RESUMO
PURPOSE: This study was to clarify the molecular epidemiology and clinical infection characteristics of Ralstonia pickettii and establish sequence typing system. METHODS: 48 nonrepetitive Ralstonia pickettii strains were collected from January 2008 to December 2013 at the Chinese People's Liberation Army General Hospital (PLAGH) and were identified through a specific PCR experiment, 16 S rDNA experiment and VITEK 2 system to compare the identification accuracy. The sequence types of the strains were analyzed by multilocus sequence typing (MLST) method. The antibiotic sensitivity of these strains was determined with disc diffusion tests and broth microdilution method. The clinical data of Ralstonia pickettii infected patients were collected. RESULTS: All of the 48 strains were identified as Ralstonia pickettii by VITEK 2 system. 30 and 34 strains were identified as Ralstonia pickettii by PCR and 16 S rDNA experiment respectively. ST9 was the most sequence types (STs) in these 18 STs of 42 strains. 42 strains were divided into 2 groups (A and B) and 18 genotypes. Ralstonia pickettii was sensitive to some cephalosporins, ß-lactam/ß-lactamase inhibitor, levofloxacin and trimethoprim/sulfamethoxazole. Cough, sputum, shortness of breath and pulmonary rales were the common clinical symptoms of most Ralstonia pickettii infected patients. CONCLUSION: We established a sequence typing system with a relatively fine resolution and the PCR assay is a faster and more sensitive method for clinical identification of Ralstonia pickettii. ST9 is the most common sequence types of Ralstonia pickettii. The most common clinical characteristics of Ralstonia pickettii infected patients were cough, sputum, shortness of breath and pulmonary rales.
Assuntos
Antibacterianos , Infecções por Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Ralstonia pickettii , Humanos , Masculino , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Adulto , Feminino , Antibacterianos/farmacologia , Pessoa de Meia-Idade , Ralstonia pickettii/genética , Ralstonia pickettii/isolamento & purificação , Idoso , Adulto Jovem , Genótipo , China/epidemiologia , RNA Ribossômico 16S/genética , Adolescente , Reação em Cadeia da Polimerase , DNA Bacteriano/genética , DNA Ribossômico/genéticaRESUMO
BACKGROUND: Ralstonia pickettii is a low virulent, gram-negative bacillus that is rarely associated with human infections and may cause bacteremia. Microbacterium species are gram-positive coryneforms that are generally considered as a contaminant in Gram staining of blood cultures, especially when the time to positivity is longer than 48 h. Both these bacterial species are emerging opportunistic pathogens that may occasionally cause serious infections and even life-threatening health conditions. CASE PRESENTATION: Here, we report the case of a patient with bacteremia caused by both R. pickettii and Microbacterium. We advocate for providers to order rapid antibiotic susceptibility testing, since our patient's suffered two kinds of rare pathogens with the opposite of drug sensitivity results to imipenem. CONCLUSIONS: Our case present a patient suffered septic shock caused by R. pickettii and Microbacterium. Improving the antibiotic management based on the result of antimicrobial susceptibility tests is the key of successful treatment.
Assuntos
Bacteriemia , Infecções por Bactérias Gram-Negativas , Ralstonia pickettii , Humanos , Microbacterium , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/etiologia , Antibacterianos/uso terapêutico , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológico , Bacteriemia/complicaçõesRESUMO
We describe an outbreak of Ralstonia pickettii in the United Kingdom, with isolates genetically indistinguishable from a 2023 Australian outbreak linked to internationally distributed saline solutions. Confirmed cases (n = 3) had bacteraemia, clinically relevant infection, indwelling venous lines and frequent healthcare contact. Multi-stakeholder intervention was required including product recall and risk communications. We recommend a low threshold for investigating clusters of Ralstonia species and similar opportunistic pathogens, considering contaminated product sources. Effective mitigation requires multi-agency partnership and international collaboration.
Assuntos
Surtos de Doenças , Infecções por Bactérias Gram-Negativas , Ralstonia pickettii , Humanos , Reino Unido/epidemiologia , Ralstonia pickettii/isolamento & purificação , Ralstonia pickettii/genética , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Solução Salina , Bacteriemia/epidemiologia , Bacteriemia/microbiologia , Austrália/epidemiologia , Contaminação de Medicamentos , MasculinoRESUMO
Ralstonia pickettii is a Gram-negative rod which may cause invasive infections when they contaminate liquid medical products. After R. pickettii was detected in blood cultures and a stem cell product from three patients in a tertiary care hospital in Germany, whole genome sequencing of these three isolates and two water isolates from the environment was performed. Core genome multilocus sequence typing analysis showed that the three patient isolates were closely related and there was a large distance to the environmental isolates. In a genomic comparison, the patients' isolates were distantly related to an R. pickettii strain from a cluster in Australia suspected to be caused by contaminated saline produced in India, while all liquid medical products with a link to all patients were produced in Europe or the United States. Our data point towards an ongoing risk by an unknown common source that could be traced back to medical products contaminated with R. pickettii and potentially distributed worldwide. Investigating invasive R. pickettii infections, identifying and testing medical products administered to the patients and timely whole genome sequencing may help identify the exact source of this potentially global outbreak.
Assuntos
Infecção Hospitalar , Infecções por Bactérias Gram-Negativas , Ralstonia pickettii , Sepse , Humanos , Ralstonia pickettii/genética , Solução Salina , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecção Hospitalar/epidemiologia , Genômica , Alemanha/epidemiologiaRESUMO
Peritoneal dialysis (PD)-associated peritonitis secondary to Ralstonia infection is very rare. Ralstonia pickettii is an organism that can grow in contaminated saline, water, chlorhexidine, and other medical products used in laboratories and the clinical setting. Infective endocarditis, prosthetic joint, and severe chest infections are previously reported with R. pickettii infection. We report a novel series of three cases diagnosed with PD-associated peritonitis caused by R. pickettii, where the cases appeared consecutively to our unit during a span of 4 weeks. During the COVID-19 pandemic, there were increased uses of non-sterile gloves by clinical staff as a form of personal protective equipment throughout patient interaction and PD exchange, as recommended by local hospital policy for all staff attending to patient care. A multidisciplinary team root cause analysis of our cases suggested non-sterile gloves being the likely source of environmental contamination, leading to PD-associated peritonitis caused by R. pickettii in this scenario.
Assuntos
COVID-19 , Infecções por Bactérias Gram-Negativas , Diálise Peritoneal , Peritonite , Ralstonia pickettii , Humanos , Pandemias , Diálise Renal/efeitos adversos , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/etiologia , COVID-19/complicações , Diálise Peritoneal/efeitos adversos , Peritonite/diagnóstico , Peritonite/etiologiaRESUMO
The siderophore rhizoferrin (N1,N4-dicitrylputrescine) is produced in fungi and bacteria to scavenge iron. Putrescine-producing bacterium Ralstonia pickettii synthesizes rhizoferrin and encodes a single nonribosomal peptide synthetase-independent siderophore (NIS) synthetase. From biosynthetic logic, we hypothesized that this single enzyme is sufficient for rhizoferrin biosynthesis. We confirmed this by expression of R. pickettii NIS synthetase in Escherichia coli, resulting in rhizoferrin production. This was further confirmed in vitro using the recombinant NIS synthetase, synthesizing rhizoferrin from putrescine and citrate. Heterologous expression of homologous lbtA from Legionella pneumophila, required for rhizoferrin biosynthesis in that species, produced siderophore activity in E. coli. Rhizoferrin is also synthesized by Francisella tularensis and Francisella novicida, but unlike R. pickettii or L. pneumophila, Francisella species lack putrescine biosynthetic pathways because of genomic decay. Francisella encodes a NIS synthetase FslA/FigA and an ornithine decarboxylase homolog FslC/FigC, required for rhizoferrin biosynthesis. Ornithine decarboxylase produces putrescine from ornithine, but we show here in vitro that FigA synthesizes N-citrylornithine, and FigC is an N-citrylornithine decarboxylase that together synthesize rhizoferrin without using putrescine. We co-expressed F. novicida figA and figC in E. coli and produced rhizoferrin. A 2.1 Å X-ray crystal structure of the FigC N-citrylornithine decarboxylase reveals how the larger substrate is accommodated and how active site residues have changed to recognize N-citrylornithine. FigC belongs to a new subfamily of alanine racemase-fold PLP-dependent decarboxylases that are not involved in polyamine biosynthesis. These data reveal a natural product biosynthetic workaround that evolved to bypass a missing precursor and re-establish it in the final structure.
Assuntos
Proteínas de Bactérias/metabolismo , Compostos Férricos/metabolismo , Ferro/metabolismo , Peptídeo Sintases/metabolismo , Putrescina/metabolismo , Ralstonia pickettii/enzimologia , Sideróforos/metabolismo , Citratos/metabolismo , Francisella/enzimologia , Legionella pneumophila/enzimologiaRESUMO
We report on probable factory-based contamination of portable water heaters with waterborne pathogens and 2 bloodstream infections potentially attributable to off-label use of these water heaters to warm extracorporeal membrane oxygenation circuits. Great caution is warranted when using water-based devices to care for critically ill patients.
Assuntos
Bacteriemia , Oxigenação por Membrana Extracorpórea , Infecções por Pseudomonas , Ralstonia pickettii , Humanos , Pseudomonas aeruginosa , ÁguaRESUMO
Disruption of the intestinal microbiota caused by intensive chemotherapy, irradiation and antibiotics can result in development of severe gut graft-versus-host disease and infectious complications, leading to poorer outcomes among allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Although the oral cavity is also densely colonized by indigenous microorganisms, the bacterial composition in allo-HSCT recipients remains unclear. We determined the tongue microbiota composition of 45 patients with hematological disorders on the day of transplantation and compared them to 164 community-dwelling adults. The V1-V2 regions of the 16S rRNA gene sequences demonstrated that the allo-HSCT recipients had less diverse and distinct microbiota from that of community-dwelling adults. The full-length 16S rRNA gene sequences identified 146 bacterial taxa in the microbiota of allo-HSCT recipients, of which 34 bacterial taxa did not correspond to bacteria primarily inhabiting the oral cavity deposited in the expanded Human Oral Microbiome Database. Notably, the detection of Staphylococcus haemolyticus and/or Ralstonia pickettii was significantly associated with a higher risk of mortality during the follow-up period. These results demonstrate that the oral cavity of allo-HSCT recipients is colonized by a disrupted microbiota on the day of transplantation and suggest that detection of specific nonindigenous taxa could be a predictor of transplant outcome.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Microbiota , Ralstonia pickettii , Staphylococcus haemolyticus , Língua/microbiologia , Adulto , Idoso , Aloenxertos , Feminino , Infecções por Bactérias Gram-Negativas/etiologia , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Ralstonia pickettii/classificação , Ralstonia pickettii/genética , Ralstonia pickettii/isolamento & purificação , Infecções Estafilocócicas/etiologia , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/mortalidade , Staphylococcus haemolyticus/classificação , Staphylococcus haemolyticus/genética , Staphylococcus haemolyticus/isolamento & purificaçãoRESUMO
This study evaluated antibiotic susceptibility and presence of blaOXA22 and blaOXA60 genes in 81 isolates of Ralstonia pickettii obtained from different purified and ultra-pure water systems in two different geographical areas of Croatia. E-test and disc diffusion test were performed to determine antibiotic susceptibility. Polymerase chain reaction was applied to detect genes encoding OXA-22 and OXA-60 oxacillinases previously identified in R. pickettii. The isolates were genotyped by pulsed-field gel electrophoresis. The results revealed variable susceptibility/resistance profiles. Our isolates exhibited high susceptibility rates to ceftriaxone, cefotaxime, piperacillin-tazobactam, ciprofloxacin, imipenem, cefepime and in lesser extent to ceftazidime. High rates of susceptibility were also observed for sulphamethoxazole-trimethoprim and piperacillin. High resistance rates were noticed for ticarcillin-clavulanate, aztreonam and meropenem, as well as for all aminoglycosides tested. Modified Hodge test was positive in 51·9% strains, indicating production of carbapenemases. blaOXA22 and blaOXA60 genes were detected in 37·0 and 80·3% strains, respectively. Pulsed-field gel electrophoresis identified three major clusters containing subclusters. R. pickettii should be taken seriously as a possible cause of nosocomial infections to ensure adequate therapy, to prevent the development of resistant strains and to try to reduce the possibility of R. pickettii surviving in clean and ultra clean water systems.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Ralstonia pickettii , Antibacterianos/farmacologia , Croácia , Piperacilina , Ralstonia pickettii/genética , Água , beta-Lactamases/genéticaRESUMO
The only known function of S-adenosylmethionine decarboxylase (AdoMetDC) is to supply, with its partner aminopropyltransferase enzymes such as spermidine synthase (SpdSyn), the aminopropyl donor for polyamine biosynthesis. Polyamine spermidine is probably essential for the growth of all eukaryotes, most archaea and many bacteria. Two classes of AdoMetDC exist, the prokaryotic class 1a and 1b forms, and the eukaryotic class 2 enzyme, which is derived from an ancient fusion of two prokaryotic class 1b genes. Herein, we show that 'eukaryotic' class 2 AdoMetDCs are found in bacteria and are enzymatically functional. However, the bacterial AdoMetDC class 2 genes are phylogenetically limited and were likely acquired from a eukaryotic source via transdomain horizontal gene transfer, consistent with the class 2 form of AdoMetDC being a eukaryotic invention. We found that some class 2 and thousands of class 1b AdoMetDC homologues are present in bacterial genomes that also encode a gene fusion of an N-terminal membrane protein of the Major Facilitator Superfamily (MFS) class of transporters and a C-terminal SpdSyn-like domain. Although these AdoMetDCs are enzymatically functional, spermidine is absent, and an entire fusion protein or its SpdSyn-like domain only, does not biochemically complement a SpdSyn deletion strain of E. coli This suggests that the fusion protein aminopropylates a substrate other than putrescine, and has a role outside of polyamine biosynthesis. Another integral membrane protein found clustered with these genes is DUF350, which is also found in other gene clusters containing a homologue of the glutathionylspermidine synthetase family and occasionally other polyamine biosynthetic enzymes.
Assuntos
Adenosilmetionina Descarboxilase/metabolismo , Putrescina/metabolismo , Ralstonia pickettii/enzimologia , Shewanella/enzimologia , Espermidina/metabolismo , Adenosilmetionina Descarboxilase/química , Adenosilmetionina Descarboxilase/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Putrescina/química , Ralstonia pickettii/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Shewanella/genética , Espermidina/químicaRESUMO
Halogenated phenol and nitrophenols are toxic compounds that are widely accumulated in the environment. Enzymes in the had operon from the bacterium Ralstonia pickettii DTP0602 have the potential for application as biocatalysts in the degradation of many of these toxic chemicals. HadA monooxygenase previously was identified as a two-component reduced FAD (FADH-)-utilizing monooxygenase with dual activities of dehalogenation and denitration. However, the partner enzymes of HadA, that is, the flavin reductase and quinone reductase that provide the FADH- for HadA and reduce quinone to hydroquinone, remain to be identified. In this report, we overexpressed and purified the flavin reductases, HadB and HadX, to investigate their functional and catalytic properties. Our results indicated that HadB is an FMN-dependent quinone reductase that converts the quinone products from HadA to hydroquinone compounds that are more stable and can be assimilated by downstream enzymes in the pathway. Transient kinetics indicated that HadB prefers NADH and menadione as the electron donor and acceptor, respectively. We found that HadX is an FAD-bound flavin reductase, which can generate FADH- for HadA to catalyze dehalogenation or denitration reactions. Thermodynamic and transient kinetic experiments revealed that HadX prefers to bind FAD over FADH- and that HadX can transfer FADH- from HadX to HadA via free diffusion. Moreover, HadX rapidly catalyzed NADH-mediated reduction of flavin and provided the FADH- for a monooxygenase of a different system. Combination of all three flavin-dependent enzymes, i.e. HadA/HadB/HadX, reconstituted an effective dehalogenation and denitration cascade, which may be useful for future bioremediation applications.
Assuntos
Biodegradação Ambiental , Flavinas/metabolismo , Oxigenases de Função Mista/metabolismo , Nitratos/metabolismo , Oxirredutases/metabolismo , Ralstonia pickettii/enzimologia , Catálise , Eletroforese em Gel de Poliacrilamida , Flavina-Adenina Dinucleotídeo/metabolismo , Halogenação , Cinética , Fenóis , TermodinâmicaRESUMO
Electron transfer reactions are essential for life because they underpin oxidative phosphorylation and photosynthesis, processes leading to the generation of ATP, and are involved in many reactions of intermediary metabolism. Key to these roles is the formation of transient inter-protein electron transfer complexes. The structural basis for the control of specificity between partner proteins is lacking because these weak transient complexes have remained largely intractable for crystallographic studies. Inter-protein electron transfer processes are central to all of the key steps of denitrification, an alternative form of respiration in which bacteria reduce nitrate or nitrite to N2 through the gaseous intermediates nitric oxide (NO) and nitrous oxide (N2O) when oxygen concentrations are limiting. The one-electron reduction of nitrite to NO, a precursor to N2O, is performed by either a haem- or copper-containing nitrite reductase (CuNiR) where they receive an electron from redox partner proteins a cupredoxin or a c-type cytochrome. Here we report the structures of the newly characterized three-domain haem-c-Cu nitrite reductase from Ralstonia pickettii (RpNiR) at 1.01 Å resolution and its M92A and P93A mutants. Very high resolution provides the first view of the atomic detail of the interface between the core trimeric cupredoxin structure of CuNiR and the tethered cytochrome c domain that allows the enzyme to function as an effective self-electron transfer system where the donor and acceptor proteins are fused together by genomic acquisition for functional advantage. Comparison of RpNiR with the binary complex of a CuNiR with a donor protein, AxNiR-cytc551 (ref. 6), and mutagenesis studies provide direct evidence for the importance of a hydrogen-bonded water at the interface in electron transfer. The structure also provides an explanation for the preferential binding of nitrite to the reduced copper ion at the active site in RpNiR, in contrast to other CuNiRs where reductive inactivation occurs, preventing substrate binding.
Assuntos
Transporte de Elétrons , Nitrito Redutases/química , Nitrito Redutases/metabolismo , Ralstonia pickettii/enzimologia , Azurina/química , Azurina/metabolismo , Domínio Catalítico , Cobre/química , Cobre/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Nitrito Redutases/genética , Nitritos/química , Nitritos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Prótons , Água/química , Água/metabolismoRESUMO
Online water bioburden analyzers (OWBAs) can provide real-time feedback on viable bacteria in high-purity water (HPW) systems for pharmaceutical manufacturers. To calibrate and validate OWBAs, which detect bacteria using scattered light and bacterial autofluorescence, standards are needed that mimic the characteristics of bacteria in HPW. To guide selection of potential standards, e.g., fluorescent microspheres, a relevant bacterial contaminant, Ralstonia pickettii, was characterized for size, count, viability, and autofluorescence after exposure for 24 h to HPW or a nutrient environment. The cells exposed to HPW showed smaller sizes, with lower counts and autofluorescence intensities, but similar spectral features. The cell characteristics are discussed in comparison with a set of fluorescent microspheres, considering factors relevant to OWBAs. These studies suggest that fluorescent microspheres should be relatively small (< 1 µm diameter) and dim, while covering a broad emission range from ≈ (420 to 600) nm to best mimic the representative R. pickettii.
Assuntos
Ralstonia pickettii/isolamento & purificação , Calibragem , Água , Microbiologia da ÁguaRESUMO
BACKGROUND: Bacterial biofilms have been implicated with breast implant complications including capsular contracture and anaplastic large-cell lymphoma. The actual mechanisms for either are still under active investigation and are not clear. Due to their increased surface area, implants with textured surfaces may harbor greater biofilm loads than those with smooth surfaces. METHODS: Biofilm formation on the outer surface material was compared using implants with various surface areas and roughness, including Natrelle® (Smooth), SmoothSilk®/SilkSurface® (Silk), VelvetSurface ® (Velvet), Siltex®, and Biocell®. The roughness and surface area of each material were assessed using non-contact profilometry. Bacterial attachment (2 h) and biofilm formation (24 h) were evaluated for Staphylococcus epidermidis, Pseudomonas aeruginosa, and Ralstonia pickettii over nine independent experiments using a CDC biofilm reactor and viable plate counts (VPCs) as well as confocal scanning laser microscopy. VPCs of the textured implants were compared relative to the Smooth implant. RESULTS: Surface areas increased with roughness and were similar among the three least rough implants (Smooth, Silk, and Velvet) and among the roughest implants (Siltex and Biocell). Overall, VPC indicated there was significantly more bacterial attachment and biofilm formation on the Siltex and Biocell implants than the Silk or Velvet implants, although there were differences between species and time points. CSLM confirmed the formation of thicker biofilms on the implants with rougher surface textures. CONCLUSION: This in vitro study confirmed that implant surfaces with rougher texture, resulting in more surface area, harbored greater biofilm loads than those with smoother surfaces. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Assuntos
Aderência Bacteriana , Biofilmes , Implantes de Mama/microbiologia , Pseudomonas aeruginosa/fisiologia , Ralstonia pickettii/fisiologia , Staphylococcus epidermidis/fisiologia , Desenho de PróteseRESUMO
The accumulation of chlorophenols (CPs) in the environment, due to their wide use as agrochemicals, has become a serious environmental problem. These organic halides can be degraded by aerobic microorganisms, where the initial steps of various biodegradation pathways include an oxidative dechlorinating process in which chloride is replaced by a hydroxyl substituent. Harnessing these dechlorinating processes could provide an opportunity for environmental remediation, but detailed catalytic mechanisms for these enzymes are not yet known. To close this gap, we now report transient kinetics and product analysis of the dechlorinating flavin-dependent monooxygenase, HadA, from the aerobic organism Ralstonia pickettii DTP0602, identifying several mechanistic properties that differ from other enzymes in the same class. We first overexpressed and purified HadA to homogeneity. Analyses of the products from single and multiple turnover reactions demonstrated that HadA prefers 4-CP and 2-CP over CPs with multiple substituents. Stopped-flow and rapid-quench flow experiments of HadA with 4-CP show the involvement of specific intermediates (C4a-hydroperoxy-FAD and C4a-hydroxy-FAD) in the reaction, define rate constants and the order of substrate binding, and demonstrate that the hydroxylation step occurs prior to chloride elimination. The data also identify the non-productive and productive paths of the HadA reactions and demonstrate that product formation is the rate-limiting step. This is the first elucidation of the kinetic mechanism of a two-component flavin-dependent monooxygenase that can catalyze oxidative dechlorination of various CPs, and as such it will serve as the basis for future investigation of enzyme variants that will be useful for applications in detoxifying chemicals hazardous to human health.
Assuntos
Clorofenóis/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Oxigenases de Função Mista/metabolismo , Ralstonia pickettii/enzimologia , Clorofenóis/química , Infecções por Bactérias Gram-Negativas/microbiologia , Halogenação , Humanos , Cinética , Oxigenases de Função Mista/química , Ralstonia pickettii/química , Ralstonia pickettii/metabolismo , Especificidade por SubstratoRESUMO
Copper-containing nitrite reductases (CuNiRs) play a key role in the global nitrogen cycle by reducing nitrite (NO2-) to nitric oxide, a reaction that involves one electron and two protons. In typical two-domain CuNiRs, the electron is acquired from an external electron-donating partner. The recently characterised Rastonia picketti (RpNiR) system is a three-domain CuNiR, where the cupredoxin domain is tethered to a heme c domain that can function as the electron donor. The nitrite reduction starts with the binding of NO2- to the T2Cu centre, but very little is known about how NO2- binds to native RpNiR. A recent crystallographic study of an RpNiR mutant suggests that NO2- may bind via nitrogen rather than through the bidentate oxygen mode typically observed in two-domain CuNiRs. In this work we have used combined quantum mechanical/molecular mechanical (QM/MM) methods to model the binding mode of NO2- with native RpNiR in order to determine whether the N-bound or O-bound orientation is preferred. Our results indicate that binding via nitrogen or oxygen is possible for the oxidised Cu(II) state of the T2Cu centre, but in the reduced Cu(I) state the N-binding mode is energetically preferred.
Assuntos
Cobre/metabolismo , Heme/metabolismo , Simulação de Dinâmica Molecular , Nitrito Redutases/química , Nitrito Redutases/metabolismo , Nitritos/metabolismo , Teoria Quântica , Azurina/química , Azurina/metabolismo , Cobre/química , Transporte de Elétrons , Heme/química , Modelos Moleculares , Nitritos/química , Oxirredução , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Ralstonia pickettii/enzimologiaRESUMO
BACKGROUND: Ralstonia Pickettii biofilms are associated with pocket infections following breast implant surgeries. Biofilm protects bacteria most topically applied antimicrobial irrigations. OBJECTIVES: To evaluate the effectiveness of four antimicrobial solutions on the planktonic form and established biofilm of Ralstonia Pickettii grown on 3 different types of silicone breast implants. METHODS: Time kill assays at clinical concentrations of chlorhexidine gluconate, povidone iodine, triple-antibiotic solution, and a 0.025% hypochlorous acid solution stabilized in amber glass were evaluated. Normal saline was the control. Three types of silicone implants, two with a textured surface and one smooth surface, were selected. Planktonic assays were performed after implants were soaked for one, five, 30, and 120 minute time points. Biofilm assays were performed after 5 and 120 minutes of implant soak time. Both tests evaluated cell-forming units (CFU/mL). RESULTS: Triple antibiotic solution had no effect on R. pickettii and was dropped from the study. Remaining solutions showed total kill of planktonic bacteria at one minute. Saline control showed no significant effect on biofilm as anticipated. Stabilized hypochlorous acid was the only solution tested capable of eradicating R. pickettii biofilm on all implant surfaces tested within the first five minute soak time. CONCLUSIONS: Noncytotoxic, 0.025% hypochlorous acid in normal saline, stabilized in amber glass, successfully eradicated Ralstonia pickettii in planktonic and mature biofilm on three types of silicone implants during initial five minute soak time and may be the preferred antimicrobial solution for pocket lavage. This preliminary study requires further investigation. Leaching and implant compatibility testing is currently in progress.
Assuntos
Antibacterianos/administração & dosagem , Implantes de Mama/microbiologia , Ácido Hipocloroso/administração & dosagem , Ralstonia pickettii/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Implante Mamário/efeitos adversos , Implante Mamário/instrumentação , Implantes de Mama/efeitos adversos , Humanos , Testes de Sensibilidade Microbiana , Infecções Relacionadas à Prótese/etiologia , Infecções Relacionadas à Prótese/microbiologia , Infecções Relacionadas à Prótese/prevenção & controle , Ralstonia pickettii/isolamento & purificação , Ralstonia pickettii/fisiologia , Géis de SiliconeRESUMO
BACKGROUND: In the context of an increase number of primary and revision total hip and total knee arthroplasty performed yearly, an increased risk of complication is expected. Prosthetic joint infection (PJI) remains the most common and feared arthroplasty complication. Ralstonia pickettii is a Gram-negative bacterium, that has also been identified in biofilms. It remains an extremely rare cause of PJI. There is no report of an identification of R. pickettii on an extracted spacer loaded with antibiotic. CASE PRESENTATION: We present the case of an 83-years-old Caucasian male patient, that underwent a right cemented total hip replacement surgery. The patient is diagnosed with an early PJI with no isolated microorganism. A debridement and change of mobile parts is performed. At the beginning of 2016, the patient in readmitted into the Orthopedic Department for sever, right abdominal and groin pain and elevated serum erythrocyte sedimentation rate and C-reactive protein. A joint aspiration is performed with a negative microbiological examination. A two-stage exchange with long interval management is adopted, and a preformed spacer loaded with gentamicin was implanted. In July 2016, based on the proinflammatory markers evolution, a shift a three-stage exchange strategy is decided. In September 2016, a debridement, and changing of the preformed spacer loaded with gentamicin with another was carried out. Bacteriological examination of the tissues sampled intraoperatively was positive for Pseudomonas aeruginosa. From the sonication fluid, no bacteria were isolated on culture or identified using the bbFISH assay. During the hospitalization period, the patient received i.v. ceftazidime 3x2g/day and p.o. ciprofloxacin 2x750mg/day, antibiotic therapy that was continued after discharge with p.o. ciprofloxacin 2x750mg/day for 6 weeks. In February 2017, a reimplantation of a revision prosthesis is performed. The retrieved spacer is sonicated, and after 4 days of incubation of the sonication fluid, R. pickettii is isolated. A long term antibiotic therapy with cotrimoxazole being prescribed. CONCLUSIONS: Bacteria culture of sonication fluid remains the gold standard in diagnosing prosthetic joint infections. R. pickettii remains an extremely rare cause of prosthetic joint infection. Optimal management of R. pickettii prosthetic joint infections of has not been established.
Assuntos
Artroplastia de Quadril/efeitos adversos , Infecções por Bactérias Gram-Negativas/diagnóstico , Prótese de Quadril/microbiologia , Infecções Relacionadas à Prótese/diagnóstico , Ralstonia pickettii/isolamento & purificação , Sonicação/métodos , Idoso de 80 Anos ou mais , Infecções por Bactérias Gram-Negativas/etiologia , Humanos , Masculino , Infecções Relacionadas à Prótese/etiologiaRESUMO
AIM: To investigate the biochemical and functional properties of an extracellular protease, RpA, in Ralstonia pickettii WP1 isolated from water supply systems. METHODS AND RESULTS: An extracellular protease was identified and characterized from R. pickettii WP1. A mutant strain WP1M2 was created from strain WP1 by mini-Tn5 transposition. The culture filtrates from WP1M2 had a lower cytotoxic effect than the parental WP1 on several mammalian cell lines. Cloning and sequence analysis revealed the Tn5 transposon inserted at a protease gene (rpA) which is 81% homologous to prtA and aprX genes of Pseudomonas fluorescens. The rpA gene encodes a 482-residue protein showing sequence similarity to metalloproteases of the serralysin family. The RpA protein was expressed in Escherichia coli using a pET expression vector and purified as a 55 kDa molecular weight protein. Furthermore, the protease activity of RpA was inhibited by protease inhibitor and heat treatment. CONCLUSIONS: The in vitro cytotoxic activity of R. pickettii culture filtrates was attributed to RpA protease. SIGNIFICANCE AND IMPACT OF THE STUDY: An extracellular protease, RpA, was identified from R. pickettii WP1 isolated from water supply system. The RpA metalloproteases is required for the pathogenicity of R. pickettii to mammalian cell lines.
Assuntos
Proteínas de Bactérias/metabolismo , Metaloendopeptidases/metabolismo , Ralstonia pickettii/enzimologia , Ralstonia pickettii/patogenicidade , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Estabilidade Enzimática , Metaloendopeptidases/química , Metaloendopeptidases/genética , Dados de Sequência Molecular , Ralstonia pickettii/química , Ralstonia pickettii/genética , Alinhamento de Sequência , VirulênciaRESUMO
Asn at position 285 (N285) in the catalytic domain of poly[(R)-3-hydroxybutyrate] (PHB) depolymerase from Ralstonia pickettii T1 most likely participates in the cleavage of ester bonds as revealed by our previous evolutionary engineering study using the error-prone polymerase chain reaction (PCR) method. To exhaustively examine the effects of mutations at that position, we conducted site-directed saturation mutagenesis at that position and the resultant mutant enzymes (N285X) were evaluated in p-nitrophenyl ester (pNPCn) hydrolysis and PHB degradation. Kinetic studies demonstrated that the PHB-degrading activities of N285X were reciprocally related to their pNPCn-hydrolyzing activities, with the exception of N285A and N285G, and that His residue could functionally substitute for Asn285 on PHB degradation.