Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Nucleic Acids Res ; 51(W1): W281-W288, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37158254

RESUMO

Recent advances have shown that some biologically active non-coding RNAs (ncRNAs) are actually translated into polypeptides that have a physiological function as well. This paradigm shift requires adapted computational methods to predict this new class of 'bifunctional RNAs'. Previously, we developed IRSOM, an open-source algorithm to classify non-coding and coding RNAs. Here, we use the binary statistical model of IRSOM as a ternary classifier, called IRSOM2, to identify bifunctional RNAs as a rejection of the two other classes. We present its easy-to-use web interface, which allows users to perform predictions on large datasets of RNA sequences in a short time, to re-train the model with their own data, and to visualize and analyze the classification results thanks to the implementation of self-organizing maps (SOM). We also propose a new benchmark of experimentally validated RNAs that play both protein-coding and non-coding roles, in different organisms. Thus, IRSOM2 showed promising performance in detecting these bifunctional transcripts among ncRNAs of different types, such as circRNAs and lncRNAs (in particular those of shorter lengths). The web server is freely available on the EvryRNA platform: https://evryrna.ibisc.univ-evry.fr.


Assuntos
Algoritmos , Biologia Computacional , Simulação por Computador , RNA , RNA Longo não Codificante/química , Análise de Sequência de RNA/métodos , Biologia Computacional/instrumentação , Biologia Computacional/métodos , RNA/química , RNA/classificação , Internet
2.
Nucleic Acids Res ; 50(D1): D183-D189, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34850125

RESUMO

LncACTdb 3.0 is a comprehensive database of experimentally supported interactions among competing endogenous RNA (ceRNA) and the corresponding personalized networks contributing to precision medicine. LncACTdb 3.0 is freely available at http://bio-bigdata.hrbmu.edu.cn/LncACTdb or http://www.bio-bigdata.net/LncACTdb. We have updated the LncACTdb 3.0 database with several new features, including (i) 5669 experimentally validated ceRNA interactions across 25 species and 537 diseases/phenotypes through manual curation of published literature, (ii) personalized ceRNA interactions and networks for 16 228 patients from 62 datasets in TCGA and GEO, (iii) sub-cellular and extracellular vesicle locations of ceRNA manually curated from literature and data sources, (iv) more than 10 000 experimentally supported long noncoding RNA (lncRNA) biomarkers associated with tumor diagnosis and therapy, and (v) lncRNA/mRNA/miRNA expression profiles with clinical and pathological information of thousands of cancer patients. A panel of improved tools has been developed to explore the effects of ceRNA on individuals with specific pathological backgrounds. For example, a network tool provides a comprehensive view of lncRNA-related, patient-specific, and custom-designed ceRNA networks. LncACTdb 3.0 will provide novel insights for further studies of complex diseases at the individual level and will facilitate the development of precision medicine to treat such diseases.


Assuntos
Bases de Dados Genéticas , Medicina de Precisão , RNA/genética , Software , Biologia Computacional , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Humanos , RNA/classificação
3.
Nucleic Acids Res ; 50(D1): D326-D332, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718726

RESUMO

Establishing an RNA-associated interaction repository facilitates the system-level understanding of RNA functions. However, as these interactions are distributed throughout various resources, an essential prerequisite for effectively applying these data requires that they are deposited together and annotated with confidence scores. Hence, we have updated the RNA-associated interaction database RNAInter (RNA Interactome Database) to version 4.0, which is freely accessible at http://www.rnainter.org or http://www.rna-society.org/rnainter/. Compared with previous versions, the current RNAInter not only contains an enlarged data set, but also an updated confidence scoring system. The merits of this 4.0 version can be summarized in the following points: (i) a redefined confidence scoring system as achieved by integrating the trust of experimental evidence, the trust of the scientific community and the types of tissues/cells, (ii) a redesigned fully functional database that enables for a more rapid retrieval and browsing of interactions via an upgraded user-friendly interface and (iii) an update of entries to >47 million by manually mining the literature and integrating six database resources with evidence from experimental and computational sources. Overall, RNAInter will provide a more comprehensive and readily accessible RNA interactome platform to investigate the regulatory landscape of cellular RNAs.


Assuntos
DNA/genética , Bases de Dados de Ácidos Nucleicos , Proteínas de Ligação a RNA/genética , RNA/genética , Interface Usuário-Computador , Animais , Bactérias/genética , Bactérias/metabolismo , DNA/metabolismo , Conjuntos de Dados como Assunto , Humanos , Internet , RNA/classificação , RNA/metabolismo , Proteínas de Ligação a RNA/classificação , Proteínas de Ligação a RNA/metabolismo , Projetos de Pesquisa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vírus/genética , Vírus/metabolismo
4.
Nucleic Acids Res ; 50(D1): D347-D355, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718734

RESUMO

Liquid-liquid phase separation (LLPS) is critical for assembling membraneless organelles (MLOs) such as nucleoli, P-bodies, and stress granules, which are involved in various physiological processes and pathological conditions. While the critical role of RNA in the formation and the maintenance of MLOs is increasingly appreciated, there is still a lack of specific resources for LLPS-related RNAs. Here, we presented RPS (http://rps.renlab.org), a comprehensive database of LLPS-related RNAs in 20 distinct biomolecular condensates from eukaryotes and viruses. Currently, RPS contains 21,613 LLPS-related RNAs with three different evidence types, including 'Reviewed', 'High-throughput' and 'Predicted'. RPS provides extensive annotations of LLPS-associated RNA properties, including sequence features, RNA structures, RNA-protein/RNA-RNA interactions, and RNA modifications. Moreover, RPS also provides comprehensive disease annotations to help users to explore the relationship between LLPS and disease. The user-friendly web interface of RPS allows users to access the data efficiently. In summary, we believe that RPS will serve as a valuable platform to study the role of RNA in LLPS and further improve our understanding of the biological functions of LLPS.


Assuntos
Bases de Dados Genéticas , Organelas/química , Transição de Fase , Proteínas de Ligação a RNA/química , RNA/química , Software , Animais , Sequência de Bases , Doença/genética , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Humanos , Internet , Anotação de Sequência Molecular , Organelas/metabolismo , RNA/classificação , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de RNA , Vírus/química , Vírus/genética , Vírus/metabolismo
5.
Nucleic Acids Res ; 50(D1): D340-D346, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718740

RESUMO

Liquid-liquid phase separation (LLPS) partitions cellular contents, underlies the formation of membraneless organelles and plays essential biological roles. To date, most of the research on LLPS has focused on proteins, especially RNA-binding proteins. However, accumulating evidence has demonstrated that RNAs can also function as 'scaffolds' and play essential roles in seeding or nucleating the formation of granules. To better utilize the knowledge dispersed in published literature, we here introduce RNAPhaSep (http://www.rnaphasep.cn), a manually curated database of RNAs undergoing LLPS. It contains 1113 entries with experimentally validated RNA self-assembly or RNA and protein co-involved phase separation events. RNAPhaSep contains various types of information, including RNA information, protein information, phase separation experiment information and integrated annotation from multiple databases. RNAPhaSep provides a valuable resource for exploring the relationship between RNA properties and phase behaviour, and may further enhance our comprehensive understanding of LLPS in cellular functions and human diseases.


Assuntos
Bases de Dados de Ácidos Nucleicos , Organelas/química , Transição de Fase , Proteínas de Ligação a RNA/química , RNA/química , Software , Animais , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Humanos , Internet , Anotação de Sequência Molecular , Organelas/metabolismo , Plantas/química , Plantas/genética , Plantas/metabolismo , RNA/classificação , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911763

RESUMO

The ability to interrogate total RNA content of single cells would enable better mapping of the transcriptional logic behind emerging cell types and states. However, current single-cell RNA-sequencing (RNA-seq) methods are unable to simultaneously monitor all forms of RNA transcripts at the single-cell level, and thus deliver only a partial snapshot of the cellular RNAome. Here we describe Smart-seq-total, a method capable of assaying a broad spectrum of coding and noncoding RNA from a single cell. Smart-seq-total does not require splitting the RNA content of a cell and allows the incorporation of unique molecular identifiers into short and long RNA molecules for absolute quantification. It outperforms current poly(A)-independent total RNA-seq protocols by capturing transcripts of a broad size range, thus enabling simultaneous analysis of protein-coding, long-noncoding, microRNA, and other noncoding RNA transcripts from single cells. We used Smart-seq-total to analyze the total RNAome of human primary fibroblasts, HEK293T, and MCF7 cells, as well as that of induced murine embryonic stem cells differentiated into embryoid bodies. By analyzing the coexpression patterns of both noncoding RNA and mRNA from the same cell, we were able to discover new roles of noncoding RNA throughout essential processes, such as cell cycle and lineage commitment during embryonic development. Moreover, we show that independent classes of short-noncoding RNA can be used to determine cell-type identity.


Assuntos
RNA/classificação , RNA/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única , Animais , Células-Tronco Embrionárias/metabolismo , Fibroblastos , Regulação da Expressão Gênica , Células HEK293 , Histonas/genética , Histonas/metabolismo , Humanos , Células MCF-7 , Camundongos
7.
Genome Res ; 30(2): 205-213, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31992615

RESUMO

To process large-scale single-cell RNA-sequencing (scRNA-seq) data effectively without excessive distortion during dimension reduction, we present SHARP, an ensemble random projection-based algorithm that is scalable to clustering 10 million cells. Comprehensive benchmarking tests on 17 public scRNA-seq data sets show that SHARP outperforms existing methods in terms of speed and accuracy. Particularly, for large-size data sets (more than 40,000 cells), SHARP runs faster than other competitors while maintaining high clustering accuracy and robustness. To the best of our knowledge, SHARP is the only R-based tool that is scalable to clustering scRNA-seq data with 10 million cells.


Assuntos
RNA-Seq , Análise de Célula Única , Software , Transcriptoma/genética , Algoritmos , Análise por Conglomerados , Perfilação da Expressão Gênica , Humanos , RNA/classificação , RNA/genética , Análise de Sequência de RNA , Sequenciamento do Exoma
8.
Nucleic Acids Res ; 49(D1): D97-D103, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33151298

RESUMO

Gene regulatory networks (GRNs) formed by transcription factors (TFs) and their downstream target genes play essential roles in gene expression regulation. Moreover, GRNs can be dynamic changing across different conditions, which are crucial for understanding the underlying mechanisms of disease pathogenesis. However, no existing database provides comprehensive GRN information for various human and mouse normal tissues and diseases at the single-cell level. Based on the known TF-target relationships and the large-scale single-cell RNA-seq data collected from public databases as well as the bulk data of The Cancer Genome Atlas and the Genotype-Tissue Expression project, we systematically predicted the GRNs of 184 different physiological and pathological conditions of human and mouse involving >633 000 cells and >27 700 bulk samples. We further developed GRNdb, a freely accessible and user-friendly database (http://www.grndb.com/) for searching, comparing, browsing, visualizing, and downloading the predicted information of 77 746 GRNs, 19 687 841 TF-target pairs, and related binding motifs at single-cell/bulk resolution. GRNdb also allows users to explore the gene expression profile, correlations, and the associations between expression levels and the patient survival of diverse cancers. Overall, GRNdb provides a valuable and timely resource to the scientific community to elucidate the functions and mechanisms of gene expression regulation in various conditions.


Assuntos
Bases de Dados Genéticas , Redes Reguladoras de Genes , Neoplasias/genética , RNA/genética , Fatores de Transcrição/genética , Animais , Atlas como Assunto , Doença/genética , Humanos , Camundongos , Neoplasias/metabolismo , Neoplasias/mortalidade , Neoplasias/patologia , Ligação Proteica , RNA/classificação , RNA/metabolismo , Análise de Sequência de RNA , Análise de Célula Única/métodos , Análise de Sobrevida , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo
9.
Cell Mol Life Sci ; 78(4): 1487-1499, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33063126

RESUMO

Non-coding RNAs are important regulators of differentiation during embryogenesis as well as key players in the fine-tuning of transcription and furthermore, they control the post-transcriptional regulation of mRNAs under physiological conditions. Deregulated expression of non-coding RNAs is often identified as one major contribution in a number of pathological conditions. Non-coding RNAs are a heterogenous group of RNAs and they represent the majority of nuclear transcripts in eukaryotes. An evolutionary highly conserved sub-group of non-coding RNAs is represented by vault RNAs, named since firstly discovered as component of the largest known ribonucleoprotein complexes called "vault". Although they have been initially described 30 years ago, vault RNAs are largely unknown and their molecular role is still under investigation. In this review we will summarize the known functions of vault RNAs and their involvement in cellular mechanisms.


Assuntos
Proteínas/genética , RNA Mensageiro/genética , RNA não Traduzido/genética , RNA/genética , Diferenciação Celular/genética , Eucariotos/genética , Regulação da Expressão Gênica/genética , Humanos , RNA/classificação , Fatores de Transcrição/genética
10.
Nucleic Acids Res ; 48(4): 1764-1778, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31965184

RESUMO

Chimeric RNAs and their encoded proteins have been traditionally viewed as unique features of neoplasia, and have been used as biomarkers and therapeutic targets for multiple cancers. Recent studies have demonstrated that chimeric RNAs also exist in non-cancerous cells and tissues, although large-scale, genome-wide studies of chimeric RNAs in non-diseased tissues have been scarce. Here, we explored the landscape of chimeric RNAs in 9495 non-diseased human tissue samples of 53 different tissues from the GTEx project. Further, we established means for classifying chimeric RNAs, and observed enrichment for particular classifications as more stringent filters are applied. We experimentally validated a subset of chimeric RNAs from each classification and demonstrated functional relevance of two chimeric RNAs in non-cancerous cells. Importantly, our list of chimeric RNAs in non-diseased tissues overlaps with some entries in several cancer fusion databases, raising concerns for some annotations. The data from this study provides a large repository of chimeric RNAs present in non-diseased tissues, which can be used as a control dataset to facilitate the identification of true cancer-specific chimeras.


Assuntos
Biomarcadores , Quimera/genética , RNA/genética , Quimera/classificação , Humanos , Neoplasias/genética , RNA/química , RNA/classificação
11.
Nucleic Acids Res ; 48(11): 6367-6381, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32406923

RESUMO

By analyzing almost 120 000 dinucleotides in over 2000 nonredundant nucleic acid crystal structures, we define 96+1 diNucleotide Conformers, NtCs, which describe the geometry of RNA and DNA dinucleotides. NtC classes are grouped into 15 codes of the structural alphabet CANA (Conformational Alphabet of Nucleic Acids) to simplify symbolic annotation of the prominent structural features of NAs and their intuitive graphical display. The search for nontrivial patterns of NtCs resulted in the identification of several types of RNA loops, some of them observed for the first time. Over 30% of the nearly six million dinucleotides in the PDB cannot be assigned to any NtC class but we demonstrate that up to a half of them can be re-refined with the help of proper refinement targets. A statistical analysis of the preferences of NtCs and CANA codes for the 16 dinucleotide sequences showed that neither the NtC class AA00, which forms the scaffold of RNA structures, nor BB00, the DNA most populated class, are sequence neutral but their distributions are significantly biased. The reported automated assignment of the NtC classes and CANA codes available at dnatco.org provides a powerful tool for unbiased analysis of nucleic acid structures by structural and molecular biologists.


Assuntos
DNA/química , DNA/classificação , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Nucleotídeos/química , Nucleotídeos/classificação , RNA/química , RNA/classificação , Sítios de Ligação , Biocatálise , RNA Catalítico/química , RNA Catalítico/metabolismo , Reprodutibilidade dos Testes , Ribossomos/química , Ribossomos/metabolismo , Riboswitch
12.
RNA Biol ; 18(sup2): 738-746, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34663179

RESUMO

The three-dimensional (3D) structure of RNA usually plays an important role in the recognition with RNA-binding protein. Along with the discovering of RNAs, several RNA databases are developed to study the functions of RNA based on sequence, secondary structure, local 3D structural motif and global structure. Based on RNA function and structure, different RNAs are classified and stored in SCOR and DARTS, respectively. The classification of RNA structures is useful in RNA structure prediction and function annotation. However, the SCOR and DARTS are not updated any more. In this study, we present an RNA classification database RR3DD based on RNA fold with the global 3D structural similarity. The RR3DD includes 13,601 RNA chains from PDB and mmCIF format structures which are classified into 780 RNA folds. The RNA chains from PDB and mmCIF format structures are aligned and clustered into 675 and 220 RNA folds, respectively. By analysing the RNA structure in RR3DD, we find that there are 11 clusters with more than 50 members. These clusters include rRNAs, riboswitches, tRNAs and so on. By mapping RR3DD into Rfam, we found that some RNAs without annotation by Rfam can be annotated through structural alignment. For example, we analysed tRNAs and found that tRNA were successfully grouped in RR3DD for which Rfam did not classify them into one family. Finally, we provide a web interface of RR3DD offering functions of browsing RR3DD, annotating RNA 3D structure and finding templates for RNA homology modelling.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Modelos Moleculares , Conformação de Ácido Nucleico , RNA/química , Software , Algoritmos , Análise por Conglomerados , Quadruplex G , RNA/classificação , RNA/genética , Relação Estrutura-Atividade
13.
Methods ; 177: 50-57, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669353

RESUMO

Mesenchymal stem or stromal cells are currently under clinical investigation for multiple diseases. While their mechanism of action is still not fully elucidated, vesicles secreted by MSCs are believed to recapitulate their therapeutic potentials to some extent. Microvesicles (MVs), also called as microparticles or ectosome, are among secreted vesicles that could transfer cytoplasmic cargo, including RNA and proteins, from emitting (source) cells to recipient cells. Given the importance of MVs, we here attempted to establish a method to isolate and characterize MVs secreted from unmodified human bone marrow derived MSCs (referred to as native MSCs, and their microvesicles as Native-MVs) and IFNγ stimulated MSCs (referred to as IFNγ-MSCs, and their microvesicles as IFNγ-MVs). We first describe an ultracentrifugation technique to isolate MVs from the conditioned cell culture media of MSCs. Next, we describe characterization and quality control steps to analyze the protein and RNA content of MVs. Finally, we examined the potential of MVs to exert immunomodulatory effects through induction of regulatory T cells (Tregs). Secretory vesicles from MSCs are promising alternatives for cell therapy with applications in drug delivery, regenerative medicine, and immunotherapy.


Assuntos
Micropartículas Derivadas de Células/química , Sistemas de Liberação de Medicamentos/métodos , Células-Tronco Mesenquimais/química , Proteômica/métodos , Medicina Regenerativa/métodos , Animais , Células da Medula Óssea/química , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Separação Celular/métodos , Micropartículas Derivadas de Células/imunologia , Meios de Cultivo Condicionados/química , Humanos , Imunoterapia/métodos , Interferon gama/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Proteínas/classificação , Proteínas/isolamento & purificação , RNA/classificação , RNA/isolamento & purificação , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
14.
Nature ; 519(7544): 486-90, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25799993

RESUMO

Visualizing the physical basis for molecular behaviour inside living cells is a great challenge for biology. RNAs are central to biological regulation, and the ability of RNA to adopt specific structures intimately controls every step of the gene expression program. However, our understanding of physiological RNA structures is limited; current in vivo RNA structure profiles include only two of the four nucleotides that make up RNA. Here we present a novel biochemical approach, in vivo click selective 2'-hydroxyl acylation and profiling experiment (icSHAPE), which enables the first global view, to our knowledge, of RNA secondary structures in living cells for all four bases. icSHAPE of the mouse embryonic stem cell transcriptome versus purified RNA folded in vitro shows that the structural dynamics of RNA in the cellular environment distinguish different classes of RNAs and regulatory elements. Structural signatures at translational start sites and ribosome pause sites are conserved from in vitro conditions, suggesting that these RNA elements are programmed by sequence. In contrast, focal structural rearrangements in vivo reveal precise interfaces of RNA with RNA-binding proteins or RNA-modification sites that are consistent with atomic-resolution structural data. Such dynamic structural footprints enable accurate prediction of RNA-protein interactions and N(6)-methyladenosine (m(6)A) modification genome wide. These results open the door for structural genomics of RNA in living cells and reveal key physiological structures controlling gene expression.


Assuntos
Regulação da Expressão Gênica , Conformação de Ácido Nucleico , RNA/química , RNA/genética , Acilação , Adenosina/análogos & derivados , Animais , Sítios de Ligação , Sobrevivência Celular , Química Click , Biologia Computacional , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica/genética , Genoma/genética , Camundongos , Modelos Moleculares , Biossíntese de Proteínas/genética , RNA/classificação , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequências Reguladoras de Ácido Ribonucleico/genética , Ribossomos/metabolismo , Transcriptoma/genética
15.
RNA ; 24(3): 423-435, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29282313

RESUMO

Exosomes are small extracellular vesicles of around 100 nm of diameter produced by most cell types. These vesicles carry nucleic acids, proteins, lipids, and other biomolecules and function as carriers of biological information in processes of extracellular communication. The content of exosomes is regulated by the external and internal microenvironment of the parent cell, but the intrinsic mechanisms of loading of molecules into exosomes are still not completely elucidated. In this study, by the use of next-generation sequencing we have characterized in depth the RNA composition of healthy endothelial cells and exosomes and provided an accurate profile of the different coding and noncoding RNA species found per compartment. We have also discovered a set of unique genes preferentially included (or excluded) into vesicles. Moreover, after studying the enrichment of RNA motifs in the genes unequally distributed between cells and exosomes, we have detected a set of enriched sequences for several classes of RNA. In conclusion, our results provide the basis for studying the involvement of RNA-binding proteins capable of recognizing RNA sequences and their role in the export of RNAs into exosomes.


Assuntos
Exossomos/metabolismo , RNA/classificação , Sequência de Bases , Exossomos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Motivos de Nucleotídeos/genética , RNA/genética , RNA/metabolismo , Análise de Sequência de RNA
16.
Nat Rev Genet ; 15(12): 829-45, 2014 12.
Artigo em Inglês | MEDLINE | ID: mdl-25365966

RESUMO

Post-transcriptional gene regulation (PTGR) concerns processes involved in the maturation, transport, stability and translation of coding and non-coding RNAs. RNA-binding proteins (RBPs) and ribonucleoproteins coordinate RNA processing and PTGR. The introduction of large-scale quantitative methods, such as next-generation sequencing and modern protein mass spectrometry, has renewed interest in the investigation of PTGR and the protein factors involved at a systems-biology level. Here, we present a census of 1,542 manually curated RBPs that we have analysed for their interactions with different classes of RNA, their evolutionary conservation, their abundance and their tissue-specific expression. Our analysis is a critical step towards the comprehensive characterization of proteins involved in human RNA metabolism.


Assuntos
Proteínas de Ligação a RNA/análise , RNA/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , RNA/química , RNA/classificação , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
17.
Methods ; 156: 25-31, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30465820

RESUMO

Adenosine deaminases that act on RNA (ADARs) catalyze adenosine-to-inosine (A-to-I) RNA editing in double-stranded RNA. Such editing is important for protection against false activation of the immune system, but also confers plasticity on the transcriptome by generating several versions of a transcript from a single genomic locus. Recently, great efforts were made in developing computational methods for detecting editing events directly from RNA-sequencing (RNA-seq) data. These efforts have led to an improved understanding of the makeup of the editome in various genomes. Here we review recent advances in editing detection based on the data available to the researcher, with emphasis on the principles underlying the various methods and the limitations they were designed to overcome. We also discuss the available various methods for analyzing and quantifying editing levels. This review collects and organizes the available approaches for analyzing RNA editing and discuss the current status of the different A-to-I detection methods with possible directions for extending these approaches.


Assuntos
Adenosina/metabolismo , Algoritmos , Inosina/metabolismo , Edição de RNA , RNA/genética , Análise de Sequência de RNA/métodos , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Elementos Alu , Animais , Genoma Humano , Humanos , RNA/classificação , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Análise de Célula Única/métodos , Software
18.
Nucleic Acids Res ; 46(D1): D202-D205, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29069520

RESUMO

RNArchitecture is a database that provides a comprehensive description of relationships between known families of structured non-coding RNAs, with a focus on structural similarities. The classification is hierarchical and similar to the system used in the SCOP and CATH databases of protein structures. Its central level is Family, which builds on the Rfam catalog and gathers closely related RNAs. Consensus structures of Families are described with a reduced secondary structure representation. Evolutionarily related Families are grouped into Superfamilies. Similar structures are further grouped into Architectures. The highest level, Class, organizes families into very broad structural categories, such as simple or complex structured RNAs. Some groups at different levels of the hierarchy are currently labeled as 'unclassified'. The classification is expected to evolve as new data become available. For each Family with an experimentally determined three-diemsional (3D) structure(s), a representative one is provided. RNArchitecture also presents theoretical models of RNA 3D structure and is open for submission of structural models by users. Compared to other databases, RNArchitecture is unique in its focus on structure-based RNA classification, and in providing a platform for storing RNA 3D structure predictions. RNArchitecture can be accessed at http://iimcb.genesilico.pl/RNArchitecture/.


Assuntos
Bases de Dados de Ácidos Nucleicos , RNA/química , Internet , Estrutura Molecular , Conformação de Ácido Nucleico , RNA/classificação , RNA/genética
19.
Funct Integr Genomics ; 19(1): 109-121, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30128795

RESUMO

Recently, accumulating evidence has demonstrated that non-coding RNAs (ncRNAs) play a vital role in oncogenicity. Nevertheless, the regulatory mechanisms and functions remain poorly understood, especially for lncRNAs and circRNAs. In this study, we simultaneously detected, for the first time, the expression profiles of the whole transcriptome, including miRNA, circRNA and lncRNA + mRNA, in five pairs of laryngeal squamous cell carcinoma (LSCC) and matched non-carcinoma tissues by microarrays. Five miRNAs, four circRNAs, three lncRNAs and five mRNAs that were dysregulated were selected to confirm the verification of the microarray data by quantitative real-time PCR (qRT-PCR) in 20 pairs of LSCC samples. We constructed LSCC-related competing endogenous RNA (ceRNA) networks of lncRNAs and circRNAs (circRNA or lncRNA-miRNA-mRNA) respectively. Functional annotation revealed the lncRNA-mediated ceRNA network were enriched for genes involved in the tumor-associated pathways. Hsa_circ_0033988 with the highest degree in the circRNA-mediated ceRNA network was associated with fatty acid degradation, which was responsible for the depletion of fat in tumor-associated cachexia. Finally, to clarify the ncRNA co-regulation mechanism, we constructed a circRNA-lncRNA co-regulated network by integrating the above two networks and identified 9 modules for further study. A subnetwork of module 2 with the most dysregulated microRNAs was extracted to establish the ncRNA-involved TGF-ß-associated pathway. In conclusion, our findings provide a high-throughput microarray data of the coding and non-coding RNAs and establish the foundation for further functional research on the ceRNA regulatory mechanism of non-coding RNAs in LSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Laríngeas/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Transcriptoma , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Biologia Computacional , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/patologia , MicroRNAs/classificação , MicroRNAs/metabolismo , Análise em Microsséries , Anotação de Sequência Molecular , RNA/classificação , RNA/genética , RNA/metabolismo , RNA Circular , RNA Longo não Codificante/classificação , RNA Longo não Codificante/metabolismo , RNA Mensageiro/classificação , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA