrations 10.0; 5.0 and 2.5 mg/ml and it does not affect at a concentration 1.0 mg/ml. The onion seedlings did not observe statistically signifcant changes catalase activity when exposed to LPS solutions. The content of malonaldehyde in A. cepa seedlings increased after LPS P. syringae treatment in concentrations of 5.0 and 2.5 mg/ml. The content of this product of lipid peroxidation in these conditions exceeds the benchmark of 1.8­3.7 times. Conclusions: It is established that the action of LPS P. syringae pv. atrofaciens increased peroxidase activity and increases the content of malondialdehyde in the plant cells. Phytotoxic and genotoxic activity of P. syringae pv. atrofaciens LPS may be due to the appearance of reactive oxygen species under the infuence of studied biologically active substances.


Assuntos
Lipopolissacarídeos/química , Cebolas/efeitos dos fármacos , Células Vegetais/efeitos dos fármacos , Pseudomonas syringae/química , Malondialdeído/análise , Cebolas/citologia , Espécies Reativas de Oxigênio/análise
12.
J Struct Biol ; 189(3): 276-80, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25681297

RESUMO

Plants have evolved to protect themselves against pathogen attack; in these competitions, many Gram-negative bacteria translocate pathogen-originated proteins known as effectors directly into plant cells to interfere with cellular processes. Effector-triggered immunity (ETI) is a plant defense mechanism in which plant resistance proteins recognize the presence of effectors and initiate immune responses. Enhanced disease susceptibility 1 (EDS1) in Arabidopsis thaliana serves as a central node protein for basal immune resistance and ETI by interacting dynamically with other immune regulatory or resistance proteins. Recently, the effector HopA1 from Pseudomonas syringae was shown to affect these EDS1 complexes by binding EDS1 directly and activating the immune response signaling pathway. Here, we report the crystal structure of the effector HopA1 from P. syringae pv. syringae strain 61 and tomato strain DC3000. HopA1, a sequence-unrelated protein to EDS1, has an α+ß fold in which the central antiparallel ß-sheet is flanked by helices. A similar structural domain, an α/ß fold, is one of the two domains in both EDS1 and the EDS1-interacting protein SAG101, and plays a crucial role in forming the EDS1 complex. Further analyses suggest structural similarity and differences between HopA1 and the α/ß fold of SAG101, as well as between two HopA1s from different pathovars. Our structural analysis provides a foundation for understanding the molecular basis of the effect of HopA1 on plant immunity.


Assuntos
Proteínas de Bactérias/química , Pseudomonas syringae/química , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Cristalografia por Raios X , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína
13.
J Proteome Res ; 13(3): 1345-58, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24437924

RESUMO

Outer membrane vesicles (OMVs) of Gram-negative bacteria form an important aspect of bacterial physiology as they are involved in various functions essential for their survival. The OMVs of the Antarctic bacterium Pseudomonas syringae Lz4W were isolated, and the proteins and lipids they contain were identified. The matrix-assisted laser desorption/ionization time of flight (MALDI-TOF/TOF) analysis revealed that phosphatidylethanolamines and phosphatidylglycerols are the main lipid components. The proteins of these vesicles were identified by separating them by one-dimensional gel electrophoresis and liquid chromatography coupled to electrospray ionization tandem mass spectrometry (ESI-MS/MS). They are composed of outer membrane and periplasmic proteins according to the subcellular localization predictions by Psortb v.3 and Cello V2.5. The functional annotation and gene ontology of these proteins provided hints for various functions attributed to OMVs and suggested a potential mechanism to respond to the extracellular environmental changes. The OMVs were found to protect the producer organism against the membrane active antibiotics colistin and melittin but not from streptomycin. The 1-N-phenylnapthylamine (NPN)-uptake assay revealed that the OMVs protect the bacterium from membrane active antibiotics by scavenging them and also showed that membrane and protein packing of the OMVs was similar to the parent bacterium. The sequestering depends on the composition and organization of lipids and proteins in the OMVs.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/análise , Fosfatidiletanolaminas/isolamento & purificação , Fosfatidilgliceróis/isolamento & purificação , Proteoma/análise , Pseudomonas syringae/química , 1-Naftilamina/análogos & derivados , 1-Naftilamina/metabolismo , Adaptação Fisiológica , Compostos de Anilina/metabolismo , Colistina/farmacologia , Meliteno/farmacologia , Anotação de Sequência Molecular , Pseudomonas syringae/efeitos dos fármacos , Pseudomonas syringae/metabolismo , Estreptomicina/farmacologia
14.
Biochem Biophys Res Commun ; 452(3): 636-41, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25193694

RESUMO

Certain plant-associating bacteria produce ice nucleation proteins (INPs) which allow the crystallization of water at high subzero temperatures. Many of these microbes are considered plant pathogens since the formed ice can damage tissues, allowing access to nutrients. Intriguingly, certain plants that host these bacteria synthesize antifreeze proteins (AFPs). Once freezing has occurred, plant AFPs likely function to inhibit the growth of large damaging ice crystals. However, we postulated that such AFPs might also serve as defensive mechanisms against bacterial-mediated ice nucleation. Recombinant AFP derived from the perennial ryegrass Lolium perenne (LpAFP) was combined with INP preparations originating from the grass epiphyte, Pseudomonas syringae. The presence of INPs had no effect on AFP activity, including thermal hysteresis and ice recrystallization inhibition. Strikingly, the ice nucleation point of the INP was depressed up to 1.9°C in the presence of LpAFP, but a recombinant fish AFP did not lower the INP-imposed freezing point. Assays with mutant LpAFPs and the visualization of bacterially-displayed fluorescent plant AFP suggest that INP and LpAFP can interact. Thus, we postulate that in addition to controlling ice growth, plant AFPs may also function as a defensive strategy against the damaging effects of ice-nucleating bacteria.


Assuntos
Proteínas Anticongelantes/química , Proteínas da Membrana Bacteriana Externa/química , Lolium/química , Proteínas de Plantas/química , Pseudomonas syringae/química , Proteínas Recombinantes de Fusão/química , Proteínas Anticongelantes/genética , Proteínas Anticongelantes/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Bioensaio , Cristalização , Congelamento , Expressão Gênica , Gelo , Cinética , Lolium/genética , Lolium/metabolismo , Lolium/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pseudomonas syringae/genética , Pseudomonas syringae/crescimento & desenvolvimento , Pseudomonas syringae/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Temperatura
15.
Nature ; 452(7188): 755-8, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18401409

RESUMO

Pathogenic bacteria often use effector molecules to increase virulence. In most cases, the mode of action of effectors remains unknown. Strains of Pseudomonas syringae pv. syringae (Pss) secrete syringolin A (SylA), a product of a mixed non-ribosomal peptide/polyketide synthetase, in planta. Here we identify SylA as a virulence factor because a SylA-negative mutant in Pss strain B728a obtained by gene disruption was markedly less virulent on its host, Phaseolus vulgaris (bean). We show that SylA irreversibly inhibits all three catalytic activities of eukaryotic proteasomes, thus adding proteasome inhibition to the repertoire of modes of action of virulence factors. The crystal structure of the yeast proteasome in complex with SylA revealed a novel mechanism of covalent binding to the catalytic subunits. Thus, SylA defines a new class of proteasome inhibitors that includes glidobactin A (GlbA), a structurally related compound from an unknown species of the order Burkholderiales, for which we demonstrate a similar proteasome inhibition mechanism. As proteasome inhibitors are a promising class of anti-tumour agents, the discovery of a novel family of inhibitory natural products, which we refer to as syrbactins, may also have implications for the development of anti-cancer drugs. Homologues of SylA and GlbA synthetase genes are found in some other pathogenic bacteria, including the human pathogen Burkholderia pseudomallei, the causative agent of melioidosis. It is thus possible that these bacteria are capable of producing proteasome inhibitors of the syrbactin class.


Assuntos
Células Eucarióticas/enzimologia , Peptídeos Cíclicos/farmacologia , Phaseolus/microbiologia , Inibidores de Proteassoma , Pseudomonas syringae/metabolismo , Fatores de Virulência/farmacologia , Antineoplásicos/classificação , Antineoplásicos/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Burkholderia pseudomallei/genética , Catálise/efeitos dos fármacos , Cristalização , Humanos , Papaína/metabolismo , Peptídeos Cíclicos/classificação , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Phaseolus/enzimologia , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Pseudomonas syringae/química , Pseudomonas syringae/genética , Saccharomyces cerevisiae/enzimologia , Especificidade por Substrato , Tripsina/metabolismo , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
16.
Sci Adv ; 10(27): eadn6606, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959312

RESUMO

Ice-nucleating proteins (INpro) trigger the freezing of supercooled water droplets relevant to atmospheric, biological, and technological applications. The high ice nucleation activity of INpro isolated from the bacteria Pseudomonas syringae could be linked to the aggregation of proteins at the bacterial membrane or at the air-water interface (AWI) of droplets. Here, we imaged freezing onsets, providing direct evidence of these proposed mechanisms. High-speed cryo-microscopy identified the onset location of freezing in droplets between two protein-repellent glass slides. INpro from sterilized P. syringae (Snomax) statistically favored nucleation at the AWI of the droplets. Removing cellular fragments by filtration or adding surfactants increased the frequency of nucleation events at the AWI. On the other hand, cultivated intact bacteria cells or lipid-free droplets nucleated ice without an affinity to the AWI. Overall, we provide visual evidence that INpro from P. syringae trigger freezing at hydrophobic interfaces, such as the AWI or the bacterial membrane, with important mechanistic implications for applications of INpro.


Assuntos
Congelamento , Interações Hidrofóbicas e Hidrofílicas , Pseudomonas syringae , Pseudomonas syringae/metabolismo , Pseudomonas syringae/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Gelo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
17.
Nat Struct Mol Biol ; 31(5): 767-776, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38321146

RESUMO

The bacterial cyclic oligonucleotide-based antiphage signaling system (CBASS) is similar to the cGAS-STING system in humans, containing an enzyme that synthesizes a cyclic nucleotide on viral infection and an effector that senses the second messenger for the antiviral response. Cap5, containing a SAVED domain coupled to an HNH DNA endonuclease domain, is the most abundant CBASS effector, yet the mechanism by which it becomes activated for cell killing remains unknown. We present here high-resolution structures of full-length Cap5 from Pseudomonas syringae (Ps) with second messengers. The key to PsCap5 activation is a dimer-to-tetramer transition, whereby the binding of second messenger to dimer triggers an open-to-closed transformation of the SAVED domains, furnishing a surface for assembly of the tetramer. This movement propagates to the HNH domains, juxtaposing and converting two HNH domains into states for DNA destruction. These results show how Cap5 effects bacterial cell suicide and we provide proof-in-principle data that the CBASS can be extrinsically activated to limit bacterial infections.


Assuntos
Proteínas de Bactérias , Endonucleases , Pseudomonas syringae , Pseudomonas syringae/química , Pseudomonas syringae/enzimologia , Pseudomonas syringae/virologia , Proteínas de Bactérias/química , Endonucleases/química , Ligantes , Modelos Químicos , Ativação Enzimática , DNA/química , DNA/metabolismo , Nucleotídeos Cíclicos/química , Fosfatos de Dinucleosídeos/química , Apoproteínas/química , Bacteriófagos/fisiologia
18.
J Bacteriol ; 195(18): 4129-37, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23852863

RESUMO

Escherichia coli microcin B (Ec-McB) is a posttranslationally modified antibacterial peptide containing multiple oxazole and thiazole heterocycles and targeting the DNA gyrase. We have found operons homologous to the Ec-McB biosynthesis-immunity operon mcb in recently sequenced genomes of several pathovars of the plant pathogen Pseudomonas syringae, and we produced two variants of P. syringae microcin B (Ps-McB) in E. coli by heterologous expression. Like Ec-McB, both versions of Ps-McB target the DNA gyrase, but unlike Ec-McB, they are active against various species of the Pseudomonas genus, including human pathogen P. aeruginosa. Through analysis of Ec-McB/Ps-McB chimeras, we demonstrate that three centrally located unmodified amino acids of Ps-McB are sufficient to determine activity against Pseudomonas, likely by allowing specific recognition by a transport system that remains to be identified. The results open the way for construction of McB-based antibacterial molecules with extended spectra of biological activity.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/química , Bacteriocinas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas syringae/química , Pseudomonas syringae/metabolismo , Pseudomonas/efeitos dos fármacos , Inibidores da Topoisomerase II , Antibacterianos/biossíntese , Antibacterianos/química , Bacteriocinas/biossíntese , Bacteriocinas/genética , Clonagem Molecular , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , Óperon , Pseudomonas/classificação , Pseudomonas syringae/genética , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
19.
BMC Plant Biol ; 13: 65, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23597256

RESUMO

BACKGROUND: Pseudomonas syringae pv. tabaci (Pstab) is the causal agent of wildfire disease in tobacco plants. Several pathovars of Pseudomonas syringae produce a phytotoxic extracellular metabolite called coronatine (COR). COR has been shown to suppress plant defense responses. Interestingly, Pstab does not produce COR but still actively suppresses early plant defense responses. It is not clear if Pstab produces any extracellular metabolites that actively suppress early defense during bacterial pathogenesis. RESULTS: We found that the Pstab extracellular metabolite extracts (Pstab extracts) remarkably suppressed stomatal closure and nonhost hypersensitive response (HR) cell death induced by a nonhost pathogen, P. syringae pv. tomato T1 (Pst T1), in Nicotiana benthamiana. We also found that the accumulation of nonhost pathogens, Pst T1 and P. syringae pv. glycinea (Psgly), was increased in N. benthamiana plants upon treatment with Pstab extracts . The HR cell death induced by Pathogen-Associated Molecular Pattern (INF1), gene-for-gene interaction (Pto/AvrPto and Cf-9/AvrCf-9) and ethanol was not delayed or suppressed by Pstab extracts. We performed metabolite profiling to investigate the extracellular metabolites from Pstab using UPLC-qTOF-MS and identified 49 extracellular metabolites from the Pstab supernatant culture. The results from gene expression profiling of PR-1, PR-2, PR-5, PDF1.2, ABA1, COI1, and HSR203J suggest that Pstab extracellular metabolites may interfere with SA-mediated defense pathways. CONCLUSIONS: In this study, we found that Pstab extracts suppress plant defense responses such as stomatal closure and nonhost HR cell death induced by the nonhost bacterial pathogen Pst T1 in N. benthamiana.


Assuntos
Espaço Extracelular/metabolismo , Nicotiana/microbiologia , Doenças das Plantas/imunologia , Pseudomonas syringae/metabolismo , Regulação para Baixo , Espaço Extracelular/química , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Pseudomonas syringae/química , Nicotiana/imunologia
20.
Appl Environ Microbiol ; 79(16): 5023-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23770908

RESUMO

Functional peptides are expected to be beneficial compounds that improve our quality of life. To address the growing need for functional peptides, we have examined peptide synthesis by using microbial enzymes. l-Amino acid ligase (Lal) catalyzes the condensation of unprotected amino acids in an ATP-dependent manner and is applicable to fermentative production. Hence, Lal is a promising enzyme to achieve cost-effective synthesis. To obtain a Lal with novel substrate specificity, we focused on the putative Lal involved in the biosynthesis of the dipeptidic phytotoxin designated tabtoxin. The tabS gene was cloned from Pseudomonas syringae NBRC14081 and overexpressed in Escherichia coli cells. The recombinant TabS protein produced showed the broadest substrate specificity of any known Lal; it detected 136 of 231 combinations of amino acid substrates when dipeptide synthesis was examined. In addition, some new substrate specificities were identified and unusual amino acids, e.g., l-pipecolic acid, hydroxy-l-proline, and ß-alanine, were found to be acceptable substrates. Furthermore, kinetic analysis and monitoring of the reactions over a short time revealed that TabS showed distinct substrate selectivity at the N and C termini, which made it possible to specifically synthesize a peptide without by-products such as homopeptides and heteropeptides with the reverse sequence. TabS specifically synthesized the following functional peptides, including their precursors: l-arginyl-l-phenylalanine (antihypertensive effect; yield, 62%), l-leucyl-l-isoleucine (antidepressive effect; yield, 77%), l-glutaminyl-l-tryptophan (precursor of l-glutamyl-l-tryptophan, which has antiangiogenic activity; yield, 54%), l-leucyl-l-serine (enhances saltiness; yield, 83%), and l-glutaminyl-l-threonine (precursor of l-glutamyl-l-threonine, which enhances saltiness; yield, 96%). Furthermore, our results also provide new insights into tabtoxin biosynthesis.


Assuntos
Azetidinas/química , Dipeptídeos/genética , Pseudomonas syringae/genética , Azetidinas/metabolismo , Clonagem Molecular , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Dipeptídeos/química , Dipeptídeos/metabolismo , Escherichia coli/genética , Cinética , Ligases/química , Ligases/genética , Ligases/metabolismo , Dados de Sequência Molecular , Família Multigênica , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Pseudomonas syringae/química , Pseudomonas syringae/enzimologia , Pseudomonas syringae/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Análise de Sequência de Proteína , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA